首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An alkalitolerant and halotolerant bacterium, designated strain Sharm was isolated from a salt lake inside Ras Muhammad. The morphological, physiological and genetic characteristics were compared with those of related species of the genus Halomonas. The isolate grew optimally at pH 7.0, 5–15% NaCl at 35°C. The cells were Gram-negative rods, facultative anaerobes. They accumulated glycine-betaine, as a major osmolyte, and ectoine and glutamate as minor components. The strain SharmT biosynthetised α-glucosidase. The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, and a novel phosphoglycolipid as major components. Ubiquinone with nine repetitive unities (Q9) was the only quinone found and, nC16:0 and C19:0 with cyclopropane were the main cellular fatty acids, accounting for 87.3% of total fatty acids. The G + C content of the genomic DNA was 64.7 mol %. The 16S rRNA sequence analysis indicated that strain Sharm was a member of the genus Halomonas. The closest relatives of the strain Sharm were Halomonas elongata and Halomonas eurihalina. However, DNA–DNA hybridisation results clearly indicated that strain Sham was a distinct species of Halomonas. On the basis of the evidence, we propose to assign strain Sharm as a new species of the genus Halomonas, H. sinaiensis sp. nov, with strain SharmT as the type strain (DSM 18067T; ATCC BAA-1308T). The EMBL accession number for the 16S rRNA sequence of Halomonas sinaiensis strain SharmT is AM238662.  相似文献   

2.
A Gram-negative, aerobic, motile and rod-shaped haloalkaliphilic bacterial strain 5AGT (DSM 15293 and ATCC BAA-966) was isolated from water with algal mat of a mineral pool in Malvizza site (Campania-Italy) and was subjected to a polyphasic study. The isolate grew at temperature of 10.0-43.0 degrees C with an optimum at 37.0 degrees C. Strain 5AGT grew optimally in the presence of 10% NaCl and grew also in the absence of salt. The isolate grew in the pH range 7.0-10.0 with an optimum at pH 9.0. It accumulated glycine-betaine, ectoine, and glutamate, as osmoprotectants. Strain 5AGT was also characterized chemotaxonomically by having ubiquinone-8 (Q8) as the predominant isoprenoid quinone, phosphoethanolamine (PEA), phosphatidylglycerol (PG) and diphosphatidylglycerol (DPG), as major polar lipids and aiC16:0 and C18:1cis as the major fatty acids. The DNA G+C content was 63.7mol%. Phylogenetic analyses based on 16S rRNA gene sequence showed that the isolate belonged to the genus Halomonas. The DNA-DNA hybridization of the type strain 5AGT with the most related Halomonas campisalis showed a re-association value of 35.0%.On the basis of phenotypic properties and phylogeny, strain 5AGT should be placed in the genus Halomonas as a member of a novel species for which we propose the name Halomonas campaniensis sp. nov.  相似文献   

3.
Two Gram-negative moderately halophilic bacterial strains, designated Ad-1(T) and C-12, were isolated from Aiding salt lake of Xinjiang in China. The novel isolates were subjected to a polyphasic taxonomic study. Cells of these strains were cocci or short rods and motile with polar flagella. Colonies produced brown-red pigment. The isolates grew in the range of 0.5-25% (w/v) NaCl, pH 5.5-10.5 and 4-45°C. Analysis of their 16S rRNA gene sequences indicated that strains Ad-1(T) and C-12 belonged to the genus Halomonas showing 92.7-98.4% similarity with the type species. The isoprenoid quinones of the isolates were Q-9 and Q-8. The major cellular fatty acids were C18:1ω7c, C16:1ω7c/6c, C16:0, C12:0-3OH and C10:0. The DNA G + C contents of strains Ad-1(T) and C-12 were 64.6 and 63.9 mol%, respectively. The DNA relatedness between the two isolates was 89.2%. The similarities of these newly isolated strains with closely related type strains were lower than 35% at the genetic level. Based on phenotypic, chemotaxonomic and genetic characteristics, the representative strain Ad-1(T) is considered to be a novel species of the genus Halomonas, for which the name Halomonas aidingensis sp. nov. is proposed, with Ad-1(T) (= CGMCC 1.10191(T) = NBRC 106173(T)) as the type strain.  相似文献   

