首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Severe acute respiratory syndrome (SARS) virus caused a severe outbreak in several regions of the world in 2003. The virus is a novel coronavirus, which may have an origin in wild animals such as civet cats in southern China. Its genome structure, gene expression pattern and protein profiles are similar to those of other coronaviruses. However, distinct patterns of several open reading frames in the SARS virus genome may contribute to its severe virulence. The potential mutability of the coronavirus genome may pose problems in the control of future SARS outbreaks. The mechanism of SARS pathogenesis may involve both direct viral cytocidal effects on the target cells and immune-mediated mechanisms. The life cycle of the SARS virus is largely unknown; however, based on the analogy with other coronaviruses, several potential targets for antiviral development are identified. Vaccines offer an important preventive measure for possible future recurrences of SARS, but the prospect for their development is still unknown because of the uncertainty regarding the role of immune responses in SARS virus pathogenesis. The comparative studies of other coronaviruses offer insights into the understanding of SARS virus.  相似文献   

2.
The aetiology of SARS: Koch's postulates fulfilled   总被引:2,自引:0,他引:2  
Proof that a newly identified coronavirus, severe acute respiratory syndrome coronavirus (SARS-CoV) is the primary cause of severe acute respiratory syndrome (SARS) came from a series of studies on experimentally infected cynomolgus macaques (Macaca fascicularis). SARS-CoV-infected macaques developed a disease comparable to SARS in humans; the virus was re-isolated from these animals and they developed SARS-CoV-specific antibodies. This completed the fulfilment of Koch's postulates, as modified by Rivers for viral diseases, for SARS-CoV as the aetiological agent of SARS. Besides the macaque model, a ferret and a cat model for SARS-CoV were also developed. These animal models allow comparative pathogenesis studies for SARS-CoV infections and testing of different intervention strategies. The first of these studies has shown that pegylated interferon-alpha, a drug approved for human use, limits SARS-CoV replication and lung damage in experimentally infected macaques. Finally, we argue that, given the worldwide nature of the socio-economic changes that have predisposed for the emergence of SARS and avian influenza in Southeast Asia, such changes herald the beginning of a global trend for which we are ill prepared.  相似文献   

3.
During several months of 2003, a newly identified illness termed severe acute respiratory syndrome (SARS) spread rapidly through the world. A new coronavirus (SARS-CoV) was identified as the SARS pathogen, which triggered severe pneumonia and acute, often lethal, lung failure. Moreover, among infected individuals influenza such as the Spanish flu and the emergence of new respiratory disease viruses have caused high lethality resulting from acute lung failure. In cell lines, angiotensin-converting enzyme 2 (ACE2) has been identified as a potential SARS-CoV receptor. The high lethality of SARS-CoV infections, its enormous economic and social impact, fears of renewed outbreaks as well as the potential misuse of such viruses as biologic weapons make it paramount to understand the pathogenesis of SARS-CoV. Here we provide the first genetic proof that ACE2 is a crucial SARS-CoV receptor in vivo. SARS-CoV infections and the Spike protein of the SARS-CoV reduce ACE2 expression. Notably, injection of SARS-CoV Spike into mice worsens acute lung failure in vivo that can be attenuated by blocking the renin-angiotensin pathway. These results provide a molecular explanation why SARS-CoV infections cause severe and often lethal lung failure and suggest a rational therapy for SARS and possibly other respiratory disease viruses.  相似文献   

4.
The severe acute respiratory syndrome (SARS), caused by a novel coronavirus (SARS-CoV), resulted in substantial morbidity, mortality, and economic losses during the 2003 epidemic. While SARS-CoV infection has not recurred to a significant extent since 2003, it still remains a potential threat. Understanding of SARS and development of therapeutic approaches have been hampered by the absence of an animal model that mimics the human disease and is reproducible. Here we show that transgenic mice that express the SARS-CoV receptor (human angiotensin-converting enzyme 2 [hACE2]) in airway and other epithelia develop a rapidly lethal infection after intranasal inoculation with a human strain of the virus. Infection begins in airway epithelia, with subsequent alveolar involvement and extrapulmonary virus spread to the brain. Infection results in macrophage and lymphocyte infiltration in the lungs and upregulation of proinflammatory cytokines and chemokines in both the lung and the brain. This model of lethal infection with SARS-CoV should be useful for studies of pathogenesis and for the development of antiviral therapies.  相似文献   

