首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Metastasis formation is a major clinical problem in cancer treatment, and no significant progress in the treatment of metastatic spread has been made. This apparent lack of progress is partly caused by the absence of clinically relevant animal models of meta stases. The binding of the lectin Helix pomatia agglutinin (HPA) has been associated with a poor prognosis in breast and colon cancer patients. HPA-positive and -negative human breast and colon cancer cell lines were transplanted into severe combined immunodeficient (SCID) mice. HPA-positive breast cancer cell lines (MCF-7 and T47D) metastasized in SCID mice, whereas the HPA-negative ones (BT20, HS578T and HBL100) did not. The HPA-positive colon cancer cell line HT29 metastasized, while the HPA-negative ones (COLO320DM, SW480 and SW620) did not. However, in two of eight SCID mice inoculated with the HPA-negative colon cancer cell line, CACO2 metastatic deposits were found. Despite this exception, HPA binding is a good indicator of the metastasis of human breast and colon cancer cells in SCID mice: 23 out of 26 HPA-positive cancers metastasized, as opposed to only two out of 38 HPA-negative cancers. This experimental model is well suited for investigating the functional role of carbohydrate residues recognized by HPA in breast and colon cancer metastasis. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

2.
Helix pomatia agglutinin (HPA) is a lectin that has been used extensively in histopathology, since its binding to tissue sections from breast and colon cancers is correlated with the worst prognosis for the patients. The lectin recognizes alpha-d-N-acetylgalactosamine (alphaGalNAc) containing epitopes which are only present in cancer cell lines having a high likelihood to undergo metastasis, such as the HT29 cancer colon cell line. Several breast cancer cell lines have also been shown to be labeled, although IGROV1, an ovarian cancer cell line, is not. Inhibition studies, using GalNAc monosaccharides, are reported here, showing that the labeling is dependent upon the presence of carbohydrate epitopes. The crystal structures of the lectin complexed with two GalNAc containing epitopes associated with cancer, the Tn (alphaGalNAc-Ser) and Forssman (alphaGalNAc1-3GalNAc) antigens, show the lectin's specificity for GalNAc is due to a particular network of hydrogen bonds. A histidine residue makes hydrophobic contact with the aglycon, rationalizing the preference for GalNAc bearing an additional sugar or amino acid in the alpha position. These structures provide the molecular basis for the use of HPA in metastasis research.  相似文献   

3.
C-C chemokine receptor 7 (CCR7) controls lymphocyte migration to secondary lymphoid organs. Although CCR7 has been implicated in targeting the metastasis of cancers to lymph nodes, the role of CCR7 in the metastasis of breast cancer, along with the molecular mechanisms that are controlled by CCR7 that target breast cancer metastasis to the lymph nodes, has yet to be defined. To explore the cellular and molecular mechanisms of breast cancer cell migration to the lymph nodes, we used the mouse MMTV-PyVmT mammary tumor cells (PyVmT) transfected with CCR7 and the human CCR7-expressing MCF10A and MCF7 mammary cell lines. We found that the CCR7 ligands CCL19 and CCL21, controlled cell migration using the β(1)-integrin heterodimeric adhesion molecules. To define a physiological significance for CCR7 regulation of migration, we used the FVB syngeneic mouse model of metastatic breast cancer. When CCR7-negative PyVmT cells transfected with control vector were orthotopically transferred to the mammary fat pad of FVB mice, tumors metastasized to the lungs (10/10 mice) but not to the lymph nodes (0/10). In contrast, CCR7-expressing PyVmT (CCR7-PyVmT) cells metastasized to the lymph nodes (6/10 mice) and had a reduced rate of metastasis to the lungs (4/10 mice). CCR7-PyVmT tumors grew significantly faster than PyVmT tumors, which mirrored the growth in vitro, of CCR7-PyVmT, MCF7, and MCF10A mammospheres. This model provides tools for studying lymph node metastasis, CCR7 regulation of tumor cell growth, and targeting of breast cancer cells to the lymph nodes.  相似文献   

