首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The Western Ghats of Karnataka natural ecosystem are among the most diverse and is one of the eight hottest hotspots of biological diversity in the world, that runs along the western part of India through four states including Karnataka. Bacillus thuringiensis (Bt) strains were isolated from soils of Western Ghats of Karnataka and characterized by molecular and analytical methods as a result of which 28 new Bt-like isolates were identified. Bt strains were isolated from soil samples using sodium acetate selection method. The morphology of crystals was studied using light and phase contrast microscopy. Isolates were further characterized for insecticidal cry gene by PCR, composition of toxins in bacterial crystals by SDS-PAGE cloning, sequencing and evaluation of toxicity was done. As a result 28 new Bt-like isolates were identified. Majority of the isolates showed the presence of a 55 kDa protein bands on SDS-PAGE while the rest showed 130, 73, 34, and 25 kDa bands. PCR analysis revealed predominance of Coleopteran-active cry genes in these isolates. The variations in the nucleotide sequences, crystal morphology, and mass of crystal protein(s) purified from the Bt isolates revealed genetic and molecular diversity. Three strains containing Coleopteran-active cry genes showed higher activity against larvae Myllocerus undecimpustulatus undatus Marshall (Coleoptera: Curculionidae) than B. thuringiensis subsp. Morrisoni. Results indicated that Bt isolates could be utilized for bioinsecticide production, aiming to reduce the use of chemical insecticide which could be useful to use in integrated pest management to control agriculturally important pests for sustainable crop production.  相似文献   

2.
Molecular characterisation of nine different Bacillus thuringiensis isolates from the soil of different Egyptian governorates and with varying activities against some lepidopterous insects was carried out using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), polymerase chain reaction (PCR) and randomly amplified polymorphic DNA (RAPD)-PCR analysis. Molecular weights of the major components of the crystal proteins of the tested strains revealed that those strains with bands 39 and 141 KDa would be possibly potent against the cotton leafworm Spodoptera littoralis (Biosduval) (Lepidoptera: Noctuidae), those with bands 39–73 and 104–178 KDa showed toxicity against the American bollworm Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) and those with bands 25–3 and 135 KDa may be toxic to the pink bollworm Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae). PCR analysis indicates that the frequency of the cry 1 genes predominated 72.41% of isolates amplifying cry 1 gene. DNA fingerprinting-based randomly amplified polymorphic DNA (RAPD) techniques proved to be a reliable method for identification of different B. thuringiensis strains at the DNA level.  相似文献   

3.
Abstract

As a part of an ongoing nationwide programme focused on finding novel strains of Bacillus thuringiensis (Bt) that are toxic to some of the major pests that impact economically important crops, we initiated a search for Bt isolates native to Syria. We succeeded in assembling a collection of 40 Bt isolates recovered from infected larvae of Galleria mellonella, Helicoverpa armigera and Ephestia kuehniella. Light microscopy showed that all isolates produce bipyramidal and cuboidal crystal proteins. The 50% lethal concentration of the spore-crystal mixture of the 40 isolates against E. kuehniella larvae varied from 3 to more than 200 µg g?1. A comparison of the LC50 values of the tested isolates with the reference strain Bt kurstaki HD-1 (20.55 µg g?1), showed that some of these isolates have a similar or up to six times higher toxicity potential. PCR screening revealed that all obtained isolates contain cry1 and cry2 genes, whereas only four contain cry9. Moreover, the proteins of 130 and 65/70 Kda encoded by these genes were detected in the SDS-PAGE of the purified parasporal bodies. Flagellar serotyping classified 30 as serovar kurstaki, six isolates serovar aizawai, one isolate cross-reacted with more than one H3 antisera and three were not typeable. Assays of toxicity of the aizawai isolates against third instar of G. mellonella showed that four, which contain cry9, have almost similar toxicity to the commercial strain Bt aizawai B401. Therefore, these isolates could be adopted for future applications to control G. mellonella. Moreover, this study contributes to our knowledge of Bt diversity in Syria where to date very few collections have been described.  相似文献   