5.
The worldwide epidemic of severe acute respiratory syndrome (SARS) in 2003 was caused by a novel coronavirus called SARS-CoV. Coronaviruses and their closest relatives possess extremely large plus-strand RNA genomes and employ unique mechanisms and enzymes in RNA synthesis that separate them from all other RNA viruses. The SARS epidemic prompted a variety of studies on multiple aspects of the coronavirus replication cycle, yielding both rapid identification of the entry mechanisms of SARS-CoV into host cells and valuable structural and functional information on SARS-CoV proteins. These recent advances in coronavirus research have important implications for the development of anti-SARS drugs and vaccines.  相似文献   

6.
冠状病毒是一大类能够引起呼吸系统疾病,从而威胁人类健康的病毒.目前,对冠状病毒诱导细胞凋亡及其机制研究甚少.本研究以动物冠状病毒 猪流行性腹泻病毒(PEDV) 为模型探讨冠状病毒诱导细胞凋亡效应及其可能作用机制. 通过流式细胞术检测发现感染PEDV病毒后细胞凋亡率明显升高,且PEDV诱导细胞凋亡呈时间和剂量依赖性(P<0.05或P<0.01);进一步研究发现,冠状病毒木瓜样蛋白酶(PLP)在病毒引起凋亡过程中起重要作用.实验发现,转染PEDV-PLP质粒后,caspase-3活化体表达水平明显升高. 提示冠状病毒PLP蛋白酶通过激活caspase-3在病毒诱导细胞凋亡过程中起着关键作用. 以上结果为研究人类冠状病毒PLP蛋白功能及其通过细胞凋亡调节宿主抗病毒天然免疫机制提供重要基础.  相似文献   

7.
The primary cause of severe acute respiratory syndrome (SARS) is a newly discovered coronavirus. Replication of this SARS coronavirus (SCV) occurs mainly in the lower respiratory tract, and causes diffuse alveolar damage. Lack of understanding of the pathogenesis of SARS has prevented the rational development of a therapy against this disease. Here we show extensive SCV antigen expression in type 1 pneumocytes of experimentally infected cynomolgus macaques (Macaca fascicularis) at 4 d postinfection (d.p.i.), indicating that this cell type is the primary target for SCV infection early in the disease, and explaining the subsequent pulmonary damage. We also show that prophylactic treatment of SCV-infected macaques with the antiviral agent pegylated interferon-alpha (IFN-alpha) significantly reduces viral replication and excretion, viral antigen expression by type 1 pneumocytes and pulmonary damage, compared with untreated macaques. Postexposure treatment with pegylated IFN-alpha yielded intermediate results. We therefore suggest that pegylated IFN-alpha protects type 1 pneumocytes from SCV infection, and should be considered a candidate drug for SARS therapy.  相似文献   

8.
Advanced age has repeatedly been identified as an independent correlate of adverse outcome and a predictor of mortality in cases of severe acute respiratory syndrome (SARS). SARS-associated mortality may exceed 50% for persons aged 60 years or older. Heightened susceptibility of the elderly to severe SARS and the ability of SARS coronavirus to replicate in mice led us to examine whether aged mice might be susceptible to disease. We report here that viral replication in aged mice was associated with clinical illness and pneumonia, demonstrating an age-related susceptibility to SARS disease in animals that parallels the human experience.  相似文献   

9.
Ren L  Yang R  Guo L  Qu J  Wang J  Hung T 《DNA and cell biology》2005,24(8):496-502
The pathogenesis of the severe acute respiratory syndrome (SARS), a newly emerging life-threatening disease in humans, remains unknown. It is believed that the modulation of apoptosis is relevant to diseases that are caused by various viruses. To examine potential apoptotic mechanisms related to SARS, we investigated features of apoptosis induced by the SARS-associated coronavirus (SARS-CoV) in host cells. The results indicated that the SARS-CoV-induced apoptosis in Vero cells in a virus replication-dependent manner. Additionally, the downregulation of Bcl-2, the activation of casapse 3, as well as the upregulation of Bax were detected, suggesting the involvement of the caspase family and the activation of the mitochondrial signaling pathway. Although there is a positive correlation between apoptosis and virus replication, the latter is not significantly blocked by treatment with the caspase inhibitor z-DEVD-FMK. These preliminary data provide important information on both the pathogenesis and potential antiviral targets of SARS-CoV.  相似文献   

