首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ubiquitin-independent proteolytic functions of the proteasome   总被引:10,自引:0,他引:10  
The discovery of the 20S proteasome (multicatalytic proteinase complex) was followed by the recognition that this multisubunit macromolecule is the proteolytic core of the 26S proteasome. Most of the research on extralysosomal proteolysis has concentrated on the role of the 26S proteasome in the ubiquitin-dependent proteolytic pathway. However, little attention has been directed toward the possible involvement of the proteasome in ubiquitin-independent proteolysis. In the past few years, many publications have provided evidence that both the 20S proteasome and the 26S proteasome can degrade some proteins in an ubiquitin-independent manner. Furthermore, it is becoming clear that demonstration of ubiquitin-protein conjugates after exposure of cells to proteasome inhibitors does not eliminate the possibility that the same protein can also be degraded by the proteasome without ubiquitination. The possible mechanisms of degradation of an unmodified protein by the 20S proteasome are discussed. These include targeting, protein unfolding, and opening of the gated channel to the catalytic sites. It is reasonable to assume that in the future the number of proteins recognized as substates of the ubiquitin-independent pathway will continue to increase, and that the metabolic significance of this pathway will be clarified.  相似文献   

2.
The accumulation of aggregated alpha-synuclein is thought to contribute to the pathogenesis of Parkinson's disease. Recent studies indicate that aggregated alpha-synuclein binds to S6', a component of the 19 S subunit in the 26 S proteasome and inhibits 26 S proteasomal degradation, both ubiquitin-independent and ubiquitin-dependent. The IC(50) of aggregated alpha-synuclein for inhibition of the 26 S ubiquitin-independent proteasomal activity is approximately 1 nm. alpha-Synuclein has two close homologues, termed beta-synuclein and gamma-synuclein. In the present study we compared the effects of the three synuclein homologues on proteasomal activity. The proteasome exists as a 26 S and a 20 S species, with the 26 S proteasome containing the 20 S core and 19 S cap. Monomeric alpha- and beta-synucleins inhibited the 20 S and 26 S proteasomal activities only weakly, but monomeric gamma-synuclein strongly inhibited ubiquitin-independent proteolysis. The IC(50) of monomeric gamma-synuclein for the 20 S proteolysis was 400 nm. In monomeric form, none of the three synuclein proteins inhibited 26 S ubiquitin-dependent proteasomal activity. Although beta-synuclein had no direct effect on proteasomal activity, co-incubating monomeric beta-synuclein with aggregated alpha-synuclein antagonized the inhibition of the 26 S ubiquitin-independent proteasome by aggregated alpha-synuclein when added before the aggregated alpha-synuclein. Co-incubating beta-synuclein with gamma-synuclein had no effect on the inhibition of the 20 S proteasome by monomeric gamma-synuclein. Immunoprecipitation and pull-down experiments suggested that antagonism by beta-synuclein resulted from binding to alpha-synuclein rather than binding to S6'. Pull-down experiments demonstrated that recombinant monomeric beta-synuclein does not interact with the proteasomal subunit S6', unlike alpha-synuclein, but beta-synuclein does bind alpha-synuclein and competes with S6' for binding to alpha-synuclein. Based on these data, we hypothesize that the alpha- and gamma-synucleins regulate proteasomal function and that beta-synuclein acts as a negative regulator of alpha-synuclein.  相似文献   

3.
Tau is the major protein exhibiting intracellular accumulation in Alzheimer disease. The mechanisms leading to its accumulation are not fully understood. It has been proposed that the proteasome is responsible for degrading tau but, since proteasomal inhibitors block both the ubiquitin-dependent 26S proteasome and the ubiqutin-independent 20S proteasome pathways, it is not clear which of these pathways is involved in tau degradation. Some involvement of the ubiquitin ligase, CHIP in tau degradation has also been postulated during stress. In the current studies, we utilized HT22 cells and tau-transfected E36 cells in order to test the relative importance or possible requirement of the ubiquitin-dependent 26S proteasomal system versus the ubiquitin-independent 20S proteasome, in tau degradation. By means of ATP-depletion, ubiquitinylation-deficient E36ts20 cells, a 19S proteasomal regulator subunit MSS1-siRNA approaches, and in vitro ubiquitinylation studies, we were able to demonstrate that ubiquitinylation is not required for normal tau degradation.  相似文献   