4.
Bacillus thuringiensis (Bt) is the most widely used insecticidal microbe due to its specific toxicity and safe use with respect to animals and the environment. In this study, we isolated Bt strain Q52-7 from a soil sample collected in the Qian Shan District, Liao Ning Province, China. We observed that the Q52-7 strain produced spherical crystals. The Bt Q52-7 strain had high toxicity against Asian Cockchafer (Holotrichia parallela), exhibiting an LC50 of 3.80 × 109 cfu/g, but is not toxic for Anomala corpulenta Motschulsky and Holotrichia oblita. Using general cry8 primers, we amplified a 1.3 kb fragment with the polymerase chain reaction. Specific primers were designed for the amplified fragment to clone the full-length coding region. A novel gene, cry8Na1, had 69 % sequence similarity with cry8Ca1. cry8Na1 gene was successfully expressed in the HD-73 acrystalliferous mutant of Bt subsp. Kurstaki HD-73. Bioassays demonstrated that the Cry8Na1 protein is highly toxic for the H. parallela, with a 50 % lethal concentration of 8.18 × 1010 colony forming units per gram.  相似文献   

5.
Bt strains were isolated from soils of Andaman and Nicobar Islands and characterized by microscopic and molecular methods. Diversity was observed both in protein and cry gene profiles, where majority of the isolates showed presence of 65 kDa protein band on SDS-PAGE while rest of them showed 130, 72, 44, and 29 kDa bands. PCR analysis revealed predominance of cry1I and cry7, 8 genes in these isolates. The PCR screening strategy presented here led us to identify putative novel cry genes which could be active against Coleoptera insects. Variation in the nucleotide sequences of cry genes from the isolates suggests that the genetic diversity of Bt isolates results from the influence of different ecological factors and spatial separation between strains generated by the conquest of different habitats in the soils of Andaman and Nicobar islands. The implications of our studies are important from the point of view of identifying novel cry genes that could be toxic to insects other than lepidoptera.  相似文献   

6.
Applications to combat non-lepidopteran insects are not as common as applications against lepidopteran insects. The aim of the present work was to isolate and identify Bacillus thuringiensis isolates from soil samples using five approaches, viz., analysis of crystal protein production by microscopy; detection of cry gene content by PCR, SDS-PAGE profiling; cloning and sequencing; phylogenetic analysis; and toxicity testing. Two hundred soil samples were used for isolation of B. thuringiensis and a total of 69 putative isolates of B. thuringiensis that produce parasporal crystalline inclusions were isolated from 5,267 Bacillus-like colonies. A bipyramidal inclusion was predominant in 32.2 % of the B. thuringiensis isolates compared to other shapes. Crystal protein profiling of B. thuringiensis isolates by SDS-PAGE analysis showed the presence of bands of 130, 73, 34, 25 and 13 kDa, among which 50–60 kDa bands were present abundantly. PCR analysis revealed the predominance of Coleopteran-active cry genes in these isolates. Variation in nucleotide sequences, crystal morphology and mass of crystal protein(s) purified from the isolates of B. thuringiensis revealed genetic and molecular diversity. Four strains containing Coleopteran-active cry genes showed higher toxicity against Myllocerus undecimpustulatus undatus Marshall (Coleoptera: Curculionidae) adults when compared with B. thuringiensis subsp. morrisoni pathovar tenebrionis. These results are useful in emphasizing the distribution of cry genes and for prognostication of toxicity, and may contribute to the identification of novel candidate genes for bioengineered crop protection.  相似文献   

7.
The bacterium Bacillus thuringiensis produces a crystal protein with insecticidal properties; however, crystal proteins can be damaged by ultraviolet (UV) radiation. The aim of this study was to improve the stability of the insecticidal crystal protein (ICP) by constructing a mutant line that expresses high levels of the UV light-protecting pigment, melanin. BMB181, a B. thuringiensis mutant with high melanin production, was obtained after sub-culturing BMB171 for several generations at 42 °C. The melanin yield by BMB181 (without tyrosine supplementation) reached 8.55 mg/ml. The electroporation efficiency of BMB181 reached 106 CFU/μg when a 6.7-kb foreign plasmid was used. Microscopic and SDS-PAGE analyses revealed that ICP (CryIAc10; GenBank: AAA73077.1), which is highly toxic to Lepidoptera, was synthesized efficiently by strain BMB181. The insecticidal properties of a recombinant line derived from strain BMB181, designated BMB32 (cry1Ac10/BMB181), was tested against the cotton bollworm, Helicoverpa armigera. After UV irradiation for 4 h, BMB32 had a half maximal inhibitory concentration value of 1.37 μg/ml, whereas the control line BMB31 (cry1Ac10/BMB171) had a median lethal dose value of 25.85 μg/ml. These results indicate that the B. thuringiensis mutant is a candidate for industrial scale production of light-stable insecticides.  相似文献   