4.
The human cell-surface antigen epithelial glycoprotein-2 recognized by the monoclonal antibody MOC-31 is an epithelial tumour-associated glycoprotein expressed in non-squamous carcinomas. MOC-31 immunoreactivity was investigated in human breast, colon, ovarian and lung cancer cell lines, grown either in vitro or in severe combined immunodeficient (SCID) mice as solid tumours and/or metastases. Three of four small-cell lung cancer cell lines (NCI-H69, OH3 and SW2) and three of four ovarian cancer cell lines (SoTü 1, 3 and 4) expressed epithelial glycoprotein-2. In contrast, all three breast (MCF-7, BT20, T47D) and all three colon (HT29, CACO2, SW480) cancer cell lines strongly reacted with monoclonal antibody MOC-31. A notable difference in MOC-31 immunoreactivity was observed in spontaneously formed lung metastases of HT29 colon cancer cells. Whereas larger metastases (> 30 cells) re acted with a similar staining pattern to the primary tumour, smaller metastases did not. These findings indicate that differentiation processes during the epithelial–mesenchymal transition occur in metastases, which lead to a transient loss of epithelial glycoprotein-2 expression during the migratory and early post- migratory period. This loss of antigen expression indicates that the process of metastases formation is a regulatory event, and this transient loss of antigen expression might represent a potential obstacle to antibody-based therapy in the setting of minimal residual disease.  相似文献   

5.
J Ding  W Jin  C Chen  Z Shao  J Wu 《PloS one》2012,7(7):e41942
Breast cancer is one of the most frequently diagnosed cancers among women, and metastasis makes it lethal. Tumor-associated macrophages (TAMs) that acquire an alternatively activated macrophage (M2) phenotype may promote metastasis. However, the underlying mechanisms are still elusive. Here, we examined how TAMs interact with breast cancer cells to promote metastasis. Immunohistochemistry was used to examine the expression of the M2-specific antigen CD163 in paraffin-embedded mammary carcinoma blocks to explore fusion events in breast cancer patients. U937 cells were used as a substitute for human monocytes, and these cells differentiated into M2 macrophages following phorbol 12-myristate 13-acetate (PMA) and M-CSF stimulation. M2 macrophages and the breast cancer cell lines MCF-7 and MDA-MB-231 fused in the presence of 50% polyethylene glycol. Hybrids were isolated by fluorescence-activated cell sorting, and the relevant cell biological properties were compared with their parental counterparts. Breast cancer stem cell (BCSC)-related markers were quantified by immunofluorescence staining, RT-PCR, quantitative RT-PCR and/or western blotting. The tumor-initiating and metastatic capacities of the hybrids and their parental counterparts were assessed in NOD/SCID mice. We found that the CD163 expression rate in breast cancer tissues varied significantly and correlated with estrogen receptor status (p<0.05). The fusion efficiency of either breast cancer cell line with M2 macrophages ranged from 1.81 to 6.47% in the presence of PEG, and no significant difference was observed between the breast cancer cell lines used (p>0.05). Characterization of the fusion hybrids revealed a more aggressive phenotype, including increased migration, invasion and tumorigenicity, but reduced proliferative ability, compared with the parental lines. The hybrids also gained a CD44(+)CD24(-/low) phenotype and over-expressed epithelial-mesenchymal transition-associated genes. These results indicate that TAMs may promote breast cancer metastasis through cell fusion, and the hybrids may gain a BCSC phenotype.  相似文献   

6.
Four different human breast cancer cell lines were examined to search for genes associated with tumor growth and metastasis. Each of these cell lines, MDA-MB-453, MCF-7, MDA-MB-231 and MDA-MB-435, displays different phenotypic characteristics ranging from poorly to highly tumorigenic and metastatic. The differences in gene expression profiles of these cell lines generated by differential display technique should allow one to identify candidates as putative oncogenes or tumor/metastasis suppressor genes. A novel cDNA expressed in the highly tumorigenic and metastatic cell line, MDA-MB-435, was identified and isolated by this approach. The function for this gene, designated ALP56 (aspartic-like protease 56 kDa), in tumor progression is suggested by the homology of the encoded protein to aspartic proteases, such as cathepsin D. The amino acid residues in two catalytic domains of this family are highly conserved in those domains of ALP56. Northern hybridization indicated that the expression of ALP56 is associated with growth and metastasis of MDA-MB-435 tumors in immunodeficient mice. In situ hybridization of biopsies from breast cancer and colon cancer patients indicated that ALP56 is upregulated in human primary tumors and liver metastasis. These results suggest that this novel gene correlates with human tumor progression.  相似文献   