10.
11.
Severe acute respiratory syndrome (SARS) is a highly contagious zoonotic disease caused by SARS coronavirus (SARS-CoV). Since its outbreak in Guangdong Province of China in 2002, SARS has caused 8096 infections and 774 deaths by December 31st, 2003. Although there have been no more SARS cases reported in human populations since 2004, the recent emergence of a novel coronavirus disease (COVID-19) indicates the potential of the recurrence of SARS and other coronavirus disease among humans. Thus, developing a rapid response SARS vaccine to provide protection for human populations is still needed. Spike (S) protein of SARS-CoV can induce neutralizing antibodies, which is a pivotal immunogenic antigen for vaccine development. Here we constructed a recombinant chimeric vesicular stomatitis virus (VSV) VSVΔG-SARS, in which the glycoprotein (G) gene is replaced with the SARS-CoV S gene. VSVΔG-SARS maintains the bullet-like shape of the native VSV, with the heterogeneous S protein incorporated into its surface instead of G protein. The results of safety trials revealed that VSVΔG-SARS is safe and effective in mice at a dose of 1×106 TCID50. More importantly, only a single-dose immunization of 2×107 TCID50 can provide high-level neutralizing antibodies and robust T cell responses to non-human primate animal models. Thus, our data indicate that VSVΔG-SARS can be used as a rapid response vaccine candidate. Our study on the recombinant VSV-vectored SARS-CoV vaccines can accumulate experience and provide a foundation for the new coronavirus disease in the future.  相似文献   

12.
Focused efforts by several international laboratories have resulted in the sequencing of the genome of the causative agent of severe acute respiratory syndrome (SARS), novel coronavirus SARS-CoV, in record time. Using cumulative skew diagrams, I found tht mutational patterns in the SARS-CoV genome were strikingly different from other coronaviruses in terms of mutation rates, although they were in general agreement with the model of the coronavirus lifecycle. These findings might be relevant for the development of sequence-based diagnostics and the design of agents to treat SARS.  相似文献   

13.
严重急性呼吸系统综合征(severe acute respiratory syndrome,SARS)是由严重急性呼吸系统综合征冠状病毒(SARS corona-vims,SARS-CoV)引起的呼吸系统疾病。SARS-CoV的刺突蛋白(spike protein)具有S1和S2两个独特的功能结构域,研究发现两者都是进行疫苗和抗体研究的理想和有效的靶点。对非典疫苗的研究生产非常有价值,对预防和治疗SARS也有重大意义。  相似文献   

14.
严重急性呼吸系统综合征(SARS)是由SARS冠状病毒(SARS—CoV)引起的一种新型人类疾病,具有高致病性、高传染性、高死亡率的特点。Spike蛋白是冠状捅毒膜表面的糖蛋白突出,构成病毒的包膜子粒,在病毒与其受体结合、通过膜融合进入宿主细胞以及诱导机体产生中和性抗体的过程中发挥着重要的作用:目前利用Spike蛋白开发出的一些防治SARS的药物和疫苗在动物和体外实验中有良好的抗病毒作用。本文阐述了SARS—CoV Spike蛋白的结构与功能,为抗SARS药物及疫苗的研发提供一定的理论基础.  相似文献   

15.
Zhong X  Yang H  Guo ZF  Sin WY  Chen W  Xu J  Fu L  Wu J  Mak CK  Cheng CS  Yang Y  Cao S  Wong TY  Lai ST  Xie Y  Guo Z 《Journal of virology》2005,79(6):3401-3408
Severe acute respiratory syndrome (SARS) is a recently emerged infectious disease caused by a novel strain of coronavirus. Examination of the immune responses of patients who have recovered from SARS should provide important information for design of a safe and effective vaccine. We determined the continuous viral epitopes targeted by antibodies in plasma samples from convalescent SARS patients through biopanning with a vast M13 phage display dodecapeptide library. These epitopes converged to very short peptide fragments, one on each of the structural proteins spike and nucleocapsid and the nonstructural proteins 3a, 9b, and nsp 3. Immunoassays found that most of the patients who had recovered from SARS developed complementary antibodies to the epitope-rich region on the spike S2 protein, indicating that this is an immunodominant site on the viral envelope comprising the spike, matrix, and small envelope glycoproteins. These S2-targeting antibodies were shown to effectively neutralize the coronavirus, indicating that they provided protective immunity to help the patients recover from the viral infection. These results suggest that the SARS coronavirus might have an antigenic profile distinct from those of other human or animal coronaviruses. Due to the tested safety and protective effects of the convalescent-phase serological antibodies, identification of their complementary antigens may enable the design of an epitope-based vaccine to prevent potential antibody-mediated immunopathology.  相似文献   

