首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The baculovirus GP64 envelope fusion protein (GP64 EFP) is the major envelope glycoprotein of the budded virion and has been shown to mediate acid-triggered membrane fusion both in virions and when expressed alone in transfected cells. Using site-directed mutagenesis and functional assays for oligomerization, transport, and membrane fusion, we localized two functional domains of GP64 EFP. To identify a fusion domain in the GP64 EFP of the Orgyia pseudotsugata multiple nuclear polyhedrosis virus (OpMNPV), we examined two hydrophobic regions in the GP64 EFP ectodomain. Hydrophobic region I (amino acids 223 to 228) is a cluster of 6 hydrophobic amino acids exhibiting the highest local hydrophobicity in the ectodomain. Hydrophobic region II (amino acids 330 to 338) lies within a conserved region of GP64 EFP that contains a heptad repeat of leucine residues and is predicted to form an amphipathic alpha-helix. In region I, nonconservative amino acid substitutions at Leu-226 and Leu-227 (at the center of the hydrophobic cluster) completely abolished fusion activity but did not prevent GP64 EFP oligomerization or surface localization. To confirm the role of region I in membrane fusion activity, we used a synthetic 21-amino-acid peptide to generate polyclonal antibodies against region I and demonstrated that antipeptide antibodies were capable of both neutralizing membrane fusion activity and reducing infectivity of the virus. In hydrophobic region II, mutations were designed to disrupt several structural characteristics: a heptad repeat of leucine, a predicted alpha-helix, or the local hydrophobicity along one face of the helix. Single alanine substitutions for heptad leucines did not prevent oligomerization, transport, or fusion activity. However, multiple alanine substitutions or proline (helix-destabilizing) substitutions disrupted both oligomerization and transport of GP64 EFP. In addition, a deletion that removed region II and the predicted alpha-helix was defective for oligomerization, whereas a larger deletion that retained region II and the predicted helix was oligomerized. These results indicate that region II is required for oligomerization and transport and suggest that the predicted helical structure of this region may be important for this function. Thus, by using mutagenesis, functional assays, and antibody inhibition, two functional domains were localized within the baculovirus GP64 EFP: a fusion domain located at amino acids 223 to 228 and an oligomerization domain located at amino acids 327 to 335 within a predicted amphipathic alpha-helix.  相似文献   

2.
Recent studies have demonstrated the importance of heptad repeat regions within envelope proteins of viruses in mediating conformational changes at various stages of viral infection. However, it is not clear if heptad repeats have a direct role in the actual fusion event. Here we have synthesized, fluorescently labeled and functionally and structurally characterized a wild-type 70 residue peptide (SV-117) composed of both the fusion peptide and the N-terminal heptad repeat of Sendai virus fusion protein, two of its mutants, as well as the fusion peptide and heptad repeat separately. One mutation was introduced in the fusion peptide (G119K) and another in the heptad repeat region (I154K). Similar mutations have been shown to drastically reduce the fusogenic ability of the homologous fusion protein of Newcastle disease virus. We found that only SV-117 was active in inducing lipid mixing of egg phosphatidylcholine/phosphatidyiglycerol (PC/PG) large unilamellar vesicles (LUV), and not the mutants nor the mixture of the fusion peptide and the heptad repeat. Functional characterization revealed that SV-117, and to a lesser extent its two mutants, were potent inhibitors of Sendai virus-mediated hemolysis of red blood cells, while the fusion peptide and SV-150 were negligibly active alone or in a mixture. Hemagglutinin assays revealed that none of the peptides disturb the binding of virions to red blood cells. Further studies revealed that SV-117 and its mutants oligomerize similarly in solution and in membrane, and have similar potency in inducing vesicle aggregation. Circular dichroism and FTIR spectroscopy revealed a higher helical content for SV-117 compared to its mutants in 40 % tifluorethanol and in PC/PG multibilayer membranes, respectively, ATR-FTIR studies indicated that SV-117 lies more parallel with the surface of the membrane than its mutants. These observations suggest a direct role for the N-terminal heptad repeat in assisting the fusion peptide in mediating membrane fusion.  相似文献   