7.
Despite significant differences in genetic profiles, cancer cells share common phenotypic properties, including membrane-associated changes that facilitate invasion and metastasis. The Corning Epic optical biosensor was used to monitor dynamic mass rearrangements within and proximal to the cell membrane in tumor cell lines derived from cancers of the colon, bone, cervix, lung and breast. Data was collected in real time and required no exogenously added signaling moiety (signal-free technology). Cell lines displayed unique profiles over the time-courses: the time-courses all displayed initial signal increases to maximal values, but the rate of increase to those maxima and the value of those maxima were distinct for each cell line. The rate of decline following the maxima also differed among cell lines. There were correlations between the signal maxima and the observed metastatic behavior of the cells in xenograft experiments; for most cell types the cells that were more highly metastatic in mice had lower time-course maxima values, however the reverse was seen in breast cancer cells. The unique profiles of these cell lines and the correlation of at least one profile characteristic with metastatic behavior demonstrate the potential utility of biophysical tumor cell profiling in the study of cancer biology.  相似文献   

8.
9.
10.
Overcoming metastasis is one of the most important issues with lung cancer. Since metastasis arises through complex steps, a suitable animal model is indispensable for investigation of metastasis. To establish an animal model reflecting human metastatic lung cancers, we used NOD/SCID/Jak3null (NOJ) mice, which exhibit deficiencies in NK cell activity, macrophage and dendritic cell function, and complement activation, as well as T and B cell deficiencies. After screening twenty human lung cancer cell lines through expression patterns of E-cadherin and vimentin according to epithelial mesenchymal transition features, an H1975 cell line carrying EGFR mutations, L858R and T790M, was selected for investigation. Inoculation of the cells into the dorsal flanks caused systemic metastases after one month in lymph nodes, liver, lung, and peritoneum, suggesting that metastases occurred both lymphogenically and hematogenously. We confirmed the existence of H1975 cells in metastatic lesions by detection of T790M and L858R using the mutation-biased PCR and quenching probe (MBP-QP) system previously established in our laboratory. In addition, tumor-derived plasma DNA could be detected using the MBP-QP method. The amount of tumor-derived DNA was associated with tumor volume, whereas an unrelated large amount of tumor-derived DNA was circulating in the presence of metastasis. We present a novel animal model with systemic metastasis with human lung cancer cells. The amount of tumor derived DNA would be related with tumor volume and tumor progression such as metastasis.  相似文献   

11.
Toll-like receptor (TLR)4-mediated signaling has been implicated in tumor cell invasion, survival, and metastasis in a variety of cancers. This study investigated the expression and biological role of TLR4 in human breast cancer metastasis. MCF-7 and MDA-MB-231 are human breast cancer cell lines with low and high metastatic potential, respectively. Using lipopolysaccharide (LPS) to stimulate MCF-7 and MDA-MB-231 cells, expression of TLR4 mRNA and protein increased compared with that in control cells. TLR4 activation notably up-regulated expression of matrix metalloproteinase (MMP)-2, MMP-9 and vascular endothelial growth factor(VEGF) mRNA and their secretion in the supernatants of both cell lines. LPS enhanced invasion of MDA-MB-231 cells by transwell assay and MCF-7 cells by wound healing assay. LPS triggered increased expression of TLR4 downstream signaling pathway protein myeloid differentiation factor 88(MyD88) and resulted in interleukin (IL)-6 and IL-10 higher production by human breast cancer cells. Stimulation of TLR4 with LPS promoted tumorigenesis and formed metastatic lesions in liver of nude mice. Moreover, expression of TLR4 and MyD88 as well as invasiveness and migration of the cells could be blocked by TLR4 antagonist. Combined with clinicopathological parameters, TLR4 was overexpressed in human breast cancer tissue and correlated with lymph node metastasis. These findings indicated that TLR4 may participate in the progression and metastasis of human breast cancer and provide a new therapeutic target.  相似文献   

