首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ubiquitin ligases play a pivotal role in substrate recognition and ubiquitin transfer, yet little is known about the regulation of their catalytic activity. Nedd4 (neural-precursor-cell-expressed, developmentally down-regulated 4)-2 is an E3 ubiquitin ligase composed of a C2 domain, four WW domains (protein-protein interaction domains containing two conserved tryptophan residues) that bind PY motifs (L/PPXY) and a ubiquitin ligase HECT (homologous with E6-associated protein C-terminus) domain. In the present paper we show that the WW domains of Nedd4-2 bind (weakly) to a PY motif (LPXY) located within its own HECT domain and inhibit auto-ubiquitination. Pulse-chase experiments demonstrated that mutation of the HECT PY-motif decreases the stability of Nedd4-2, suggesting that it is involved in stabilization of this E3 ligase. Interestingly, the HECT PY-motif mutation does not affect ubiquitination or down-regulation of a known Nedd4-2 substrate, ENaC (epithelial sodium channel). ENaC ubiquitination, in turn, appears to promote Nedd4-2 self-ubiquitination. These results support a model in which the inter- or intra-molecular WW-domain-HECT PY-motif interaction stabilizes Nedd4-2 by preventing self-ubiquitination. Substrate binding disrupts this interaction, allowing self-ubiquitination of Nedd4-2 and subsequent degradation, resulting in down-regulation of Nedd4-2 once it has ubiquitinated its target. These findings also point to a novel mechanism employed by a ubiquitin ligase to regulate itself differentially compared with substrate ubiquitination and stability.  相似文献   

2.
Agonist-stimulated beta(2)-adrenergic receptor (beta(2)AR) ubiquitination is a major factor that governs both lysosomal trafficking and degradation of internalized receptors, but the identity of the E3 ubiquitin ligase regulating this process was unknown. Among the various catalytically inactive E3 ubiquitin ligase mutants that we tested, a dominant negative Nedd4 specifically inhibited isoproterenol-induced ubiquitination and degradation of the beta(2)AR in HEK-293 cells. Moreover, siRNA that down-regulates Nedd4 expression inhibited beta(2)AR ubiquitination and lysosomal degradation, whereas siRNA targeting the closely related E3 ligases Nedd4-2 or AIP4 did not. Interestingly, beta(2)AR as well as beta-arrestin2, the endocytic and signaling adaptor for the beta(2)AR, interact robustly with Nedd4 upon agonist stimulation. However, beta(2)AR-Nedd4 interaction is ablated when beta-arrestin2 expression is knocked down by siRNA transfection, implicating an essential E3 ubiquitin ligase adaptor role for beta-arrestin2 in mediating beta(2)AR ubiquitination. Notably, beta-arrestin2 interacts with two different E3 ubiquitin ligases, namely, Mdm2 and Nedd4 to regulate distinct steps in beta(2)AR trafficking. Collectively, our findings indicate that the degradative fate of the beta(2)AR in the lysosomal compartments is dependent upon beta-arrestin2-mediated recruitment of Nedd4 to the activated receptor and Nedd4-catalyzed ubiquitination.  相似文献   

3.
Yuen EY  Wei J  Liu W  Zhong P  Li X  Yan Z 《Neuron》2012,73(5):962-977
Chronic stress could trigger maladaptive changes associated with stress-related mental disorders; however, the underlying mechanisms remain elusive. In this study, we found that exposing juvenile male rats to repeated stress significantly impaired the temporal order recognition memory, a cognitive process controlled by the prefrontal cortex (PFC). Concomitantly, significantly reduced AMPAR- and NMDAR-mediated synaptic transmission and glutamate receptor expression were found in PFC pyramidal neurons from repeatedly stressed animals. All these effects relied on activation of glucocorticoid receptors and the subsequent enhancement of ubiquitin/proteasome-mediated degradation of GluR1 and NR1 subunits, which was controlled by the E3 ubiquitin ligase Nedd4-1 and Fbx2, respectively. Inhibition of proteasomes or knockdown of Nedd4-1 and Fbx2 in PFC prevented the loss of glutamatergic responses and recognition memory in stressed animals. Our results suggest that repeated stress dampens PFC glutamatergic transmission by facilitating glutamate receptor turnover, which causes the detrimental effect on PFC-dependent cognitive processes.  相似文献   