4.
The accumulation of aggregated alpha-synuclein is thought to contribute to the pathophysiology of Parkinson's disease, but the mechanism of toxicity is poorly understood. Recent studies suggest that aggregated proteins cause toxicity by inhibiting the ubiquitin-dependent proteasomal system. In the present study, we explore how alpha-synuclein interacts with the proteasome. The proteasome exists as a 26 S and a 20 S species. The 26 S proteasome is composed of the 19 S cap and the 20 S core. Aggregated alpha-synuclein strongly inhibited the function of the 26 S proteasome. The IC(50) of aggregated alpha-synuclein for ubiquitin-independent 26 S proteasomal activity was 1 nm. Aggregated alpha-synuclein also inhibited 26 S ubiquitin-dependent proteasomal activity at a dose of 500 nm. In contrast, the IC(50) of aggregated alpha-synuclein for 20 S proteasomal activity was > 1 microm. This suggests that aggregated alpha-synuclein selectively interacts with the 19 S cap. Monomeric alpha-synuclein also inhibited proteasomal activity but with lower affinity and less potency. Recombinant monomeric alpha-synuclein inhibited the activity of the 20 S proteasomal core with an IC(50) > 10 microm, exhibited no inhibition of 26 S ubiquitin-dependent proteasomal activity at doses up to 5 microm, and exhibited only partial inhibition (50%) of the 26 S ubiquitin-independent proteasomal activity at doses up to 10 mm. Binding studies demonstrate that both aggregated and monomeric alpha-synuclein selectively bind to the proteasomal protein S6', a subunit of the 19 S cap. These studies suggest that proteasomal inhibition by aggregated alpha-synuclein could be mediated by interaction with S6'.  相似文献   

5.
The vast majority of cellular proteins are degraded by the 26S proteasome after their ubiquitination. Here, we report that the major component of the myelin multilayered membrane sheath, myelin basic protein (MBP), is hydrolyzed by the 26S proteasome in a ubiquitin-independent manner both in vitro and in mammalian cells. As a proteasomal substrate, MBP reveals a distinct and physiologically relevant concentration range for ubiquitin-independent proteolysis. Enzymatic deimination prevents hydrolysis of MBP by the proteasome, suggesting that an abnormally basic charge contributes to its susceptibility toward proteasome-mediated degradation. To our knowledge, our data reveal the first case of a pathophysiologically important autoantigen as a ubiquitin-independent substrate of the 26S proteasome.  相似文献   

6.
Kästle M  Grune T 《Biochimie》2011,93(6):1076-1079
A substantial part of soluble, oxidized proteins are degraded by the proteasome. However, it is still under debate whether these oxidized proteins are degraded by the 26S proteasome in an ubiquitin-dependent way or in an ubiquitin-independent way by the 20S proteasome. Therefore, we treated cells with H2O2 and UV-A irradiation and detected protein carbonyls and ubiquitination by immunoblotting. Separation of ubiquitinated proteins from non-ubiquitinated reveals that most oxidized proteins are not ubiquitinated.  相似文献   

7.
Degradation of oxidized proteins by the 20S proteasome   总被引:27,自引:0,他引:27  
Davies KJ 《Biochimie》2001,83(3-4):301-310
Oxidatively modified proteins are continuously produced in cells by reactive oxygen and nitrogen species generated as a consequence of aerobic metabolism. During periods of oxidative stress, protein oxidation is significantly increased and may become a threat to cell survival. In eucaryotic cells the proteasome has been shown (by purification of enzymatic activity, by immunoprecipitation, and by antisense oligonucleotide studies) to selectively recognize and degrade mildly oxidized proteins in the cytosol, nucleus, and endoplasmic reticulum, thus minimizing their cytotoxicity. From in vitro studies it is evident that the 20S proteasome complex actively recognizes and degrades oxidized proteins, but the 26S proteasome, even in the presence of ATP and a reconstituted functional ubiquitinylating system, is not very effective. Furthermore, relatively mild oxidative stress rapidly (but reversibly) inactivates both the ubiquitin activating/conjugating system and 26S proteasome activity in intact cells, but does not affect 20S proteasome activity. Since mild oxidative stress actually increases proteasome-dependent proteolysis (of oxidized protein substrates) the 20S 'core' proteasome complex would appear to be responsible. Finally, new experiments indicate that conditional mutational inactivation of the E1 ubiquitin-activating enzyme does not affect the degradation of oxidized proteins, further strengthening the hypothesis that oxidatively modified proteins are degraded in an ATP-independent, and ubiquitin-independent, manner by the 20S proteasome. More severe oxidative stress causes extensive protein oxidation, directly generating protein fragments, and cross-linked and aggregated proteins, that become progressively resistant to proteolytic digestion. In fact these aggregated, cross-linked, oxidized proteins actually bind to the 20S proteasome and act as irreversible inhibitors. It is proposed that aging, and various degenerative diseases, involve increased oxidative stress (largely from damaged and electron 'leaky' mitochondria), and elevated levels of protein oxidation, cross-linking, and aggregation. Since these products of severe oxidative stress inhibit the 20S proteasome, they cause a vicious cycle of progressively worsening accumulation of cytotoxic protein oxidation products.  相似文献   

