首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Wang ZJ  Huang JQ  Huang YJ  Li Z  Zheng BS 《Planta》2012,236(2):613-621
Hickory (Carya cathayensis Sarg.) is an economically important woody plant in China, but its long juvenile phase delays yield. MicroRNAs (miRNAs) are critical regulators of genes and important for normal plant development and physiology, including flower development. We used Solexa technology to sequence two small RNA libraries from two floral differentiation stages in hickory to identify miRNAs related to flower development. We identified 39 conserved miRNA sequences from 114 loci belonging to 23 families as well as two novel and ten potential novel miRNAs belonging to nine families. Moreover, 35 conserved miRNA*s and two novel miRNA*s were detected. Twenty miRNA sequences from 49 loci belonging to 11 families were differentially expressed; all were up-regulated at the later stage of flower development in hickory. Quantitative real-time PCR of 12 conserved miRNA sequences, five novel miRNA families, and two novel miRNA*s validated that all were expressed during hickory flower development, and the expression patterns were similar to those detected with Solexa sequencing. Finally, a total of 146 targets of the novel and conserved miRNAs were predicted. This study identified a diverse set of miRNAs that were closely related to hickory flower development and that could help in plant floral induction.  相似文献   

6.
Zhao M  Tai H  Sun S  Zhang F  Xu Y  Li WX 《PloS one》2012,7(1):e29669
Although recent studies indicated that miRNAs regulate plant adaptive responses to nutrient deprivation, the functional significance of miRNAs in adaptive responses to nitrogen (N) limitation remains to be explored. To elucidate the molecular biology underlying N sensing/signaling in maize, we constructed four small RNA libraries and one degradome from maize seedlings exposed to N deficiency. We discovered a total of 99 absolutely new loci belonging to 47 miRNA families by small RNA deep sequencing and degradome sequencing, as well as 9 new loci were the paralogs of previously reported miR169, miR171, and miR398, significantly expanding the reported 150 high confidence genes within 26 miRNA families in maize. Bioinformatic and subsequent small RNA northern blot analysis identified eight miRNA families (five conserved and three newly identified) differentially expressed under the N-deficient condition. Predicted and degradome-validated targets of the newly identified miRNAs suggest their involvement in a broad range of cellular responses and metabolic processes. Because maize is not only an important crop but is also a genetic model for basic biological research, our research contributes to the understanding of the regulatory roles of miRNAs in plant adaption to N-deficiency stress.  相似文献   

7.
8.
Zhang Z  Lin H  Shen Y  Gao J  Xiang K  Liu L  Ding H  Yuan G  Lan H  Zhou S  Zhao M  Gao S  Rong T  Pan G 《Molecular biology reports》2012,39(8):8137-8146
MicroRNAs (miRNAs) are a class of small, non-coding regulatory RNAs that regulate gene expression by guiding target mRNA cleavage or translational inhibition in plants and animals. In this study, a small RNA library was constructed to identify conserved miRNAs as well as novel miRNAs in maize seedling roots under low level phosphorus stress. Twelve miRNAs were identified by high throughput sequencing of the library and subsequent analysis, two belong to conserved miRNA families (miRNA399b and miRNA156), and the remaining ten are novel and one of latter is conserved in gramineous species. Based on sequence homology, we predicted 125 potential target genes of these miRNAs and then expression patterns of 7 miRNAs were validated by semi-RT-PCR analysis. MiRNA399b, Zma-miR3, and their target genes (Zmpt1 and Zmpt2) were analyzed by real-time PCR. It is shown that both miRNA399b and Zma-miR3 are induced by low phosphorus stress and regulated by their target genes (Zmpt1 and Zmpt2). Moreover, Zma-miR3, regulated by two maize inorganic phosphate transporters as a newly identified miRNAs, would likely be directly involved in phosphate homeostasis, so was miRNA399b in Arabidopsis and rice. These results indicate that both conserved and maize-specific miRNAs play important roles in stress responses and other physiological processes correlated with phosphate starvation, regulated by their target genes. Identification of these differentially expressed miRNAs will facilitate us to uncover the molecular mechanisms underlying the progression of maize seedling roots development under low level phosphorus stress.  相似文献   