16.
Animal models for severe acute respiratory syndrome (SARS) coronavirus infection of humans are needed to elucidate SARS pathogenesis and develop vaccines and antivirals. We developed transgenic mice expressing human angiotensin-converting enzyme 2, a functional receptor for the virus, under the regulation of a global promoter. A transgenic lineage, designated AC70, was among the best characterized against SARS coronavirus infection, showing weight loss and other clinical manifestations before reaching 100% mortality within 8 days after intranasal infection. High virus titers were detected in the lungs and brains of transgene-positive (Tg+) mice on days 1 and 3 after infection. Inflammatory mediators were also detected in these tissues, coinciding with high levels of virus replication. Lower virus titers were also detected in other tissues, including blood. In contrast, infected transgene-negative (Tg-) mice survived without showing any clinical illness. Pathologic examination suggests that the extensive involvement of the central nervous system likely contributed to the death of Tg+ mice, even though viral pneumonia was present. Preliminary studies with mice of a second lineage, AC63, in which the transgene expression was considerably less abundant than that in the AC70 line, revealed that virus replication was largely restricted to the lungs but not the brain. Importantly, despite significant weight loss, infected Tg+ AC63 mice eventually recovered from the illness without any mortality. The severity of the disease that developed in these transgenic mice--AC70 in particular--makes these mouse models valuable not only for evaluating the efficacy of antivirals and vaccines, but also for studying SARS coronavirus pathogenesis.  相似文献   

17.

Background  

Despite the passing of more than a year since the first outbreak of Severe Acute Respiratory Syndrome (SARS), efficient counter-measures are still few and many believe that reappearance of SARS, or a similar disease caused by a coronavirus, is not unlikely. For other virus families like the picornaviruses it is known that pathology is related to proteolytic cleavage of host proteins by viral proteinases. Furthermore, several studies indicate that virus proliferation can be arrested using specific proteinase inhibitors supporting the belief that proteinases are indeed important during infection. Prompted by this, we set out to analyse and predict cleavage by the coronavirus main proteinase using computational methods.  相似文献   

18.
The serious coronavirus disease‐2019 (COVID‐19) was first reported in December 2019 in Wuhan, China. COVID‐19 is an infectious disease caused by severe acute respiratory syndrome‐coronavirus 2 (SARS‐CoV‐2). Angiotensin converting enzyme 2(ACE2) is the cellular receptor for SARS‐CoV‐2. Considering the critical roles of testicular cells for the transmission of genetic information between generations, we analyzed single‐cell RNA‐sequencing (scRNA‐seq) data of adult human testis. The mRNA expression of ACE2 was expressed in both germ cells and somatic cells. Moreover, the positive rate of ACE2 in testes of infertile men was higher than normal, which indicates that SARS‐CoV‐2 may cause reproductive disorders through pathway activated by ACE2 and the men with reproductive disorder may easily to be infected by SARS‐CoV‐2. The expression level of ACE2 was related to the age, and the mid‐aged with higher positive rate than young men testicular cells. Taken together, this research provides a biological background of the potential route for infection of SARS‐CoV‐2 and may enable rapid deciphering male‐related reproductive disorders induced by COVID‐19.  相似文献   

19.
2019冠状病毒病(coronavirus disease 2019,COVID-19)的病原学和临床表现多有报道。该病在病原学和临床表现上与发生在2003年的严重急性呼吸综合征(severe acute respiratory syndrome, SARS)有诸多相似性。本文通过对比两者异同,尝试从其共同受体血管紧张素转换酶2(angiotensin converting enzyme 2,ACE2)角度,提出并探讨患者肠道菌群可能参与其致病的潜在机制,旨在为深入探索新型冠状病毒,即严重急性呼吸综合征冠状病毒2(severe acute respiratory syndrome coronavirus 2, SARS-CoV-2)的致病机制及加速研发重症肺炎预测指标提供一种可能的新思路。  相似文献   

20.
The pandemic outbreaks of coronavirus disease 2019 (COVID‐19), caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), spread all over the world in a short period of time. Efficient identification of the infection by SARS‐CoV‐2 has been one of the most important tasks to facilitate all the following counter measurements in dealing with the infectious disease. In Taiwan, a COVID‐19 Open Science Platform adheres to the spirit of open science: sharing sources, data, and methods to promote progress in academic research while corroborating findings from various disciplines has established in mid‐February 2020, for collaborative research in support of the development of detection methods, therapeutics, and a vaccine for COVID‐19. Research priorities include infection control, epidemiology, clinical characterization and management, detection methods (including viral RNA detection, viral antigen detection, and serum antibody detection), therapeutics (neutralizing antibody and small molecule drugs), vaccines, and SARS‐CoV‐2 pathogenesis. In addition, research on social ethics and the law are included to take full account of the impact of the COVID‐19 virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号