4.
A halotolerant and alkaliphilic Gram-negative bacterium, strain 18bAG(T), that grows aerobically at the optimum temperature of 37 degrees C, and at pH 7.5-10 (optimum 9.0), was isolated from a salt pool located in Montefredane in Campania Region (South of Italy). The isolate tolerated high concentration of NaCl up to 20%. Strain 18bAG(T) accumulated osmolytes and polyhydroxybutyrate, produced exopolysaccharide and possessed alpha-glucosidase activity. The predominant respiratory quinones were ubiquinones, Q8 and Q6(6H); phosphoethanolamine, phosphatidylglycerol and diphosphatidylglycerol were the predominant polar lipids. Major fatty acids were C16 : 1, C16 : 0, and C18 : 0. On the basis of 16S rRNA gene sequence similarity, 18bAG(T) was shown to belong to Halomonas genus. Analysis of 16S rRNA gene revealed a high similarity of strain 18bAG(T) to Halomonas venusta (DSM 4743(T)) and Halomonas hydrothermalis (DSM 15725(T)). Level of DNA-DNA relatedness between strain 18bAG(T) and the most related species Halomonas venusta and Halomonas hydrothermalis was 56.0% and 41.2%, respectively. The G+C content (mol%) of DNA was 53.0. The RiboPrinting patterns of Halomonas venusta and 18AG(T) showed a pattern similarity of 0.50. On the basis of genomic information and phenotypic characteristics strain 18bAG(T) represents a new species, for which the name Halomonas alkaliphila sp. nov. is proposed. The type strain is 18bAG(T) (=DSM 16354T =ATCC BAA-953T).  相似文献   

5.
A moderately halophilic bacterial strain 15-13(T), which was isolated from soda meadow saline soil in Daqing City, Heilongjiang Province, China, was subjected to a polyphasic taxonomic study. The cells of strain 15-13 were found to be Gram-negative, rod-shaped, and motile. The required growth conditions for strain 15-13(T) were: 1-23% NaCl (optimum, 7%), 10-50°C (optimum, 35°C), and pH 7.0-11.0 (optimum, pH 9.5). The predominant cellular fatty acids were C(18:1) ω7c (60.48%) and C(16:0) (13.96%). The DNA G+C content was 67.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparisons indicated that strain 15-13(T) clustered within a branch comprising species of the genus Halomonas. The closest phylogenetic neighbor of strain 15-13(T) was Halomonas pantelleriensis DSM 9661(T) (98.9% 16S rRNA gene sequence similarity). The level of DNA-DNA relatedness between the novel isolated strain and H pantelleriensis DSM 9661(T) was 33.8%. On the basis of the phenotypic and phylogenetic data, strain 15-13(T) represents a novel species of the genus Halomonas, for which the name Halomonas alkalitolerans sp. nov. is proposed. The type strain for this novel species is 15-13(T) (=CGMCC 1.9129(T) =NBRC 106539(T)).  相似文献   

6.
An endospore-forming bacterium, designated strain B-16T, was isolated from a forest soil sample in Yunnan, China. The isolate presented remarkable nematotoxic activity against nematode Panagrellus redivivus. The organism was strictly aerobic, motile, spore forming and rod shaped, catalase- and oxidase-positive. The predominant isoprenoid quinone was menaquinone 7 (MK-7). The major cellular fatty acid profiles were anteiso-C15:0 (48.67%), iso-C15:0 (13.45%), C16:0 (9.06%) and anteiso-Cl7:0 (8.29%). The DNA G+C content was 46%. Phylogenetic analyses based on 16S rDNA sequence revealed that isolate belongs to the genus Bacillus. Strain B-16T exhibited high 16S rDNA similarity with its closest neighbors Bacillus vallismortis (99.79%), B. subtilis (99.43%), B. atrophaeus (99.43%), B. amyloliquefaciens (99.36%), B. licheniformis (98.0%) and less than 97.0% with all the other relative type strains in the genus Bacillus. The phenotypic and genotypic characteristics and DNA-DNA relatedness data indicate that strain B-16T should be distinguished from all the relative species of genus Bacillus. Therefore, on the basis of the polyphasic taxonomic data presented, a new species of the genus Bacillus, B. nematocida, with the type strain B-16T ( = CGMCC 1128T) is proposed. The GenBank accession number for the sequence reported in this paper is AY820954.  相似文献   