9.
MicroRNAs play critical roles in various biological and metabolic processes. The function of miRNAs has been widely studied in model plants such as Arabidopsis and rice. However, the number of identified miRNAs and related miRNA targets in peach (Prunus persica) is limited. To understand further the relationship between miRNAs and their target genes during tissue development in peach, a small RNA library and three degradome libraries were constructed from three tissues for deep sequencing. We identified 117 conserved miRNAs and 186 novel miRNA candidates in peach by deep sequencing and 19 conserved miRNAs and 13 novel miRNAs were further evaluated for their expression by RT-qPCR. The number of gene targets that were identified for 26 conserved miRNA families and 38 novel miRNA candidates, were 172 and 87, respectively. Some of the identified miRNA targets were abundantly represented as conserved miRNA targets in plant. However, some of them were first identified and showed important roles in peach development. Our study provides information concerning the regulatory network of miRNAs in peach and advances our understanding of miRNA functions during tissue development.  相似文献   

10.
11.
12.
13.
14.
15.
Cloning and characterization of microRNAs from Brassica napus   总被引:2,自引:0,他引:2  
A library containing approximately 40,000 small RNA sequences was constructed for Brassica napus. Analysis of 3025 sequences obtained from this library resulted in the identification of 11 conserved miRNA families, which were validated by secondary structure prediction using surrounding sequences in the Brassica genome. Two 21 nt small RNA sequences reside within the arm of a pre-miRNA like stem-loop structure, making them likely candidates for novel non-conserved miRNAs in B. napus. Most of the conserved miRNAs were expressed at similar levels in a F1 hybrid B. napus line and its four double haploid progeny that showed marked variations in phenotypes, but many were differentially expressed between B. napus and Arabidopsis. The miR169 family was expressed at high levels in young leaves and stems, but was undetectable in roots and mature leaves, suggesting that miR169 expression is developmentally regulated in B. napus.  相似文献   

16.
17.
Genome organization and characteristics of soybean microRNAs   总被引:3,自引:0,他引:3  
  相似文献   

18.
19.
MY Xu  Y Dong  QX Zhang  L Zhang  YZ Luo  J Sun  YL Fan  L Wang 《BMC genomics》2012,13(1):421
ABSTRACT: BACKGROUND: MicroRNAs (miRNAs) are endogenous regulators of a broad range of physiological processes and act by either degrading mRNA or blocking its translation. Oilseed rape (Brassica napus) is one of the most important crops in China, Europe and other Asian countries with publicly available expressed sequence tags (ESTs) and genomic survey sequence (GSS) databases, but little is known about its miRNAs and their targets. To date, only 46 miRNAs have been identified in B. napus. RESULTS: Forty-one conserved and 62 brassica-specific candidate B. napus miRNAs, including 20 miRNA* sequences, were identified using Solexa sequencing technology. Furthermore, 33 non-redundant mRNA targets of conserved brassica miRNAs and 19 new non-redundant mRNA targets of novel brassica-specific miRNAs were identified by genome-scale sequencing of mRNA degradome. CONCLUSIONS: This study describes large scale cloning and characterization of B. napus miRNAs and their potential targets, providing the foundation for further characterization of miRNA function in the regulation of diverse physiological processes in B. napus.  相似文献   

20.

Background

MicroRNAs (miRNAs) regulate numerous crucial abiotic stress processes in plants. However, information is limited on their involvement in cadmium (Cd) stress response and tolerance mechanisms in plants, including ramie (Boehmeria nivea L.) that produces a number of economic valuable as an important natural fibre crop and an ideal crop for Cd pollution remediation.

Results

Four small RNA libraries of Cd-stressed and non-stressed leaves and roots of ramie were constructed. Using small RNA-sequencing, 73 novel miRNAs were identified. Genome-wide expression analysis revealed that a set of miRNAs was differentially regulated in response to Cd stress. In silico target prediction identified 426 potential miRNA targets that include several uptake or transport factors for heavy metal ions. The reliability of small RNA sequencing and the relationship between the expression levels of miRNAs and their target genes were confirmed by quantitative PCR (q-PCR). We showed that the expression patterns of miRNAs obtained by q-PCR were consistent with those obtained from small RNA sequencing. Moreover, we demonstrated that the expression of six randomly selected target genes was inversely related to that of their corresponding miRNAs, indicating that the miRNAs regulate Cd stress response in ramie.

Conclusions

This study enriches the number of Cd-responsive miRNAs and lays a foundation for the elucidation of the miRNA-mediated regulatory mechanism in ramie during Cd stress.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号