8.
Bacillus thuringiensis (Berliner) bears essential characteristics in the control of insect pests, such as its unique mode of action, which confers specificity and selectivity. This study assessed cry gene contents from Bt strains and their entomotoxicity against Diatraea saccharalis (F.) and Diatraea flavipennella (Box) (Lepidoptera: Crambidae). Bioassays with Bt strains were performed against neonates to evaluate their lethal and sublethal activities and were further analyzed by PCR, using primers to identify toxin genes. For D. saccharalis and D. flavipennella, 16 and 18 strains showed over 30% larval mortality in the 7th day, respectively. The LC50 values of strains for D. saccharalis varied from 0.08 × 105 (LIIT-0105) to 4104 × 105 (LIIT-2707) spores + crystals mL?1. For D. flavipennella, the LC50 values of strains varied from 0.40 × 105 (LIIT-2707) to 542 × 105 (LIIT-2109) spores + crystals mL?1. For the LIIT-0105 strain, which was the most toxic to D. saccharalis, the genes cry1Aa, cry1Ab, cry1Ac, cry1B, cry1C, cry1D, cry1F, cry1I, cry2Aa, cry2Ab, cry8, and cry9C were detected, whereas for the strain LIIT-2707, which was the most toxic to D. flavipennella, detected genes were cry1Aa, cry1Ab, cry1Ac, cry1B, cry1D, cry1F, cry1I, cry2Aa, cry2Ab, and cry9. The toxicity data and toxin gene content in these strains of Bt suggest a great variability of activity with potential to be used in the development of novel biopesticides or as source of resistance genes that can be expressed in plants to control pests.  相似文献   

9.
Attempts have been made to express or to merge different Cry proteins in order to enhance toxic effects against various insects. Cry1A proteins of Bacillus thuringiensis form a typical bipyramidal parasporal crystal and their protoxins contain a highly conserved C-terminal region. A chimerical gene, called cry(4Ba-1Ac), formed by a fusion of the N-terminus part of cry4Ba and the C-terminus part of cry1Ac, was constructed. Its transformation to an acrystalliferous B. thuringiensis strain showed that it was expressed as a chimerical protein of 116 kDa, assembled in spherical to amorphous parasporal crystals. The chimerical gene cry(4Ba-1Ac) was introduced in a B. thuringiensis kurstaki strain. In the generated crystals of the recombinant strain, the presence of Cry(4Ba-1Ac) was evidenced by MALDI-TOF. The recombinant strain showed an important increase of the toxicity against Culex pipiens larvae (LC50 = 0.84 mg l?1 ± 0.08) compared to the wild type strain through the synergistic activity of Cry2Aa with Cry(4Ba-1Ac). The enhancement of toxicity of B. thuringiensis kurstaki expressing Cry(4Ba-1Ac) compared to that expressing the native toxin Cry4Ba, might be related to its a typical crystallization properties. The developed fusion protein could serve as a potent toxin against different pests of mosquitoes and major crop plants.  相似文献   

10.
A PCR-restriction fragment length polymorphism method for identification of cry1I-type genes from Bacillus thuringiensis was established by designing a pair of universal primers based on the conserved regions of the genes to amplify 1,548-bp cry1I-type gene fragments. Amplification products were digested with the Bsp119I and BanI enzymes, and four kinds of known cry1I-type genes were successfully identified. The results showed that cry1I-type genes appeared in 95 of 115 B. thuringiensis isolates and 7 of 13 standard strains. A novel cry1I-type gene was found in one standard strain and six isolates. The novel cry1I gene was cloned from B. thuringiensis isolate Btc007 and subcloned into vector pET-21b. Then it was overexpressed in Escherichia coli BL21(DE3). The expressed product was shown to be toxic to the diamondback moth (Plutella xylostella), Asian corn borer (Ostrinia furnacalis), and soybean pod borer (Leguminivora glycinivorella). However, it was not toxic to the cotton bollworm (Helicoverpa armigera), beet armyworm (Spodoptera exigua), or elm leaf beetle (Pyrrhalta aenescens) in bioassays. Subsequently, the Cry protein encoded by this novel cry gene was designated Cry1Ie1 by the B. thuringiensis δ-endotoxin nomenclature committee.  相似文献   