3.
We previously identified a potent small-molecule human immunodeficiency virus type 1 (HIV-1) fusion inhibitor, termed ADS-J1, and hypothesized that it mainly targeted the hydrophobic pocket in the gp41 N-terminal heptad repeat (NHR) trimer. However, this hypothesis has been challenged by the fact that ADS-J1 cannot induce drug-resistance mutation in the gp41 pocket region. Therefore, we show herein that HIV-1 mutants resistant to T2635, a peptide derived from the gp41 C-terminal heptad repeat (CHR) region with pocket-binding domain (PBD), were also resistant to ADS-J1. We also show that pseudoviruses with mutations at positions 64 and 67 in the gp41 pocket region were highly resistant to ADS-J1 and C34, another CHR-peptide with PBD, but relatively sensitive to T20, a CHR-peptide without PBD. ADS-J1 could effectively bind to N36Fd, a mimic of the gp41 NHR-trimer with pocket exposed, and block binding of C34 to N36Fd trimer to form six-helix bundle (6-HB). However, ADS-J1 was less effective in binding to N36Fd trimer with mutations in the gp41 pocket region, such as N36(Q64A)Fd, N36(Q64L)Fd, N36(A67G)Fd, N36(A67S)Fd, and N36(Q66R)Fd, as well as less effective in blocking 6-HB formation between C34 and these mutant N36Fd trimers. These results confirm that ADS-J1 mainly targets the pocket region in the HIV-1 gp41 NHR trimer and suggest that it could be used as a lead for developing small-molecule HIV fusion inhibitors and as a molecule probe for studying the mechanisms of gp41-mediated membrane fusion.  相似文献   

4.
The baculovirus fusogenic activity depends on the low pH conformation of virally-encoded trimeric glycoprotein, gp64. We used two experimental approaches to investigate whether monomers, trimers, and/or higher order oligomers are functionally involved in gp64 fusion machine. First, dithiothreitol (DTT)- based reduction of intersubunit disulfides was found to reversibly inhibit fusion, as assayed by fluorescent probe redistribution between gp64-expressing and target cells (i.e., erythrocytes or Sf9 cells). This inhibition correlates with disappearance of gp64 trimers and appearance of dimers and monomers in SDS-PAGE. Thus, stable (i.e., with intact intersubunit disulfides) gp64 trimers, rather than independent monomers, drive fusion. Second, we established that merger of membranes is preceded by formation of large (greater than 2 MDa), short-lived gp64 complexes. These complexes were stabilized by cell–surface cross-linking and characterized by glycerol density gradient ultracentrifugation. The basic structural unit of the complexes is stable gp64 trimer. Although DTT-destabilized trimers were still capable of assuming the low pH conformation, they failed to form multimeric complexes. The fact that formation of these complexes correlated with fusion in timing, and was dependent on (a) low pH application, (b) stable gp64 trimers, and (c) cell–cell contacts, suggests that such multimeric complexes represent a fusion machine.  相似文献   

5.
《The Journal of cell biology》1996,135(6):1831-1839
The formation of the fusion pore is the first detectable event in membrane fusion (Zimmerberg, J., R. Blumenthal, D.P. Sarkar, M. Curran, and S.J. Morris. 1994. J. Cell Biol. 127:1885-1894). To date, fusion pores measured in exocytosis and viral fusion have shared features that include reversible closure (flickering), highly fluctuating semistable stages, and a lag time of at least several seconds between the triggering and the pore opening. We investigated baculovirus GP64- induced Sf9 cell-cell fusion, triggered by external acid solution, using two different electrophysiological techniques: double whole-cell recording (for high time resolution, model-independent measurements), and the more conventional time-resolved admittance recordings. Both methods gave essentially the same results, thus validating the use of the admittance measurements for fusion pore conductance calculations. Fusion was first detected by abrupt pore formation with a wide distribution of initial conductance, centered around 1 nS. Often the initial fusion pore conductance was stable for many seconds. Fluctuations in semistable conductances were much less than those of other fusion pores. The waiting time distribution, measured between pH onset and initial pore appearance, fits best to a model with many (approximately 19) independent elements. Thus, unlike previously measured fusion pores, GP64-mediated pores do not flicker, can have large, stable initial pore conductances lasting up to a minute, and have typical lag times of < 1 s. These findings are consistent with a barrel-shaped model of an initial fusion pore consisting of five to eight GP64 trimers that is lined with lipid.  相似文献   