7.
A Gram-positive, nonmotile, moderately halophilic, alkali and thermotolerant strain designated DAS 165(T), was isolated from a dry land soil sample from the Gulbarga region, Karnataka province, India. The isolate produced yellow substrate mycelia and gray aerial mycelia on most tested media. Strain DAS 165(T) showed growth in the presence of 5 to 7% NaCl and at 45 degrees C. The DNA G + C content was 69.7%. 16S rRNA gene sequence analysis together with these characteristics consistently assigned strain DAS 165(T) to the genus Streptomyces. The 16S rRNA gene sequence analysis revealed that strain DAS 165(T) was most closely related to S. tendae ATCC 19812(T) (D 63873) with a sequence similarity of 99.6% (three nucleotide differences out of 1,517). Strain DAS 165(T) formed a distinct clade based on analysis of the almost complete sequence and 120-nucleotide variable gamma region of the 16S rRNA gene. Despite the high sequence similarity, strain DAS 165(T) was phenotypically different from S. tendae ATCC 19812(T). DNA-DNA hybridization between these strains was 47% showing that strain DAS 165(T) is a distinct genomic species. Phenetic and genetic results support the classification of strain DAS 165(T) as a new species, for which the name S. tritolerans is proposed, with strain DAS 165(T) as the type strain (=DSM 41899(T )= CCTCCAA 206013(T)).  相似文献   

8.
The taxomony of strain M8, isolated from algal mat formed at the origin of a sulfurous spring in Rifieto (Savignano Irpino, Campania, Italy), was investigated in a polyphasic approach. The morphological, physiological and genetic characteristics were compared with of Planococcus and Planomicrobium species. The isolate grew optimally at pH 9.0, 1.8 M NaCl at 37 degrees C. The cells were Gram-positive cocci that form pairs, tetrads and aggregates of several cells. The isolate was aerobic/microaerophilic and accumulated glycine-betaine, as a major osmolyte, with minor components glutamate and an unknown compound. M8 was able to hydrolyse X-Glc (5-bromo-4-chloro-3-indoyl beta-d-glucopyranoside). The polar lipid profile consisted of phosphatidylglycerol and diphosphatidylglycerol as major components, and phosphocholine as a minor compound. MK8 was the only quinone found and the fatty acid composition was dominated by branched acids, mainly aiC15:0. The G+C content of DNA was 47.9% and its phylogenetic position was established by 16S rRNA gene sequencing as a member of the genus Planococcus. The DNA/DNA similarity of M8 to the type species Planococcus citreus was less than 55%. For this reason and for physiological and chemotaxonomic features, it is proposed to create a new species Planococcus rifietensis sp. nov.  相似文献   

9.
A chemoorganotrophic, moderately halophilic bacterium (strain SMB35) has been isolated from a naphthalene-utilizing microbial community obtained from salt mines (Perm region of Russia). Strain SMB35 grows in a wide salinity range, 0.5 to 30% (wt/vol) NaCl. Cells are gram-negative rods motile by means of a single polar flagellum. The predominant fatty acids are 16:1omega7, 16:0, 18:1omega7, and 19 cy. The major lipoquinone is an unsaturated ubiquinone with nine isoprene units (Q-9). The DNA G+C content is 63.0 mol%. The 16S rDNA-based phylogenetic analysis has shown that strain SMB35 formed a separate clade in the cluster of the family Halomonadaceae. The 16S rDNA sequence similarity of the isolate to the members of the family is in the range from 90.6% to 95.1%. The phylogenetic and phenotypic differences from Halomonas elongata (the type species of the genus) and from other members of the family suggest that the isolate represents a novel genus and species, for which the name Salinicola socius gen. nov., sp. nov. is proposed. The type strain is SMB35(T) (=VKM B-2397(T)).  相似文献   

10.
A Gram-positive, aerobic or facultative anaerobic, motile, spore-forming bacterial strain, designated Gsoil 1638T, was isolated from a soil sample of a ginseng field in Pocheon province (South Korea), and was characterized taxonomically by using a polyphasic approach. It grew well on nutrient agar medium, utilized a fairly narrow spectrum of carbon sources and tolerated 10% NaCl. The isolate was positive for catalase and oxidase tests but negative for the degradation of macromolecules such as casein, collagen, starch, chitin, CM-cellulose, xylan and DNA. The G + C content of the genomic DNA was 50.7 mol%. The predominant isoprenoid quinone was menaquinone 7 (MK-7). The major fatty acids were anteiso-C15:0 (44%) and C16:0 (25%). Comparative 16S rRNA gene sequence analysis showed that strain Gsoil 1638T fell within the radiation of the cluster comprising Paenibacillus species and joined Paenibacillus anaericanus DSM 15890T with a bootstrap value of 100%. These two strains shared 99.5% 16S rRNA gene sequence similarity with each other. The phylogenetic distance from any other validly described species within the genus Paenibacillus was less than 96.2%. DNA-DNA relatedness value between strain Gsoil 1638T and its closest phylogenetic neighbor, Paenibacillus anaericanus, was 62%. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain Gsoil 1638T (= KCTC 13931T = LMG 23406T = CCUG 52472T) was classified in the genus Paenibacillus as the type strain of a novel species, for which the name Paenibacillus ginsengisoli sp. nov. is proposed.  相似文献   