11.
Isolation of Bacillus thuringiensis (Bt) strain or its cry gene encoding insecticidal crystal protein (ICP) with specific toxicity is of great importance to biological control of insect pests. In this study, by screening 66 strains of Bt isolated from soil samples collected in Shandong Province, China, a new cry8-type gene from Bt strain B-JJX was identified via PCR-RFLP method. This novel gene, cry8Ab1, was cloned from the Bt strain B-JJX and expressed in an acrystalliferous mutant strain HD-73?. The open reading frame of the cry8Ab1 gene consists of 3543 bp with a G + C content of 37.99% and encodes a protein of 1180 amino acids with a putative MW of 133.3 kDa which was confirmed by SDS-PAGE analysis. The Cry8Ab1 protein was expressed and released as spherical parasporal crystals from Bt acrystalliferous mutant strain HD-73? along with the presence of spores. In bioassays, this protein was toxic to 3-day-old larvae of the scarabaeid pests, Holotrichia oblita and H. parallela, with an LC50 of 5.72 and 2.00 μg toxin g?1 soil, respectively. The results are in accordance with the insecticidal activities of the original Bt strain B-JJX, which had an LC50 of 1.72 and 0.96 μg toxin g?1 soil against H. oblita and H. parallela, respectively.  相似文献   

12.
Novel Bacillus thuringiensis isolates GS4, GN24 and UP1 were isolated and characterized by determination of serotyping, insecticidal protein by SDS-PAGE, plasmid composition, cry gene content and insect toxicity. Serologically two isolates GS4 and UP1 were allocated to the H3abce which is a new serovar while isolate GN24 was of H3ab type. Isolate GS4 produced flat crystal inclusions while UP1 produced cuboidal crystals. PCR analysis found that both isolates contained cry1 and cry1Ac genes. The major protein bands found of isolate GS4 were of molecular weights 175, 135, 97, 88, 66, 54 and 27 kDa, isolate UP1 were of 85, 60 and 40 kDa and isolate GN24 were of 130, 90, 66 and 45 kDa. Though isolates GS4 and UP1 belonged to a new serovar H3abce, they showed different crystal inclusions and cry gene content. Isolate GS4 was toxic to lepidopteran insect larvae of Helicoverpa armigera but UP1 did not showed any toxicity.  相似文献   

13.
A total of 15 endophytic Bacillus thuringiensis isolates were obtained from root nodules of six legumes (soybean, ricebean, gahat, frenchbean, lentil and pea). All of these isolates were characterized by the presence of one of two different types of crystalline inclusions (spherical and bipyramidal) and tolerance to a wide pH range (4–10; optimum 7.0) and NaCl concentrations up to 8%. Genetic diversity among the B. thuringiensis isolates was determined by repetitive extragenic palindromic PCR assays (rep-PCR) using the Bacillus cereus-repetitive extragenic palindromic, BOX, enterobacterial repetitive intergenic consensus sequence and (GTG)5 primers. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis proteogram of the B. thuringiensis isolates revealed the presence of two major polypeptides (24.4 and 131.0 kDa). Maximum crystal protein profile was observed in the B. thuringiensis isolates producing the spherical crystal, while those isolates producing the bipyramidal crystal protein showed four four major polypeptides (24.4, 33.8, 81.2 and 131.0 kDa). The purified crystal protein profile of the B. thuringiensis isolates revealed the presence of only one major protein of 130 kDa mass. Isolates VRB1 and VLG15 possessing the cry1 and cry2 family genes demonstrated 100% mortality against first-instar larvae of the Bihar hairy caterpillar (lepidopteran pest). Our study of the ecological and molecular diversity among newly identified B. thuringiensis isolates suggests that these could be useful in planning new strategies for integrated pest management in sustainable agricultural systems.  相似文献   