6.
The fusion proteins of enveloped viruses mediating the fusion between the viral and cellular membranes comprise two discontinuous heptad repeat (HR) domains located at the ectodomain of the enveloped glycoproteins. The crystal structure of the fusion protein core of Mumps virus (MuV) was determined at 2.2 A resolution. The complex is a six-helix bundle in which three HR1 peptides form a central highly hydrophobic coiled-coil and three HR2 peptides pack against the hydrophobic grooves on the surface of central coiled-coil in an oblique antiparallel manner. Fusion core of MuV, like those of simian virus 5 and human respiratory syncytium virus, forms typical 3-4-4-4-3 spacing. The similar characterization in HR1 regions, as well as the existence of O-X-O motif in extended regions of HR2 helix, suggests a basic rule for the formation of the fusion core of viral fusion proteins.  相似文献   

7.
The lymphocytic choriomeningitis virus (LCMV) glycoprotein (GP) consists of the transmembrane subunit GP-2 and the receptor binding subunit GP-1. Both are synthesized as one precursor protein and stay noncovalently attached after cleavage. In this study, we determined the oligomeric state of the LCMV GP and expressed it in two different conformations suitable for structural analysis. Sequence analysis of GP-2 identified a trimeric heptad repeat pattern containing an N-terminal alpha-helix. An alpha-helical peptide matching this region formed a stable oligomer as revealed by gel filtration chromatography and dynamic light scattering. In contrast, a second alpha-helical peptide corresponding to a predicted C-terminal alpha-helix within GP-2 did not oligomerize. Refolding of the complete GP-2 ectodomain revealed trimeric all-alpha complexes probably representing the six-helix bundle state that is considered a hallmark of class I viral fusion proteins. Based on these results, we generated a construct consisting of the complete uncleavable LCMV GP ectodomain fused C-terminally to the trimeric motif of fibritin. Gel filtration analysis of the secreted fusion protein identified two complexes of approximately 230 and approximately 440 kDa. Both complexes bound to a set of conformational and linear antibodies. Cross-linking confirmed the 230-kDa complex to be a trimer. The 440-kDa complexes were found to represent disulfide-linked pairs of trimers, since partial reduction converted them to a complex species migrating at 250 kDa. By electron microscopy, the 230-kDa complexes appeared as single spherical particles and showed no signs of rosette formation. Our results clearly demonstrate that the arenavirus GP is a trimer and must be considered a member of the class I viral fusion protein family.  相似文献   

8.
Group II nucleopolyhedroviruses (NPVs), e.g., Spodoptera exigua MNPV, lack a GP64-like protein that is present in group I NPVs but have an unrelated envelope fusion protein named F. In contrast to GP64, the F protein has to be activated by a posttranslational cleavage mechanism to become fusogenic. In several vertebrate viral fusion proteins, the cleavage activation generates a new N terminus which forms the so-called fusion peptide. This fusion peptide inserts in the cellular membrane, thereby facilitating apposition of the viral and cellular membrane upon sequential conformational changes of the fusion protein. A similar peptide has been identified in NPV F proteins at the N terminus of the large membrane-anchored subunit F(1). The role of individual amino acids in this putative fusion peptide on viral infectivity and propagation was studied by mutagenesis. Mutant F proteins with single amino acid changes as well as an F protein with a deleted putative fusion peptide were introduced in gp64-null Autographa californica MNPV budded viruses (BVs). None of the mutations analyzed had an major effect on the processing and incorporation of F proteins in the envelope of BVs. Only two mutants, one with a substitution for a hydrophobic residue (F152R) and one with a deleted putative fusion peptide, were completely unable to rescue the gp64-null mutant. Several nonconservative substitutions for other hydrophobic residues and the conserved lysine residue had only an effect on viral infectivity. In contrast to what was expected from vertebrate virus fusion peptides, alanine substitutions for glycines did not show any effect.  相似文献   