11.
A chemoorganotrophic, moderately halophilic bacterium (strain SMB35) has been isolated from a naphthalene-utilizing microbial community obtained from salt mines (Perm region of Russia). Strain SMB35 grows in a wide salinity range, 0.5 to 30% (wt/vol) NaCl. Cells are gram-negative rods motile by means of a single polar flagellum. The predominant fatty acids are 16:1ω7, 16:0, 18:1ω7, and 19 cy. The major lipoquinone is an unsaturated ubiquinone with nine isoprene units (Q9). The DNA G+C content is 63.0 mol %. The 16S rDNA-based phylogenetic analysis has shown that strain SMB35 formed a separate clade in the cluster of the family Halomonadaceae. The 16S rDNA sequence similarity of the isolate to the members of the family is in the range from 90.6 to 95.1%. The phylogenetic and phenotypic differences from Halomonas elongata (the type species of the genus) and from other members of the family suggest that the isolate represents a novel genus and species, for which the name Salinicola socius gen. nov., sp. nov. is proposed. The type strain is SMB35T(=VKM B-2397T).  相似文献   

12.
Two anaerobic bacteria involved in the conversion of the plant lignan secoisolariciresinol diglucoside were isolated from faeces of a healthy male adult. The first isolate, strain SDG-Mt85-3Db, was a mesophilic strictly anaerobic Gram-positive helically coiled rod. Based on 16S r RNA gene sequence analysis, its nearest relatives were Clostridium cocleatum (96.7% similarity) and Clostridium ramosum (96.6%). In contrast to these species, the isolate was devoid of alpha-galactosidase and -glucosidase and did not grow on maltose, melibiose, raffinose, rhamnose and trehalose. The hypothesis that strain SDG-Mt85-3Db represents a new bacterial species of the Clostridium cluster XVIII was confirmed by DNA-DNA hybridisation experiments. The G+C content of DNA of strain SDG-Mt85-3Db (30.7+/-0.8 mol%) was comparable with that of Clostridium butyricum, the type species of the genus Clostridium. The name Clostridium saccharogumia is proposed for strain SDG-Mt85-3Db (=DSM 17460T=CCUG 51486T). The second isolate, strain ED-Mt61/PYG-s6, was a mesophilic strictly anaerobic Gram-positive regular rod. Based on 16S rRNA gene sequence analysis, its nearest relatives were Clostridium amygdalinum (93.3%), Clostridium saccharolyticum (93.1%) and Ruminococcus productus (93.0%). The isolate differed from these species in its ability to dehydrogenate enterodiol. It also possessed alpha-arabinosidase and -galactosidase and had a higher G+C content of DNA (48.0 mol%). According to these findings, it is proposed to create a novel genus, Lactonifactor, and a novel species, Lactonifactor longoviformis, to accommodate strain ED-Mt61/PYG-s6. The type strain is DSM 17459T (=CCUG 51487T).  相似文献   

13.
A strictly aerobic, non-motile, ovoid-shaped Alphaproteobacteria, designated strain JC2049(T), was isolated from a tidal flat sediment sample. The results of 16S rRNA gene sequence analysis indicated that this isolate belonged to the genus Thalassobius, with a sequence similarity of 96.9-97.3% to other valid Thalassobius spp. The cells required 1-7% NaCl for growth (optimum 2%) and accumulated poly-beta-hydroxybutyrate. Nitrite was reduced to nitrogen, but nitrate was not reduced to nitrite. No genetic potential for aerobic anoxygenic photosynthesis was detected. The primary isoprenoid quinone (Ubiquinone-10), predominant cellular fatty acids (C(18:1)omega7c, 11 methyl C(18:1)omega7c and C(16:0)) and DNA G+C content (61 mol%) were all consistent with the assignment of this isolate to the genus Thalassobius. Several phenotypic characteristics clearly distinguished our isolate from other Thalassobius species. The degree of genomic relatedness between strain JC2049(T) and other Thalassobius species was in a range of 20-43%. The polyphasic data presented in this study indicates that our isolate should be classified as a novel species within the genus Thalassobius. The name Thalassobius aestuarii sp. nov. is therefore proposed for this isolate; the type strain is JC2049(T) (= IMSNU 14011(T) = KCTC 12049(T) = DSM 15283(T)).  相似文献   