14.
We have developed a strategy for isolating cry genes from Bacillus thuringiensis. The key steps are the construction of a DNA library in an acrystalliferous B. thuringiensis host strain and screening for the formation of crystal through optical microscopy observation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analyses. By this method, three cry genes—cry55Aa1, cry6Aa2, and cry5Ba2—were cloned from rice-shaped crystals, producing B. thuringiensis YBT-1518, which consists of 54- and 45-kDa crystal proteins. cry55Aa1 encoded a 45-kDa protein, cry6Aa2 encoded a 54-kDa protein, and cry5Ba2 remained cryptic in strain YBT-1518, as shown by SDS-PAGE or microscopic observation. Proteins encoded by these three genes are all toxic to the root knot nematode Meloidogyne hapla. The two genes cry55Aa1 and cry6Aa2 were found to be located on a plasmid with a rather small size of 17.7 kb, designated pBMB0228.  相似文献   

15.
Qi G  Lu J  Zhang P  Li J  Zhu F  Chen J  Liu Y  Yu Z  Zhao X 《Journal of applied microbiology》2011,111(5):1224-1234
Aims: Bacillus thuringiensis is toxic to many insects including Coleopteran pests. However, there is no report that B. thuringiensis is toxic to the adults of long‐horned beetle, Batocera horsfieldi, a pest of poplar trees. This work aims to select a B. thuringiensis strain toxic towards the adults of Asian long‐horned beetle. Methods and Results: A total of 504 B. thuringiensis strains were tested for the insecticidal activity to B. horsfieldi adults by artificial feeding. A strain of ZQ‐89 was found with a high toxicity to B. horsfieldi adults. The rectified lethal rate of ZQ‐89 to beetle was 55·33%. Additionally, the body weight and egg‐hatching rate of beetle, respectively, decreased by 2·22 and 19·62% after being fed with ZQ‐89. Further investigation found that the pure parasporal crystal had high toxicity to beetle adults. The ZQ‐89 crystal protein was purified and analysed by peptide‐mapping fingerprint and found it was highly homologous to Cry1Ac protein. The crystal protein gene was cloned and named cry1Ac89. The cry1Ac89 gene and its promoter were inserted into the plasmid pHT304 and then transformed into B. thuringiensis acrystalliferous strain BMB171. SDS‐PAGE analysis showed the BMB171‐Cry1Ac89 recombinant strain successfully expresses a 133‐kDa recombinant crystal protein with highly lethal activity to B. horsfieldi adults. Conclusions: The strain of ZQ‐89 is highly toxic to the adults of long‐horned beetle, and the crystal protein mainly contributes to the antipest role of this strain. The cry1Ac89 gene is a good candidate to be used for making transgenic trees or develop environment‐friendly bioinsecticides against long‐horned beetles such as B. horsfieldi in the future. Significance and Impact of the Study: It is the first report of a B. thuringiensis strain toxic to the adults of Asian long‐horned beetle, and the Cry1Ac protein is also firstly reported to be toxic to Coleopteran pests.  相似文献   

16.
In order to find novel strains of Bacillus thuringiensis that are toxic to some of the major pests that impact economically important crops in Argentina, we initiated a search for B. thuringiensis isolates native to Argentina. We succeeded in assembling a collection of 41 isolates, some of which show a high potential to be used in biological control programs against lepidopteran and coleopteran pests. About 90% of the strains showed toxicity against Spodoptera frugiperda and Anticarsia gemmatalis, two important lepidopteran pests in Argentina. It is noteworthy that only one of these strains contained a cry1-type gene, while another isolate showed a dual toxicity against the lepidopteran and coleopteran insects assayed. Genetic characterization of the strains suggests that the collection likely harbors novel Cry proteins that may be of potential use in biological insect pest control.  相似文献   