4.
BACKGROUND: Ligand-induced proteolytic cleavage and internalization of the plasma membrane receptor Notch leads to its activation. Ligand-independent, steady-state internalization of Notch, however, does not lead to activation. The mechanism by which downstream effectors discriminate between these bipartite modes of Notch internalization is not understood. Nedd4 is a HECT domain-containing E3 ubiquitin ligase that targets transmembrane receptors containing the PPSY motif for endocytosis. Deltex is a positive Notch signaling regulator that encodes a putative ubiquitin ligase of the ring finger type. RESULTS: We used the Drosophila system to show that Notch is ubiquitinated and destabilized by Nedd4 in a manner requiring the PPSY motif in the Notch intracellular domain. Loss of Nedd4 function dominantly suppresses the Notch and Deltex mutant phenotypes, and its hyperactivation attenuates Notch activity. In tissue culture cells, the dominant-negative form of Nedd4 blocks steady-state Notch internalization and activates Notch signaling independently of ligand binding. This effect was further potentiated by Deltex. Nedd4 destines Deltex for degradation in a Notch-dependent manner. CONCLUSIONS: Nedd4 antagonizes Notch signaling by promoting degradation of Notch and Deltex. This Nedd4 function may be important for protecting unstimulated cells from sporadic activation of Notch signaling.  相似文献   

5.
Target recognition by the ubiquitin system is mediated by E3 ubiquitin ligases. Nedd4 family members are E3 ligases comprised of a C2 domain, 2–4 WW domains that bind PY motifs (L/PPxY) and a ubiquitin ligase HECT domain. The nine Nedd4 family proteins in mammals include two close relatives: Nedd4 (Nedd4‐1) and Nedd4L (Nedd4‐2), but their global substrate recognition or differences in substrate specificity are unknown. We performed in vitro ubiquitylation and binding assays of human Nedd4‐1 and Nedd4‐2, and rat‐Nedd4‐1, using protein microarrays spotted with ~8200 human proteins. Top hits (substrates) for the ubiquitylation and binding assays mostly contain PY motifs. Although several substrates were recognized by both Nedd4‐1 and Nedd4‐2, others were specific to only one, with several Tyr kinases preferred by Nedd4‐1 and some ion channels by Nedd4‐2; this was subsequently validated in vivo. Accordingly, Nedd4‐1 knockdown or knockout in cells led to sustained signalling via some of its substrate Tyr kinases (e.g. FGFR), suggesting Nedd4‐1 suppresses their signalling. These results demonstrate the feasibility of identifying substrates and deciphering substrate specificity of mammalian E3 ligases.  相似文献   

6.
7.
The SCF-ROC1 ubiquitin-protein isopeptide ligase (E3) ubiquitin ligase complex targets the ubiquitination and subsequent degradation of protein substrates required for the regulation of cell cycle progression and signal transduction pathways. We have previously shown that ROC1-CUL1 is a core subassembly within the SCF-ROC1 complex, capable of supporting the polymerization of ubiquitin. This report describes that the CUL1 subunit of the bacterially expressed, unmodified ROC1-CUL1 complex is conjugated with Nedd8 at Lys-720 by HeLa cell extracts or by a purified Nedd8 conjugation system (consisting of APP-BP1/Uba3, Ubc12, and Nedd8). This covalent linkage of Nedd8 to CUL1 is both necessary and sufficient to markedly enhance the ability of the ROC1-CUL1 complex to promote ubiquitin polymerization. A mutation of Lys-720 to arginine in CUL1 eliminates the Nedd8 modification, abolishes the activation of the ROC1-CUL1 ubiquitin ligase complex, and significantly reduces the ability of SCF(HOS/beta)(-TRCP)-ROC1 to support the ubiquitination of phosphorylated IkappaBalpha. Thus, although regulation of the SCF-ROC1 action has been previously shown to preside at the level of recognition of a phosphorylated substrate, we demonstrate that Nedd8 is a novel regulator of the efficiency of polyubiquitin chain synthesis and, hence, promotes rapid turnover of protein substrates.  相似文献   