9.
Paramyxoviruses utilize both an attachment protein and a fusion (F) protein to drive virus-cell and cell-cell fusion. F exists functionally as a trimer of two disulfide-linked subunits: F(1) and F(2). Alignment and analysis of a set of paramyxovirus F protein sequences identified three conserved blocks (CB): one in the fusion peptide/heptad repeat A domain, known to play important roles in fusion promotion, one in the region between the heptad repeats of F(1) (CBF(1)) (A. E. Gardner, K. L. Martin, and R. E. Dutch, Biochemistry 46:5094-5105, 2007), and one in the F(2) subunit (CBF(2)). To analyze the functions of CBF(2), alanine substitutions at conserved positions were created in both the simian virus 5 (SV5) and Hendra virus F proteins. A number of the CBF(2) mutations resulted in folding and expression defects. However, the CBF(2) mutants that were properly expressed and trafficked had altered fusion promotion activity. The Hendra virus CBF(2) Y79A and P89A mutants showed significantly decreased levels of fusion, whereas the SV5 CBF(2) I49A mutant exhibited greatly increased cell-cell fusion relative to that for wild-type F. Additional substitutions at SV5 F I49 suggest that both side chain volume and hydrophobicity at this position are important in the folding of the metastable, prefusion state and the subsequent triggering of membrane fusion. The recently published prefusogenic structure of parainfluenza virus 5/SV5 F (H. S. Yin et al., Nature 439:38-44, 2006) places CBF(2) in direct contact with heptad repeat A. Our data therefore indicate that this conserved region plays a critical role in stabilizing the prefusion state, likely through interactions with heptad repeat A, and in triggering membrane fusion.  相似文献   

10.
Verma R  Ghosh JK 《Biochimie》2011,93(6):1001-1011
In order to examine the ability of S3 and S4 segments of a Kv channel to interact with each other, two wild type short peptides derived from the S3 and S4 segments of KvAP channel were synthesized. Additionally, to evaluate the role of positive charges and an identified heptad repeat in the S4 segment, two S4 mutants of the same size as the S4 peptide, one with substitution of two leucine residues in the heptad repeat sequence by two alanine residues and in the other two arginine residues replaced by two glutamines residues were synthesized. Our results show that only the wild type S4 peptide, but not its mutants, self-assembled and permeabilized negatively charged phospholipid vesicles. The S3 peptide showed lesser affinity toward the same kind of lipid vesicles and localized onto its surface. However, the S3 peptide interacted only with S4 wild type peptide, but not with S4 mutants, and altered its localization onto the phospholipid membrane with increased resistance against the proteolytic enzyme, proteinase-k, in the presence of the S4 peptide. The results demonstrate that the selected, synthetic S3 and S4 segments possess the required amino acid sequences to interact with each other and show that the positive charges and the identified heptad repeat in S4 contribute to its assembly and interaction with S3 segment.  相似文献   

11.
Fusion proteins from a group of widely disparate viruses, including the paramyxovirus F protein, the HIV and SIV gp160 proteins, the retroviral Env protein, the Ebola virus Gp, and the influenza virus haemagglutinin, share a number of common features. All contain multiple glycosylation sites, and must be trimeric and undergo proteolytic cleavage to be fusogenically active. Subsequent to proteolytic cleavage, the subunit containing the transmembrane domain in each case has an extremely hydrophobic region, termed the fusion peptide, or at near its newly generated N-terminus. In addition, all of these viral fusion proteins have 4–3 heptad repeat sequences near both the fusion peptide and the transmembrane domain. These regions have been demonstrated from a tight complex, in which the N-terminal heptad repeat forms a trimeric-coiled coil, with the C-terminal heptad repeat forming helical regions that buttress the coiled-coil in an anti-parallel manner. The significance of each of these structuralelements in the processing and function of these viral fusion proteins is discussed.  相似文献   