17.
Pink bollworm (Pectinophora gossypiella) is recognized as an important pest of cotton and can damage flowers and bolls of both Bt and non-Bt cultivars. Cry-1Ac in Bt cultivars is considered very effective in controlling lepidopterous larvae; therefore, the present study was carried out to investigate the impact of Cry1-Ac and the earliness index on the natural incidence of P. gossypiella at the Cotton Research Institute, Faisalabad. During 2015–2016, ten cultivars were used to determine the incidence of pink bollworm infestation. The experiment was repeated for 2 years. During the next year, Cry1-Ac and earliness traits of selected cultivars were also observed to determine their impact on pink bollworm. Correlation coefficient results regarding days to first flower (r value = 0.66) as well as the earliness index (r value = ? 0.62) exhibited a strong association with pink bollworm, but Cry1-Ac had a weak association (r value = ? 0.058) with pink bollworm. The coefficient of determination (R 2) explained that variability of pink bollworm due to Cry1-Ac, the earliness index, and days to first flower was 18.0, 38.5, and 43.5%, respectively. Principal component analysis results showed that the first two PCs expressed 87% of the total variability. Clusters made on the basis of the studied parameters revealed that clusters 2 and 3 comprised the cotton cultivars possessing earliness traits compared with cluster 1. Therefore, it can be concluded that the earliness index in cotton is an important component for the sustainable management of pink bollworm infestation, the need for which is endless to evade the pink bollworm problem in the era of climate change.  相似文献   

18.
The current investigation describes the isolation and characterization of toxic Bt. local isolates harboring 99% homology with Bti. prototoxin Bacillus thuringiensis (AXJ97553.1 and novel OUB27301.1) which contains full length cry11 gene (1.9 kb). Initially, it was cloned in pTZ57R/T and then sub-cloned in pET30a(+) for expression. The optimized conditions for good expression were found 1 mM IPTG, 3.5–4 h incubation time, and 37 °C. Toxicological assays were determined against 3rd instar larvae of Aedes aegypti with expressed partially purified and crude recombinant protein using recombinant E. coli BL21, DE3 transformed with cry11 gene. It was found that partially purified Bt. protein is highly toxic against A. aegypti larvae with LC50 value of 42.883 ± 6 µg/ml. B. thuringiensis strains producing Cry 11 toxic protein can be used as biopesticide to control resistance in insects.  相似文献   

19.
The Bacillus thuringiensis strain S2160-1 has previously been identified as being highly toxic to mosquito larvae and a viable alternative to strains currently used commercially to control these insects. A PCR approach had identified the presence of four putative insecticidal toxin genes (cry30Ea, cry30 Ga, cry50Ba and cry54Ba) in this strain, but did not identify the genes that encoding three of the main crystal toxin proteins of size 140 and 130 and 30 kDa. In this study we used mass spectrometry to identify the 130 kDa toxin as a rare Cry4 toxin (Cry4Cb3). The gene encoding this toxin was cloned and expressed and the toxin shown to have mosquitocidal activity against Culex quinquefasciatus.  相似文献   

20.
We investigated the distribution, toxicity, morphology, and protein profiles of Bacillus thuringiensis isolates from forests in Korea to isolate naturally occurring novel B. thuringiensis. A total of 170 B. thuringiensis isolates were obtained from 832 samples producing spore and parasporal inclusion bodies. In toxicity tests for lepidopteran, dipteran, and coleopteran insects, 57.6% isolates were toxic only to Lepidoptera, 5.3% were toxic only to Diptera, and 24.1% were toxic to both Diptera and Lepidoptera. The remaining collections (13.0%) were not toxic to the tested insects. The shapes of the parasporal crystals produced in B. thuringiensis isolates were bipyramidal, spherical, ovoid, or irregular. As their toxicities varied with parasporal crystal shape, B. thuringiensis isolates possessing bipyramidal or irregular parasporal crystals were largely toxic to lepidopteran species whereas those producing spherical parasporal crystals were mainly toxic to dipteran species. B. thuringiensis toxic to both dipteran and lepidopteran insects contained 130- and 70-kDa parasporal crystals, whereas B. thuringiensis toxic to lepidopteran insects expressed 130-kDa parasporal crystals. The results suggest that forest areas in Korea are a rich source of B. thuringiensis and need to be further explored to discover novel B. thuringiensis isolates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号