8.
Sprouty (Spry) proteins are important regulators of receptor tyrosine kinase signaling in development and disease. Alterations in cellular Spry content have been associated with certain forms of cancers and also in cardiovascular diseases. Thus, understanding the mechanisms that regulate cellular Spry levels are important. Herein, we demonstrate that Spry1 and Spry2, but not Spry3 or Spry4, associate with the HECT domain family E3 ubiquitin ligase, Nedd4. The Spry2/Nedd4 association involves the WW domains of Nedd4 and requires phosphorylation of the Mnk2 kinase sites, Ser112 and Ser121, on Spry2. The phospho-Ser112/121 region on Spry2 that binds WW domains of Nedd4 is a novel non-canonical WW domain binding region that does not contain Pro residues after phospho-Ser. Endogenous and overexpressed Nedd4 polyubiquitinate Spry2 via Lys48 on ubiquitin and decrease its stability. Silencing of endogenous Nedd4 increased the cellular Spry2 content and attenuated fibroblast growth factor-elicited ERK1/2 activation that was reversed when elevations in Spry2 levels were prevented by Spry2-specific small interfering RNA. Mnk2 silencing decreased Spry2-Nedd4 interactions and also augmented the ability of Spry2 to inhibit fibroblast growth factor signaling. This is the first report demonstrating the regulation of cellular Spry content and its ability to modulate receptor tyrosine kinase signaling by a HECT domain-containing E3 ubiquitin ligase.  相似文献   

9.
Aldosterone increases sodium absorption across renal collecting duct cells primarily by increasing the apical membrane expression of ENaC, the sodium entry channel. Nedd4-2, a ubiquitin-protein isopeptide ligase, tags ENaC with ubiquitin for internalization and degradation, but when it is phosphorylated by the aldosterone-induced kinase, SGK1, Nedd4-2 is inhibited and apical ENaC density and sodium absorption increase. We evaluated the hypothesis that 14-3-3 proteins participate in the aldosterone-mediated regulation of ENaC by associating with phosphorylated Nedd4-2. Mouse cortical collecting duct (mCCD) epithelia cultured on filters expressed several 14-3-3 isoforms; this study focused on an isoform whose expression was induced 3-fold by aldosterone, 14-3-3beta. In polarized mCCD epithelia, aldosterone elicited significant, time-dependent increases in the expression of alpha-ENaC, SGK1, phospho-Nedd4-2, and 14-3-3beta without altering total Nedd4-2. Aldosterone decreased the interaction of alpha-ENaC with Nedd4-2, and with similar kinetics increased the association of 14-3-3beta with phospho-Nedd4-2. Short interfering RNA-induced knockdown of 14-3-3beta blunted the aldosterone-induced increase in alpha-ENaC expression, returned alpha-ENaC-Nedd4-2 binding toward prealdosterone levels, and blocked the aldosterone-stimulated increase in transepithelial sodium transport. Incubation of cell extracts with a selective phospho-Nedd4-2 antibody blocked the aldosterone-induced association of 14-3-3beta with Nedd4-2, implicating SGK1 phosphorylation at Ser-328 as the primary site of 14-3-3beta binding. Our studies show that aldosterone increases the expression of 14-3-3beta, which interacts with phospho-Nedd4-2 to block its interaction with ENaC, thus enhancing sodium absorption by increasing apical membrane ENaC density.  相似文献   