12.
Yuan W  Craig S  Si Z  Farzan M  Sodroski J 《Journal of virology》2004,78(10):5448-5457
The synthetic peptide T-20, which corresponds to a sequence within the C-terminal heptad repeat region (HR2) of the human immunodeficiency virus type 1 (HIV-1) gp41 envelope glycoprotein, potently inhibits viral membrane fusion and entry. Although T-20 is thought to bind the N-terminal heptad repeat region (HR1) of gp41 and interfere with gp41 conformational changes required for membrane fusion, coreceptor specificity determined by the V3 loop of gp120 strongly influences the sensitivity of HIV-1 variants to T-20. Here, we show that T-20 binds to the gp120 glycoproteins of HIV-1 isolates that utilize CXCR4 as a coreceptor in a manner determined by the sequences of the gp120 V3 loop. T-20 binding to gp120 was enhanced in the presence of soluble CD4. Analysis of T-20 binding to gp120 mutants with variable loop deletions and the reciprocal competition of T-20 and particular anti-gp120 antibodies suggested that T-20 interacts with a gp120 region near the base of the V3 loop. Consistent with the involvement of this region in coreceptor binding, T-20 was able to block the interaction of gp120-CD4 complexes with the CXCR4 coreceptor. These results help to explain the increased sensitivity of CXCR4-specific HIV-1 isolates to the T-20 peptide. Interactions between the gp41 HR2 region and coreceptor-binding regions of gp120 may also play a role in the function of the HIV-1 envelope glycoproteins.  相似文献   

13.
We report here the reversible association of a designed peptide embedded in a lipid membrane through a stimulus-sensitive trigger that changes the physical state of the bilayer matrix. A peptide designed with the classical 4-3 heptad repeat of coiled coils, equipped with leucine residues at all canonical interface positions, TH1, was rendered membrane soluble by replacement of all exterior residues with randomly selected hydrophobic amino acids. Insertion of TH1 into large unilamellar phosphatidylcholine vesicles was followed by monitoring tryptophan fluorescence. Peptide insertion was observed when the lipids were in the liquid-crystalline state [1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)] but not when they were in the crystalline phase [1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)]. Formation of a trimeric alpha-helical bundle in lipid bilayers was followed by fluorescence resonance energy transfer. Global fit analysis revealed a monomer--trimer equilibrium with a dissociation constant of around 10(-5) [corrected] MF(2). A lipid mixture composed of DPPC and POPC exhibiting a phase transition at 34 degrees C between a crystalline/liquid-crystalline coexistence region and a completely miscible liquid-crystalline phase was used to control the formation of the trimeric peptide bundle. TH1 is phase excluded in crystalline DPPC domains below 34 degrees C, leading to a larger number of trimers. However, when the DPPC domains are dispersed at temperatures above 34 degrees C, the number of trimers is reduced.  相似文献   

14.
在新城疫病毒(Newcastle diseasevirus,NDV)膜融合的过程中融合糖蛋白(Fusion protein,F)的两段七肽重复区(Heptad repeat,HR)发挥着重要作用。这两段七肽重复区能够形成反相平行的六螺旋束结构,这被认为是融合蛋白融合后构象的核心结构。对融合作用的深入系统研究将有助于膜融合病毒的防控。  相似文献   

15.
Polar residues play important roles in the association of transmembrane helices and the stabilities of membrane proteins. Although a single Ser residue in a transmembrane helix is unable to mediate a strong association of the helices, the cooperative interactions of two or more appropriately placed serine hydroxyl groups per helix has been hypothesized to allow formation of a "serine zipper" that can stabilize transmembrane helix association. In particular, a heptad repeat Sera Xxx Xxx Leud Xxx Xxx Xxx (Xxx is a hydrophobic amino acid) appears in both antiparallel helical pairs of polytopic membrane proteins as well as the parallel helical dimerization motif found in the murine erythropoietin receptor. To examine the intrinsic conformational preferences of this motif independent of its context within a larger protein, we synthesized a peptide containing three copies of a SeraLeud heptad motif. Computational results are consistent with the designed peptide adopting either a parallel or antiparallel structure, and conformational search calculations yield the parallel dimer as the lowest energy configuration, which is also significantly more stable than the parallel trimer. Analytical ultracentrifugation indicated that the peptide exists in a monomer-dimer equilibrium in dodecylphosphocholine micelles. Thiol disulfide interchange studies showed a preference for forming parallel dimers in micelles. In phospholipid vesicles, only the parallel dimer was formed. The stability of the SerZip peptide was studied in vesicles prepared from phosphatidylcholine (PC) lipids of different chain length: POPC (C16:0C18:1 PC) and DLPC (C12:0PC). The stability was greater in POPC, which has a good match between the length of the hydrophobic region of the peptide and the bilayer length. Finally, mutation to Ala of the Ser residues in the SerZip motif gave rise to a relatively small decrease in the stability of the dimer, indicating that packing interactions rather than hydrogen-bonding provided the primary driving force for association.  相似文献   