14.
A novel bacterium, strain BMP-1(T), was isolated from a continuous wastewater treatment culture system operating with a bacterial consortium. Cells of the isolate were Gram-variable, aerobic, moderately halotolerant, motile and endospore-forming rods. Strain BMP-1(T) grew chemolithoautotrophically by oxidation of thiosulfate to sulfate with a growth yield of 1.07 g protein mol(-1) of thiosulfate consumed. DNA G+C content was 43.8 mol%. Its cell wall had peptidoglycan based on m-diaminopimelic acid, and the major component of fatty acid was C(15 : 0). The 16S rRNA gene analysis showed that strain belongs to the genus Bacillus, sharing a 99.5% of sequence similarity with Bacillus jeotgali CCM 7133(T). DNA-DNA hybridization between the isolate of this study and this strain was 44%. Thus, the inclusion of strain BMP-1(T) in the genus Bacillus is suggested as a novel species and the name Bacillus thioparus sp. nov. (Type strain BMP-1(T)=BM-B-436(T)=CECT 7196(T)) is proposed. The sequence of the 16S rRNA gene has been deposited in GenBank with accession number DQ371431.  相似文献   

15.
A Gram-negative, motile, rod-shaped, non-spore-forming bacterial strain, designated as Ko03(T), was isolated from microbial granules, and was characterized, using a polyphasic approach, in order to determine its taxonomic position. The isolate was positive for catalase and oxidase, but negative for gelatinase and beta-galactosidase. Phylogenetic analyses using the 16S rRNA gene sequence showed that the strain formed a monophyletic branch towards the periphery of the evolutionary radiation occupied by the genus Comamonas, its closest neighbors being Comamonas koreensis KCTC 12005(T) (95.9% sequence similarity), Comamonas nitrativorans DSM 13191(T) (95.7%), and Comamonas odontotermitis LMG 23579(T) (95.7%). Strain Ko03(T) had a genomic DNA G+C content of 68.4 mol% and the predominant respiratory quinone was Q-8. The major fatty acids were C(16:1) omega7c (44.7%), C(16:0) (28.1%), C(18:1) (16.1%), and C(10:0) 3-OH (3.5%). These chemo-taxonomic results supported the affiliation of strain Ko03(T) to the genus Comamonas. However, low 16S rRNA gene sequence similarity values and distinguishing phenotypic characteristics allowed genotypic and phenotypic differentiation of strain Ko03(T) from recognized Comamonas species. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain Ko03(T) represents a novel species of the genus Comamonas, for which the name Comamonas granuli sp. nov. is proposed. The type strain is Ko03(T) (= KCTC 12199(T) = NBRC 101663(T)).  相似文献   

16.
Eleven psychrophilic bacteria were isolated from a solid layer of fast ice in the middle of Pointe-Geologie Archipelago, Adelie Land, Antarctica. The 11 isolates based on the phenotypic characteristics, chemotaxonomic and phylogenetic analysis have been identified as members of the genus Halomonas. All the isolates at the 16S rDNA sequence level were identical, possessed the 15 conserved nucleotides of the family Halomonadaceae and four nucleotides of the genus Halomonas. Therefore, the 16S rDNA sequence of DD 39 was used for calculating the evolutionary distances and for phylogenetic analysis. It was observed that DD 39 formed a robust cluster with H. variabilis, from which it differed by 0.7%. Further DNA-DNA hybridization studies indicated low DNA-DNA homology (15%) between H. variabilis and DD 39. Between the 11 Antarctic isolates the homology was >85%. In addition it was observed that DD 39 was different from H. variabilis in that it was psychrophilic, could tolerate only up to 15% sodium chloride, could not hydrolyse esculin, could not reduce nitrate, was urease negative, could not utilize glycerol as a carbon source, and was resistant to ampicillin and erythromycin and sensitive to nalidixic acid. In addition, it also exhibited distinct differences with respect to high content of C(16:1) and low levels of cyclo-C(17:0) and cyclo-C(19:0). DD 39 also differed from all the other reported species of Halomonas with respect to many phenotypic characteristics. It is proposed therefore that DD 39 should be placed in the genus Halomonas as a new species that is Halomonas glaciei. The type strain of H. glaciei is DD 39(T) (MTCC 4321; JCM 11692).  相似文献   