8.
Sphingolipids signal heat stress-induced ubiquitin-dependent proteolysis   总被引:12,自引:0,他引:12  
Sphingolipids are essential eukaryotic membrane lipids that are structurally and metabolically conserved through evolution. Sphingolipids have also been proposed to regulate eukaryotic stress responses as novel second messengers. Here we show that, in Saccharomyces cerevisiae, phytosphingosine, a putative sphingolipid second messenger, mediates heat stress signaling and activates ubiquitin-dependent proteolysis via the endocytosis vacuolar degradation and 26 S proteasome pathways. Inactivation of serine palmitoyltransferase, a key enzyme in generating endogenous phytosphingosine, prevents proteolysis during heat stress. Addition of phytosphingosine bypasses the requirement for serine palmitoyltransferase and restores proteolysis. Phytosphingosine-induced proteolysis requires multiubiquitin chain formation through the stress-responsive lysine 63 residue of ubiquitin. We propose that heat stress increases phytosphingosine and activates ubiquitin-dependent proteolysis.  相似文献   

9.
The 26 S proteasome, composed of the 20 S core and 19 S regulatory particle, plays a central role in ubiquitin-dependent proteolysis. Disruption of this process contributes to the pathogenesis of the various diseases; however, the mechanisms underlying the regulation of 26 S proteasome activity remain elusive. Here, cell culture experiments and in vitro assays demonstrated that apoptosis signal-regulating kinase 1 (ASK1), a member of the MAPK kinase kinase family, negatively regulated 26 S proteasome activity. Immunoprecipitation/Western blot analyses revealed that ASK1 did not interact with 20 S catalytic core but did interact with ATPases making up the 19 S particle, which is responsible for recognizing polyubiquitinated proteins, unfolding them, and translocating them into the 20 S catalytic core in an ATP-dependent process. Importantly, ASK1 phosphorylated Rpt5, an AAA ATPase of the 19 S proteasome, and inhibited its ATPase activity, an effect that may underlie the ability of ASK1 to inhibit 26 S proteasome activity. The current findings point to a novel role for ASK1 in the regulation of 26 S proteasome and offer new strategies for treating human diseases caused by proteasome malfunction.  相似文献   

10.
11.
The critical role of the ubiquitin-26S proteasome system in regulation of protein homeostasis in eukaryotes is well established. In contrast, the impact of the ubiquitin-independent proteolytic activity of proteasomes is poorly understood. Through biochemical analysis of mammalian lysates, we find that the 20S proteasome, latent in peptide hydrolysis, specifically cleaves more than 20% of all cellular proteins. Thirty intrinsic proteasome substrates (IPSs) were identified and in vitro studies of their processing revealed that cleavage occurs at disordered regions, generating stable products encompassing structured domains. The mechanism of IPS recognition is remarkably well conserved in the eukaryotic kingdom, as mammalian and yeast 20S proteasomes exhibit the same target specificity. Further, 26S proteasomes specifically recognize and cleave IPSs at similar sites, independent of ubiquitination, suggesting that disordered regions likely constitute the universal structural signal for IPS proteolysis by proteasomes. Finally, we show that proteasomes contribute to physiological regulation of IPS levels in living cells and the inactivation of ubiquitin-activating enzyme E1 does not prevent IPS degradation. Collectively, these findings suggest a significant contribution of the ubiquitin-independent proteasome degradation pathway to the regulation of protein homeostasis in eukaryotes.  相似文献   

12.
We previously demonstrated that the proteasome activator REGgamma directs degradation of the steroid receptor coactivator SRC-3 by the 20S proteasome in an ATP- and ubiquitin-independent manner. Our efforts to identify additional endogenous direct targets of the REGgamma proteasome revealed that p21(Waf/Cip1), a central cyclin-dependent kinase inhibitor, is another endogenous target. Gain-of-function analysis, RNAi knockdown, REGgamma-deficient MEF analysis, and pulse-chase experiments substantiate that REGgamma promotes degradation of unbound p21. Cell-free proteasome proteolysis assays using purified REGgamma, p21, and the 20S proteasome confirm that REGgamma directly mediates degradation of free p21 in an ATP- and ubiquitin-independent manner. Depletion of REGgamma in a thyroid carcinoma cell line results in cell-cycle and proliferative alterations. Our study reveals that, in addition to degrading the SRC-3 growth coactivator, REGgamma also has a role in the regulation of the cell cycle through its ability to influence the level of a cell-cycle regulator(s).  相似文献   