12.
13.
Colorectal cancer (CRC) is one of the three leading causes for cancer mortality. CRC kills over 600,000 people annually worldwide. The most common cause of death from CRC is the metastasis to distant organs. However, biomarkers for CRC metastasis remain ill-defined. We compared primary and metastatic CRC cell lines for their angiogenesis-protein profiles and intracellular signaling profiles to identify novel biomarkers for CRC metastasis. To this end, we used primary and metastatic CRC cell lines as a model system and normal human colon cell line as a control. The angiogenesis profiles two isogenic CRC cell lines, SW480 and SW620, and HT-29 and T84 revealed that VEGF was upregulated in both SW620 and T84 whereas coagulation factor III, IGFBP-3, DPP IV, PDGF AA/AB, endothelin I and CXCL16 were downregulated specifically in metastatic cell lines. Furthermore, we found that TIMP-1, amphiregulin, endostatin, angiogenin were upregulated in SW620 whereas downregulated in T84. Angiogenin was downregulated in T84 and GM-CSF was also downregulated in SW620. To induce CRC cell metastasis, we treated cells with pro-inflammatory cytokine IL-6. Upon IL-6 treatment, epithelial-mesenchymal transition was induced in CRC cells. When DLD-1 and HT-29 cells were treated with IL-6; Akt, STAT3, AMPKα and Bad phosphorylation levels were increased. Interestingly, SW620 showed the same signal activation pattern with IL-6 treatment of HT-29 and DLD-1. Our data suggest that Akt, STAT3, AMPKα and Bad activation can be biomarkers for metastatic colorectal cancer. IL-6 treatment specifically reduced phosphorylation levels of EGFR, HER2 receptor, Insulin R and IGF-1R in receptor tyrosine kinase array study with HT-29. Taken together, we have identified novel biomarkers for metastatic CRC through the angiogenesis-antibody array and intracellular signaling array studies. Present study suggests that those novel biomarkers can be used as CRC prognosis biomarkers, and as potential targets for the metastatic CRC therapy.  相似文献   

14.
Breast cancers expressing human embryonic stem cell (hESC)-associated genes are more likely to progress than well-differentiated cancers and are thus associated with poor patient prognosis. Elevated proliferation and evasion of growth control are similarly associated with disease progression, and are classical hallmarks of cancer. In the current study we demonstrate that the hESC-associated factor Nodal promotes breast cancer growth. Specifically, we show that Nodal is elevated in aggressive MDA-MB-231, MDA-MB-468 and Hs578t human breast cancer cell lines, compared to poorly aggressive MCF-7 and T47D breast cancer cell lines. Nodal knockdown in aggressive breast cancer cells via shRNA reduces tumour incidence and significantly blunts tumour growth at primary sites. In vitro, using Trypan Blue exclusion assays, Western blot analysis of phosphorylated histone H3 and cleaved caspase-9, and real time RT-PCR analysis of BAX and BCL2 gene expression, we demonstrate that Nodal promotes expansion of breast cancer cells, likely via a combinatorial mechanism involving increased proliferation and decreased apopotosis. In an experimental model of metastasis using beta-glucuronidase (GUSB)-deficient NOD/SCID/mucopolysaccharidosis type VII (MPSVII) mice, we show that although Nodal is not required for the formation of small (<100 cells) micrometastases at secondary sites, it supports an elevated proliferation:apoptosis ratio (Ki67:TUNEL) in micrometastatic lesions. Indeed, at longer time points (8 weeks), we determined that Nodal is necessary for the subsequent development of macrometastatic lesions. Our findings demonstrate that Nodal supports tumour growth at primary and secondary sites by increasing the ratio of proliferation:apoptosis in breast cancer cells. As Nodal expression is relatively limited to embryonic systems and cancer, this study establishes Nodal as a potential tumour-specific target for the treatment of breast cancer.  相似文献   

15.
16.
17.
We compare for the first time, the metastatic aggressiveness of the parental MDA-MB-231 breast cancer cell line and two luciferase-tagged in vivo-derived and selected pro-metastatic variants (LM2-4/luc+ and 164/8-1B/luc+) in SCID, NOD-SCID and NOD-SCID-IL-2Rγnull (NSG) mice following orthotopic implantation and primary tumour resection. The variants are known to be more aggressively metastatic in SCID mice, compared to the parental line which has limited spontaneous metastatic competence in these mice. When 2×106 cells were injected into the mammary fat pad, the growth of the resultant primary tumours was identical for the various cell lines in the three strains of mice. However, metastatic spread of all three cell lines, including the MDA-MB-231 parental cell line, was strikingly more aggressive in the highly immunocompromised NSG mice compared to both NOD-SCID and SCID mice, resulting in extensive multi-organ metastases and a significant reduction in overall survival. While these studies were facilitated by monitoring post-surgical spontaneous metastases using whole body bioluminescence imaging, we observed that the luciferase-tagged parental line showed altered growth and diminished metastatic properties compared to its untagged counterpart. Our results are the first to show that host immunity can have a profound impact on the spread of spontaneous visceral metastases and survival following resection of a primary tumour in circumstances where the growth of primary tumours is not similarly affected; as such they highlight the importance of immunity in the metastatic process, and by extension, suggest certain therapeutic strategies that may have a significant impact on reducing metastasis.  相似文献   