17.
A new, moderately haloalkaliphilic and restricted-facultatively methylotrophic bacterium (strain Bur2T) with the ribulose monophosphate pathway of carbon assimilation is described. The isolate, which utilizes methanol, methylamine and fructose, is an aerobic, Gram-negative, asporogenous, motile short rod multiplying by binary fission. It is auxotrophic for vitamin B12, and requires NaHCO3 or NaCl for growth in alkaline medium. Cellular fatty acids profile consists primarily of straight-chain saturated C16:0, unsaturated C16:1 and C18:1 acids. The major ubiquinone is Q-8. The dominant phospholipids are phosphatidylethanolamine and phosphatidylglycerol. Diphosphatidylglycerol is also present. Optimal growth conditions are 25-29 degrees C, pH 8.5-9.0 and 2-3% (w/v) NaCl. Cells accumulate ectoine and glutamate as the main osmoprotectants. The G + C content of the DNA is 45.0 mol%. Based on 16S rDNA sequence analysis and DNA-DNA relatedness (25-35%) with type strains of marine and soda lake methylobacteria belonging to the genus Methylophaga, the novel isolate was classified as a new species of this genus and named Methylophaga natronica (VKM B-2288T).  相似文献   

18.
During the course of screening for industrially important microorganisms, an alkali-tolerant and thermotolerant actinomycete, strain DAS 131T, was isolated from a soil sample collected from the Gulbarga region, Karnataka province, India. The strain was characterized by a polyphasic approach that showed that it belonged to the genus Streptomyces. Growth was observed over a wide pH range (pH 6-12) and at 45 degrees C. The 16S rRNA gene sequence of strain DAS 131T was deposited in the GenBank database under the accession number DQ317411. 16S rRNA gene sequence analysis revealed that strain DAS 131T was most closely related to Streptomyces venezuelae ISP 5230T (AY999739) with a sequence similarity of 99.5% (8 nucleotide differences out of 1,477). Despite this very high sequence similarity, strain DAS 131T was phenetically distinct from S. venezuelae. The DNA relatedness between these strains was 54%, indicating that strain DAS 131T is a distinct genomic species. On the basis of phenetic and genetic analyses, strain DAS 131T is classified as a new species in the genus Streptomyces, for which we propose the name Streptomyces gulbargensis sp. nov.  相似文献   

19.
An endophytic actinobacterium, designated YIM 65003(T), was isolated from a surface sterilized leaf sample of Cercidiphyllum japonicum collected from Yunnan province, south-west China. The morphological and chemotaxonomic properties of the isolate were typical of members of the genus Rhodococcus. Analysis of the 16S rRNA gene sequence revealed that the isolate was most closely related to Rhodococcus fascians DSM 20669(T) (99.6%) and Rhodococcus yunnanensis YIM 70056(T) (99.0%). DNA-DNA hybridization with the above microorganisms (46.3% and 48.8%, respectively), in combination with differences in the biochemical and physiological properties, suggested that strain YIM 65003(T) should be classified within a novel species of the genus Rhodococcus, for which the name Rhodococcus cercidiphylli sp. nov. is proposed, with YIM 65003(T) (=CCTCC AB 207160(T)=DSM 45141(T)) as the type strain. The 16S rRNA gene sequence of strain YIM 65003(T) has been deposited in GenBank under the accession number EU325542.  相似文献   

20.
A novel psychrotolerant, alkalitolerant bacterium, strain Ths, was isolated from a soil sample immersed in hot spring water containing hydrocarbons and grown on a chemically defined medium containing n-tetradecane as the sole carbon source. The isolate grew at 0 degrees C but not at temperatures higher than 45 degrees C; its optimum growth temperature was 27 degrees C. It grew in the pH range of 7-9. The strain utilized C(13)-C(30) n-alkane and fluorene at pH 9 and 4 degrees C. To our knowledge, this is the first report on the bacterium that utilizes a wide range of hydrocarbons at a high pH and a low temperature. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain Ths is closely related to genomic species 6 ATCC 17979 (99.1% similarity), genomic species BJ13/TU14 ATCC 17905 (97.8% similarity), genomic species 9 ATCC 9957 (97.6% similarity) belonging to the genus Acinetobacter and to Acinetobacter calcoaceticus JCM 6842(T) (97.5% similarity). DNA-DNA hybridization revealed that the isolate has 62, 25, 18 and 19% relatedness, respectively, to genomic species 6 ATCC 17979, genomic species BJ13/TU14 ATCC 17905, genomic species 9 ATCC 9957 and A. calcoaceticus, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号