16.
The Autographa californica multiple nucleopolyhedrovirus (AcMNPV) GP64 protein is an essential virion protein that is involved in both receptor binding and membrane fusion during viral entry. Genetic studies have shown that GP64-null viruses are unable to move from cell to cell and this results from a defect in the assembly and production of budded virions (BV). To further examine requirements for virion budding, we asked whether a GP64-null baculovirus, vAc(64-), could be pseudotyped by introducing a heterologous viral envelope protein (vesicular stomatitis virus G protein [VSV-G]) into its membrane and whether the resulting virus was infectious. To address this question, we generated a stably transfected insect Sf9 cell line (Sf9(VSV-G)) that inducibly expresses the VSV-G protein upon infection with AcMNPV Sf9(VSV-G) and Sf9 cells were infected with vAc(64-), and cells were monitored for infection and for movement of infection from cell to cell. vAc(64-) formed plaques on Sf9(VSV-G) cells but not on Sf9 cells, and plaques formed on Sf9(VSV-G) cells were observed only after prolonged intervals. Passage and amplification of vAc(64-) on Sf9(VSV-G) cells resulted in pseudotyped virus particles that contained the VSV-G protein. Cell-to-cell propagation of vAc(64-) in the G-expressing cells was delayed in comparison to wild-type (wt) AcMNPV, and growth curves showed that pseudotyped vAc(64-) was generated at titers of approximately 10(6) to 10(7) infectious units (IU)/ml, compared with titers of approximately 10(8) IU/ml for wt AcMNPV. Propagation and amplification of pseudotyped vAc(64-) virions in Sf9(VSV-G) cells suggests that the VSV-G protein may either possess the signals necessary for baculovirus BV assembly and budding at the cell surface or may otherwise facilitate production of infectious baculovirus virions. The functional complementation of GP64-null viruses by VSV-G protein was further demonstrated by identification of a vAc(64-)-derived virus that had acquired the G gene through recombination with Sf9(VSV-G) cellular DNA. GP64-null viruses expressing the VSV-G gene were capable of productive infection, replication, and propagation in Sf9 cells.  相似文献   

17.
Budded virions (BV) of the baculovirus Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) contain a major envelope glycoprotein known as GP64, which was previously shown to be palmitoylated. In the present study, we used truncation and amino acid substitution mutations to map the palmitoylation site to cysteine residue 503. Palmitoylation of GP64 was not detected when Cys503 was replaced with alanine or serine. Palmitoylation-minus forms of GP64 were used to replace wild-type GP64 in AcMNPV, and these viruses were used to examine potential functions of GP64 palmitoylation in the context of the infection cycle. Analysis by immunoprecipitation and cell surface studies revealed that palmitoylation of GP64 did not affect GP64 synthesis or its transport to the cell surface in Sf9 cells. GP64 proteins lacking palmitoylation also mediated low-pH-triggered membrane fusion in a manner indistinguishable from that of wild-type GP64. Cells infected with viruses expressing palmitoylation-minus forms of GP64 produced infectious virions at levels similar to those from cells infected with wild-type AcMNPV. In combination, these data suggest that virus entry and exit in Sf9 cells were not significantly affected by GP64 palmitoylation. To determine whether GP64 palmitoylation affected the association of GP64 with membrane microdomains, the potential association of GP64 with lipid raft microdomains was examined. These experiments showed that: (i) AcMNPV-infected Sf9 cell membranes contain lipid raft microdomains, (ii) GP64 association with lipid rafts was not detected in infected Sf9 cells, and (iii) GP64 palmitoylation did not affect the apparent exclusion of GP64 from lipid raft microdomains.  相似文献   