18.
Antibody microarrays have been successfully used to determine relative abundance of key proteins in various cancers and other diseases. We have previously showed liver metastatic-related genes between the metastatic pancreatic cancer line (SW1990HM) and its parental line (SW1990). In this study, we searched for potential markers for metastatic progression using antibody microarrays. The SpringBio Antibody Microarrays were used to analysis the different proteomes between SW1990HM and SW1990 cells. A standard ≥2.0-fold cutoff value was used to determine differentially expressed proteins and Western blotting analysis further confirmed the results. Antibody microarrays revealed that 40 proteins were reproducibly altered more than 2-fold between the selected variant and its parental counterpart; 14 of the proteins were up-regulated, and 26 were down-regulated. Most of the up-regulated proteins (7/14) play a role in tumor signal transduction, while a number of down-regulated proteins (10/26) function in cell differentiation; this might be crucial for pancreatic cancer metastasis. Four dysregulated proteins were validated by western blotting in the cell lines. Interestingly, the up-regulation of Glucagon and down-regulation of Prolactin were further confirmed in the culture supernatants by western blotting. These proteomic data are valuable for understanding pancreatic cancer metastasis and searching for potential markers of metastatic progression.  相似文献   

19.
Despite recent advancement in medicine, nearly 50% of patients with colorectal cancer show recurrence of the disease. Although the reasons for the high relapse are not fully understood, the presence of chemo- and radiotherapy-resistant cancer stem/stem-like cells, where many oncomirs like microRNA-21 (miR-21) are upregulated, could be one of the underlying causes. miR-21 regulates the processes of invasion and metastasis by downregulating multiple tumor/metastatic suppressor genes including PTEN (phosphatase and tensin homolog). Tumor suppressor protein PTEN controls self-renewal of stem cells. Indeed, our current data demonstrate a marked downregulation of PTEN in SCID mice xenografts of miR-21 over-expressing colon cancer HCT116 cells. Colonospheres that are highly enriched in cancer stem/stem like cells reveal increased miR-21 expression and decreased PTEN. Difluorinated curcumin (CDF), a novel analog of the dietary ingredient curcumin, which has been shown to inhibit the growth of 5-Flurouracil + Oxaliplatin resistant colon cancer cells, downregulated miR-21 in chemo-resistant colon cancer HCT116 and HT-29 cells and restored PTEN levels with subsequent reduction in Akt phosphorylation. Similar results were also observed in metastatic colon cancer SW620 cells. Since PTEN-Akt confers drug resistance to different malignancies including colorectal cancer, our observation of normalization of miR-21-PTEN-Akt pathway by CDF suggests that the compound could be a potential therapeutic agent for chemotherapy-resistant colorectal cancer.  相似文献   

20.
MUC13 is a newly identified transmembrane mucin. Although MUC13 is known to be overexpressed in ovarian and gastric cancers, limited information is available regarding the expression of MUC13 in metastatic colon cancer. Herein, we investigated the expression profile of MUC13 in colon cancer using a novel anti-MUC13 monoclonal antibody (MAb, clone ppz0020) by immunohistochemical (IHC) analysis. A cohort of colon cancer samples and tissue microarrays containing adjacent normal, non-metastatic colon cancer, metastatic colon cancer, and liver metastasis tissues was used in this study to investigate the expression pattern of MUC13. IHC analysis revealed significantly higher (p<0.001) MUC13 expression in non-metastatic colon cancer samples compared with faint or very low expression in adjacent normal tissues. Interestingly, metastatic colon cancer and liver metastasis tissue samples demonstrated significantly (p<0.05) higher cytoplasmic and nuclear MUC13 expression compared with non-metastatic colon cancer and adjacent normal colon samples. Moreover, cytoplasmic and nuclear MUC13 expression correlated with larger and poorly differentiated tumors. Four of six tested colon cancer cell lines also expressed MUC13 at RNA and protein levels. These studies demonstrate a significant increase in MUC13 expression in metastatic colon cancer and suggest a correlation between aberrant MUC13 localization (cytoplasmic and nuclear expression) and metastatic colon cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号