13.
非泛素依赖地降解蛋白质研究进展   总被引:1,自引:0,他引:1  
如何识别和选择性降解蛋白质是细胞生命过程中非常重要的环节,泛素-蛋白酶体需能降解途径的发现,揭示了蛋白质在细胞内选择性降解的普遍方式,成为研究焦点.然而,很少关注蛋白酶体以非泛素依赖方式降解蛋白质的可能性.近年来,已发现不少蛋白质被蛋白酶体以非泛素依赖方式降解.该途径涉及降解某些短寿命的调节蛋白、错误折叠蛋白、衰老蛋白和氧化蛋白,以及新合成蛋白的"质量控制",并涉及病理过程如癌症、神经退行性疾病,所以具有非常重要的生理和病理作用.总结了近一二十年来发现的一些具有代表性的被蛋白酶体以非泛素依赖方式降解的蛋白质,并重点论述了其作用的分子机制,以期以点带面地展示这一领域的研究概况.  相似文献   

14.
15.
16.
17.
Structure, function and regulation of plant proteasomes   总被引:3,自引:0,他引:3  
Kurepa J  Smalle JA 《Biochimie》2008,90(2):324-335
  相似文献   

18.
The anaphase-promoting complex: proteolysis in mitosis and beyond   总被引:15,自引:0,他引:15  
Peters JM 《Molecular cell》2002,9(5):931-943
Key events in mitosis such as sister chromatid separation and subsequent inactivation of cyclin-dependent kinase 1 are regulated by ubiquitin-dependent proteolysis. These events are mediated by the anaphase-promoting complex (APC), a cell cycle-regulated ubiquitin ligase that assembles multiubiquitin chains on regulatory proteins such as securin and cyclins and thereby targets them for destruction by the 26S proteasome.  相似文献   

19.
The proteasome is the key player in targeted degradation of cellular proteins and serves as a therapeutic target for treating several blood malignancies. Although in general, degradation of proteins via the proteasome requires their ubiquitination, a subset of proteins can be degraded independently of their ubiquitination by direct interaction with subunits of the 20S proteasome core. Thus, investigation of the proteasome-associated proteins may help identify novel targets of proteasome degradation and provide important insights into the mechanisms of malignant cell proteostasis. Here, using biochemical purification of proteasomes from multiple myeloma (MM) cells followed by mass-spectrometry we have uncovered 77 proteins in total that specifically interacted with the 20S proteasome via its PSMA3 subunit. Our GST pull-down assays followed by western blots validated the interactions identified by mass-spectrometry. Eleven proteins were confirmed to bind PSMA3 only upon apoptotic conditions induced by a combined treatment with the proteasome inhibitor, bortezomib, and genotoxic drug, doxorubicin. Nine of these eleven proteins contained bioinformatically predicted intrinsically disordered regions thus making them susceptible to ubiquitin-independent degradation. Importantly, among those proteins five interacted with the ubiquitin binding affinity matrix suggesting that these proteins may also be ubiquitinylated and hence degraded via the ubiquitin-dependent pathway. Collectively, these PSMA3-interacting proteins represent novel potential substrates for 20S proteasomes upon apoptosis. Furthermore, these data may shed light on the molecular mechanisms of cellular response to chemotherapy.

Abbreviations: BD: bortezomib/doxorubicin treatment; CDK: cyclin-dependent kinases; CHCA: α-cyanohydroxycinnamic acid; IDP: intrinsically disordered proteins; IDR: intrinsically disordered regions; IPG: immobilized pI gradient; MALDI TOF/TOF: matrix-assisted laser desorption/ionization time-of-flight tandem mass-spectrometry; MM: multiple myeloma; ODC: ornithine decarboxylase; PI: proteasomal inhibitors; PSMA: alpha-type 20S proteasome subunits; PTMs: post-translational modifications; SDS-PAGE: sodium dodecylsulphate polyacrylamide gel electrophoresis; UIP: ubiquitin-independent proteasomal proteolysis.  相似文献   


20.
The 26S proteasome (26SP), the central protease of the ubiquitin-dependent proteolysis pathway, controls the regulated proteolysis of functional proteins and the removal of misfolded and damaged proteins. In Arabidopsis, cellular and stress response phenotypes of a number of mutants with partially impaired 26SP function have been reported. Here, we describe the responses of proteasome mutants to protein synthesis inhibitors. We show that the rpt2a-3, rpn10-1 and rpn12a-1 mutants are hypersensitive to the antibiotic hygromycin B, and tolerant to the translation inhibitor cycloheximide (CHX) and herbicide l-phosphinothricin (PPT). In addition to the novel mechanism for herbicide tolerance, our data suggests that the combination of hygromycin B, CHX and PPT growth-response assays could be used as a facile diagnostic tool to detect altered 26SP function in plant mutants and transgenic lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号