10.
α-Amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid receptors (AMPARs) are the primary mediators of excitatory synaptic transmission in the brain. Alterations in AMPAR localization and turnover have been considered critical mechanisms underpinning synaptic plasticity and higher brain functions, but the molecular processes that control AMPAR trafficking and stability are still not fully understood. Here, we report that mammalian AMPARs are subject to ubiquitination in neurons and in transfected heterologous cells. Ubiquitination facilitates AMPAR endocytosis, leading to a reduction in AMPAR cell-surface localization and total receptor abundance. Mutation of lysine residues to arginine residues at the glutamate receptor subunit 1 (GluA1) C-terminus dramatically reduces GluA1 ubiquitination and abolishes ubiquitin-dependent GluA1 internalization and degradation, indicating that the lysine residues, particularly K868, are sites of ubiquitination. We also find that the E3 ligase neural precursor cell expressed, developmentally down-regulated 4 (Nedd4) is enriched in synaptosomes and co-localizes and associates with AMPARs in neurons. Nedd4 expression leads to AMPAR ubiquitination, leading to reduced AMPAR surface expression and suppressed excitatory synaptic transmission. Conversely, knockdown of Nedd4 by specific siRNAs abolishes AMPAR ubiquitination. These data indicate that Nedd4 is the E3 ubiquitin ligase responsible for AMPAR ubiquitination, a modification that regulates multiple aspects of AMPAR molecular biology including trafficking, localization and stability.  相似文献   

11.
The Tweety proteins comprise a family of chloride ion channels with three members identified in humans (TTYH1-3) and orthologues in fly and murine species. In humans, increased TTYH2 expression is associated with cancer progression, whereas fly Tweety is associated with developmental processes. Structurally, Tweety proteins are characterized by five membrane-spanning domains and N-glycan modifications important for trafficking to the plasma membrane, where these proteins are oriented with the amino terminus located extracellularly and the carboxyl terminus cytoplasmically. In addition to N-glycosylation, ubiquitination mediated by the HECT type E3 ubiquitin ligase Nedd4-2 is a post-translation modification important in regulating membrane proteins. In the present study, we performed a comprehensive analysis of the ability of each of TTYH1-3 to interact with Nedd4-2 and to be ubiquitinated and regulated by this ligase. Our data indicate that Nedd4-2 binds to two family members, TTYH2 and TTYH3, which contain consensus PY ((L/P)PXY) binding sites for HECT type E3 ubiquitin ligases, but not to TTYH1, which lacks this motif. Consistently, Nedd4-2 ubiquitinates both TTYH2 and TTYH3. Importantly, we have shown that endogenous TTYH2 and Nedd4-2 are binding partners and demonstrated that the TTYH2 PY motif is essential for these interactions. We have also shown that Nedd4-2-mediated ubiquitination of TTYH2 is a critical regulator of cell surface and total cellular levels of this protein. These data, indicating that Nedd4-2 differentially interacts with and regulates TTYH1-3, will be important for understanding mechanisms controlling Tweety proteins in physiology and disease.  相似文献   