18.
He Y  Cheng J  Li J  Qi Z  Lu H  Dong M  Jiang S  Dai Q 《Journal of virology》2008,82(13):6349-6358
Human immunodeficiency virus type 1 (HIV-1) entry into the host cell involves a cascade of events and currently represents one of most attractive targets in the search for new antiviral drugs. The fusion-active gp41 core structure is a stable six-helix bundle (6-HB) folded by its trimeric N-terminal heptad repeat (NHR) and C-terminal heptad repeat (CHR). Peptides derived from the CHR region of HIV-1 gp41 are potent fusion inhibitors that target the NHR to block viral and cellular membrane fusion in a dominant negative fashion. However, all CHR peptides reported to date are derived primarily from residues 628 to 673 of gp41; little attention has been paid to the upstream sequence of the pocket binding domain (PBD) in the CHR. Here, we have identified a motif ((621)QIWNNMT(627)) located at the upstream region of the gp41 CHR, immediately adjacent to the PBD ((628)WMEWEREI(635)). Biophysical characterization demonstrated that this motif is critical for the stabilization of the gp41 6-HB core. The peptide CP621-652, containing the (621)QIWNNMT(627) motif, was able to interact with T21, a counterpart peptide derived from the NHR, to form a typical 6-HB structure with a high thermostability (thermal unfolding transition [T(m)] value of 82 degrees C). In contrast, the 6-HB formed by the peptides N36 and C34, which has been considered to be a core structure of the fusion-active gp41, had a T(m) of 64 degrees C. Different from T-20 (brand name Fuseon), which is the first and only HIV-1 fusion inhibitor approved for clinical use, CP621-652 could efficiently block 6-HB formation in a dose-dependent manner. Significantly, CP621-652 had potent inhibitory activity against HIV-1-mediated cell-cell fusion and infection, especially against T-20- and C34-resistant virus. Therefore, our works provide important information for understanding the core structure of the fusion-active gp41 and for designing novel anti-HIV peptides.  相似文献   

19.
The paramyxovirus fusion (F) protein mediates membrane fusion. The biologically active F protein consists of a membrane distal subunit F2 and a membrane anchored subunit F1. A highly stable structure has been identified comprised of peptides derived from the simian virus 5 (SV5) F1 heptad repeat A, which abuts the hydrophobic fusion peptide (peptide N-1), and the SV5 F1 heptad repeat B, located 270 residues downstream and adjacent to the transmembrane domain (peptides C-1 and C-2). In isolation, peptide N-1 is 47% alpha-helical and peptide C-1 and C-2 are unfolded. When mixed together, peptides N1 + C1 form a thermostable (Tm > 90 degrees C), 82% alpha-helical, discrete trimer of heterodimers (mass 31,300 M(r)) that is resistant to denaturation by 2% SDS at 40 degrees C. The authors suggest that this alpha-helical trimeric complex represents the core most stable form of the F protein that is either fusion competent or forms after fusion has occurred. Peptide C-1 is a potent inhibitor of both the lipid mixing and aqueous content mixing fusion activity of the SV5 F protein. In contrast, peptide N-1 inhibits cytoplasmic content mixing but not lipid mixing, leading to a stable hemifusion state. Thus, these peptides define functionally different steps in the fusion process. The parallels among both the fusion processes and the protein structures of paramyxovirus F proteins, HIV gp41 and influenza virus haemagglutinin are discussed, as the analogies are indicative of a conserved paradigm for fusion promotion among fusion proteins from widely disparate viruses.  相似文献   

20.
During viral entry, the paramyxovirus fusion (F) protein fuses the viral envelope to a cellular membrane. Similar to other class I viral fusion glycoproteins, the F protein has two heptad repeat regions (HRA and HRB) that are important in membrane fusion and can be targeted by antiviral inhibitors. Upon activation of the F protein, HRA refolds from a spring-loaded, crumpled structure into a coiled coil that inserts a hydrophobic fusion peptide into the target membrane and binds to the HRB helices to form a fusogenic hairpin. To investigate how F protein conformational changes are regulated, we mutated in the Sendai virus F protein a highly conserved 10-residue sequence in HRA that undergoes major structural changes during protein refolding. Nine of the 15 mutations studied caused significant defects in F protein expression, processing, and fusogenicity. Conversely, the remaining six mutations enhanced the fusogenicity of the F protein, most likely by helping spring the HRA coil. Two of the residues that were neither located at "a" or "d" positions in the heptad repeat nor conserved among the paramyxoviruses were key regulators of the folding and fusion activity of the F protein, showing that residues not expected to be important in coiled-coil formation may play important roles in regulating membrane fusion. Overall, the data support the hypothesis that regions in the F protein that undergo dramatic changes in secondary and tertiary structure between the prefusion and hairpin conformations regulate F protein expression and activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号