12.
ACK (activated Cdc42-associated tyrosine kinase) (also Tnk2) is an ubiquitin-binding protein and plays an important role in ligand-induced and ubiquitination-mediated degradation of epidermal growth factor receptor (EGFR). Here we report that ACK is ubiquitinated by HECT E3 ubiquitin ligase Nedd4-1 and degraded along with EGFR in response to EGF stimulation. ACK interacts with Nedd4-1 through a conserved PPXY WW-binding motif. The WW3 domain in Nedd4-1 is critical for binding to ACK. Although ACK binds to both Nedd4-1 and Nedd4-2 (also Nedd4L), Nedd4-1 is the E3 ubiquitin ligase for ubiquitination of ACK in cells. Interestingly, deletion of the sterile alpha motif (SAM) domain at the N terminus dramatically reduced the ubiquitination of ACK by Nedd4-1, while deletion of the Uba domain dramatically enhanced the ubiquitination. Use of proteasomal and lysosomal inhibitors demonstrated that EGF-induced ACK degradation is processed by lysosomes, not proteasomes. RNA interference (RNAi) knockdown of Nedd4-1, not Nedd4-2, inhibited degradation of both EGFR and ACK, and overexpression of ACK mutants that are deficient in either binding to or ubiquitination by Nedd4-1 blocked EGF-induced degradation of EGFR. Our findings suggest an essential role of Nedd4-1 in regulation of EGFR degradation through interaction with and ubiquitination of ACK.Activated Cdc42-associated tyrosine kinase (ACK) (also Tnk2) is a member of the type VIII tyrosine kinase family. Activation of ACK, including both ACK1 and ACK2, occurs in response to signaling of epidermal growth factor receptor (EGFR), platelet-derived growth factor (PDGF) receptor, insulin receptor, Gas-6 receptor (Mer), M3 muscarinic receptor, integrins, or proteoglycan (3, 7, 11, 23, 26, 30, 44, 47). In Drosophila, D-ACK mediates the function of Cdc42 in dorsal closure during embryonic development (31). The ACK homologue, Ark-1, in Caenorhabditis elegans negatively regulates EGF signaling (15).A number of studies suggest a role for ACK in EGFR degradation. ACK1 and ACK2, two alternatively spliced isoforms, possess a highly conserved clathrin-binding motif and interact with clathrin (37, 45). Overexpression of ACK2 severely impairs transferrin receptor endocytosis, causes aberrant localization of AP-2, and induces changes in clathrin assembly. Furthermore, ACK2 interacts with sorting nexin 9 (SNX9, also named SH3PX1), a member of the sorting nexin family, via its proline-rich domain 1 and phosphorylates SNX9 to facilitate the degradation of EGF receptors (22). In C. elegans, Ark-1 genetically interacts with UNC101, the homologue of mammalian clathrin-associated protein AP47, and SLI-1, the homologue of mammalian Cbl that is an E3 ubiquitin ligase for ubiquitination of EGFR, and negatively regulates EGFR signaling (15).Our previous studies showed that ACK1 interacts with EGFR upon EGF stimulation via a region at the carboxyl terminus, designated the EGFR-binding domain (EBD), which is highly homologous to the EGFR/ErbB2-binding domain of Gene-33/Mig-6/RALT (32, 43). The interaction of ACK1 with EGFR is dependent on kinase activity and tyrosine phosphorylation of EGFR. Immunofluorescent staining using anti-EGFR and GFP-ACK1 indicates that ACK1 is colocalized with EGFR on large vacuolar structures upon EGF stimulation. Suppression of the expression of ACK1 by ACK-RNA interference (RNAi) inhibits ligand-induced degradation of EGFR, suggesting that ACK1 plays an important role in the regulation of EGFR degradation in cells. Furthermore, we identified ACK1 as an ubiquitin-binding protein. Through an ubiquitin association (Uba) domain at the carboxyl terminus, ACK1 is capable of interacting with both poly- and monoubiquitin. Overexpression of an Uba domain deletion mutant of ACK1 blocked the ligand-dependent degradation of EGFR, suggesting that ACK1 regulates EGFR degradation via its Uba domain. Thus, ACK1 senses EGF signaling and regulates degradation of EGFR.EGF-induced degradation of EGFR is mediated by ubiquitination (16). The ubiquitination of EGFR is activated upon EGF stimulation by recruiting the RING family E3 ubiquitin ligase Cbl to pY1045 (20, 21). This ubiquitination functions as a sorting signal for transporting EGFR to lysosomes for degradation (14). Nedd4, the HECT domain-containing E3 ubiquitin ligase, is also involved in the regulation of EGFR trafficking by ubiquitination of endocytic or vesicle sorting proteins (28). For example, it has been observed that Nedd4 ubiquitinates Cbl, Eps15, Tsg101, Hrs, and secretory carrier membrane proteins (SCAMPs) and participates in the processes of EGFR endocytosis and degradation (1, 18, 25, 42). However, exactly how Nedd4 engages in the EGFR degradation process in response to EGF stimulation is not known.In this report, we show that EGF stimulation induces ACK degradation. This degradation is associated with ubiquitination of ACK. Nedd4-1, but not Nedd4-2, is identified as the E3 ubiquitin ligase for ubiquitination of ACK. Furthermore, EGF-induced degradation of ACK is EGFR activation dependent and processed by lysosomes. RNAi knockdown and mutational analysis demonstrated that Nedd4-1 and Nedd4-1-catalyzed ubiquitination of ACK are required for EGF-induced degradation of EGFR and ACK. Our findings suggest a new mechanism in regulation of EGFR degradation.  相似文献   

13.
14.
Serum- and glucocorticoid-regulated kinase 1 (SGK1) is an aldosterone-regulated early response gene product that regulates the activity of several ion transport proteins, most notably that of the epithelial sodium channel (ENaC). Recent evidence has established that SGK1 phosphorylates and inhibits Nedd4-2 (neural precursor cell-expressed, developmentally down-regulated protein 4-2), a ubiquitin ligase that decreases cell surface expression of the channel and possibly stimulates its degradation. The mechanistic basis for this SGK1-induced Nedd4-2 inhibition is currently unknown. In this study we show that SGK1-mediated phosphorylation of Nedd4-2 induces its interaction with members of the 14-3-3 family of regulatory proteins. Through functional characterization of Nedd4-2-mutant proteins, we demonstrate that this interaction is required for SGK1-mediated inhibition of Nedd4-2. The concerted action of SGK1 and 14-3-3 appears to disrupt Nedd4-2-mediated ubiquitination of ENaC, thus providing a mechanism by which SGK1 modulates the ENaC-mediated Na(+) current. Finally, the expression pattern of 14-3-3 is also consistent with a functional role in distal nephron Na(+) transport. These results demonstrate a novel, physiologically significant role for 14-3-3 proteins in modulating ubiquitin ligase-dependent pathways in the control of epithelial ion transport.  相似文献   

15.
Lysine 48-linked polyubiquitin chains are the principle signal for targeting proteins for degradation by the 26 S proteasome. Here we report that the conjugation of Nedd8 to ROC1-CUL1, a subcomplex of the SCF-ROC1 E3 ubiquitin ligase, selectively stimulates Cdc34-catalyzed lysine 48-linked multiubiquitin chain assembly. We have further demonstrated that separate regions within the human Cdc34 C-terminal tail are responsible for multiubiquitin chain assembly and for physical interactions with the Nedd8-conjugated ROC1-CUL1 to assemble extensive ubiquitin polymers. Structural comparisons between Nedd8 and ubiquitin reveal that six charged residues (Lys4, Glu12, Glu14, Arg25, Glu28, and Glu31) are uniquely present on the surface of Nedd8. Replacement of each of the six residues with the corresponding amino acid in ubiquitin decreases the ability of Nedd8 to activate the ubiquitin ligase activity of ROC1-CUL1. Moreover, maintenance of the proper charges at amino acid positions 14 and 25 are necessary for retaining wild type levels of activity, whereas introduction of the opposite charges at these positions abolishes the Nedd8 activation function. These results suggest that Nedd8 charged surface residues mediate the activation of ROC1-CUL1 to specifically support Cdc34-catalyzed ubiquitin polymerization.  相似文献   

16.
The endoplasmic reticulum (ER)-associated degradation (ERAD) pathway in the yeast Saccharomyces cerevisiae is mediated by two membrane-bound ubiquitin ligases, Doa10 and Hrd1. These enzymes are found in distinct multiprotein complexes that allow them to recognize and target a variety of substrates for proteasomal degradation. Although multiprotein complexes containing mammalian ERAD ubiquitin ligases likely exist, they have yet to be identified and characterized in detail. Here, we identify two ER membrane proteins, SPFH2 and TMUB1, as associated proteins of mammalian gp78, a membrane-bound ubiquitin ligase that bears significant sequence homology with mammalian Hrd1 and mediates sterol-accelerated ERAD of the cholesterol biosynthetic enzyme HMG-CoA reductase. Co-immunoprecipitation studies indicate that TMUB1 bridges SPFH2 to gp78 in ER membranes. The functional significance of these interactions is revealed by the observation that RNA interference (RNAi)-mediated knockdown of SPFH2 and TMUB1 blunts both the sterol-induced ubiquitination and degradation of endogenous reductase in HEK-293 cells. These studies mark the initial steps in the characterization of the mammalian gp78 ubiquitin ligase complex, the further elucidation of which may yield important insights into mechanisms underlying gp78-mediated ERAD.  相似文献   

17.
Activation of nuclear factor-kappaB (NFkappaB) has been linked to the development of hormone-independent, estrogen receptor (ER)-negative human breast cancers. To explore the possibility that activated NFkappaB marks a subset of clinically more aggressive ER-positive breast cancers, NFkappaB DNA-binding was measured in ER-positive breast cancer cell lines and primary breast cancer extracts by electrophoretic mobility shift assay and ELISA-based quantification of specific NFkappaB p50 and p65 DNA-binding subunits. Oxidant (menadione 100 microMx30 min) activation of NFkappaB was prevented by pretreatment with various NFkappaB inhibitors, including the specific IkappaB kinase (IKK) inhibitor, parthenolide (PA), which was found to sensitize MCF-7/HER2 and BT474 but not MCF-7 cells to the antiestrogen tamoxifen. Early stage primary breast cancers selected a priori for lower ER content (21-87 fmol/mg; n=59) and known clinical outcome showed two- to four-fold increased p50 and p65 NFkappaB DNA-binding over a second set of primary breast cancers with higher ER content (>100 fmol/mg; n=22). Breast cancers destined to relapse (13/59) showed significantly higher NFkappaB p50 (but not p65) DNA-binding over those not destined to relapse (46/59; p=0.04). NFkappaB p50 DNA-binding correlated positively with several prognostic biomarkers; however, only NFkappaB p50 DNA-binding (p=0.04), Activator Protein-1 DNA-binding (AP-1; p相似文献   

18.
The ability to remove unwanted proteins is an important cellular feature. Classically, this involves the enzymatic addition of ubiquitin moieties followed by degradation in the proteasome. Nedd4 proteins are ubiquitin ligases important not only for protein degradation, but also for protein trafficking. Nedd4 proteins can bind to target proteins either by themselves or through adaptor protein Ndfip1 (Nedd4 family-interacting protein 1). An alternative mechanism for protein removal and trafficking is provided by exosomes, which are small vesicles (50-90-nm diameter) originating from late endosomes and multivesicular bodies (MVBs). Exosomes provide a rapid means of shedding obsolete proteins and also for cell to cell communication. In the present work, we show that Ndfip1 is detectable in exosomes secreted from transfected cells and also from primary neurons. Compared with control, Ndfip1 increases exosome secretion from transfected cells. Furthermore, while Nedd4, Nedd4-2, and Itch are normally absent from exosomes, expression of Ndfip1 results in recruitment of all three Nedd4 proteins into exosomes. Together, these results suggest that Ndfip1 is important for protein trafficking via exosomes, and provides a mechanism for cargoing passenger proteins such as Nedd4 family proteins. Given the positive roles of Ndfip1/Nedd4 in improving neuronal survival during brain injury, it is possible that exosome secretion provides a novel route for rapid sequestration and removal of proteins during stress.  相似文献   

19.
20.
The ubiquitin E3 protein ligase Nedd4-2 is a physiological regulator of the epithelial sodium channel ENaC, which is essential for transepithelial Na+ transport and is linked to Liddle's syndrome, an autosomal dominant disorder of human salt-sensitive hypertension. Nedd4-2 function is negatively regulated by phosphorylation via a serum- and glucocorticoid-inducible protein kinase (Sgk1), which serves as a mechanism to inhibit the ubiquitination-dependent degradation of ENaC. We report here that 14-3-3 proteins participate in this regulatory process through a direct interaction with a phosphorylated form of human Nedd4-2 (a human gene product of KIAA0439, termed hNedd4-2). The interaction is dependent on Sgk1-catalyzed phosphorylation of hNedd4-2 at Ser-468. We found that this interaction preserved the activity of the Sgk1-stimulated ENaC-dependent Na+ current while disrupting the interaction decreased ENaC density on the Xenopus laevis oocytes surface possibly by enhancing Nedd4-2-mediated ubiquitination that leads to ENaC degradation. Our findings suggest that 14-3-3 proteins modulate the cell surface density of ENaC cooperatively with Sgk1 kinase by maintaining hNedd4-2 in an inactive phosphorylated state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号