首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Liang HW  Shen YL  Chen ZX  Xia Q 《生理学报》2002,54(5):431-434
在大鼠海马脑片上使用双电极在CA1区进行细胞外记录 ,观察低频刺激 (LFS)诱发同突触长时程抑制 (LTD)时场兴奋性突触后电位 (fEPSP)的斜率 (S EPSP)和群体锋电位 (PS)的幅值 (A PS)的变化。给予 90 0脉冲 1HzLFS后 ,S EPSP和A PS降低的幅度分别是 35 4± 5 3%和 6 8 0± 7 2 % ;而给予 4 5 0脉冲 1HzLFS后 ,S EPSP和A PS分别降低 14 3± 2 3%和 36 8± 6 7%。上述两组中A PS的变化率均显著大于S EPSP (P <0 0 1) ,而 90 0脉冲数组中两个指标的变化率均大于 4 5 0脉冲数组 (P <0 0 5 )。高Mg2 + (4mmol/L)使突触的传递活动减弱 ,但不影响LTD的诱发 ,在高Mg2 + 介质中 ,LFS引起的A PS变化率仍显著大于S EPSP (P <0 0 1)。结果表明 ,由LFS诱发同突触LTD的水平不仅与LFS的脉冲数有关 ,还与评价指标的选择有关  相似文献   

2.
液压打击损伤后海马CA1区神经元兴奋性变化的研究   总被引:4,自引:0,他引:4  
为考察脑损伤对海马CA1区锥体神经元电活动的影响并研究大黄素对神经元的超兴奋性和突触传递的作用,应用液压打击大鼠脑损伤模型和细胞外记录方法提取诱发的海马CA1区场兴奋性突触后电位(fPSP)和群峰电位(PS),进行相关的数据处理和分析。发现损伤侧比非损伤侧的fPSP斜率明显升高,PS波峰个教显著增加,而PS潜伏期明显减小;在灌流液中施加大黄素,CA1区诱发场电位明显减弱。研究结果表明:颅脑损伤可造成海马CA1区锥体神经元的迟发性过度兴奋;大黄素对神经元的兴奋性有抑制作用,可能对颅脑损伤后的中枢神经系统具有保护功能。  相似文献   

3.
本文旨在观察下行通路激活在脊髓运动神经元(motoneuron,MN)诱发兴奋性突触后电位(excitatory postsynaptic potential,EPSP)的长时程增强现象(long-term potentiation,LTP)之受体动力学性质。应用8~14日龄新生大鼠离体脊髓MN细胞内记录技术,观察同侧腹外侧索(ipsilateral ventrolateral funiculus,iVLF)电刺激诱发的iVLF-EPSP的变化,进行EPSP受体动力学分析。结果显示,EPSP的幅度、曲线下面积和最大上升斜率与刺激强度呈正相关(P0.05或P0.01);而EPSP表观受体动力学分析的参数中表观解离速率常数K2和表观平衡解离常数KT与刺激强度呈负相关(P0.01或P0.05)。给予iVLF强直刺激(100 Hz,50脉冲/串,波宽0.4~1.0 ms,共6串,串间隔10 s,10~100 V),在11个记录的MNs中有5个MNs的EPSP幅度增大到基础值的120%以上,且至少维持30 min,可以被判为iVLF-LTP,同时EPSP的曲线下面积和最大上升斜率也增大到基础值的120%以上。选择iVLF-LTP过程中的EPSP进行表观受体动力学分析,结果显示有3个MNs的K2和KT在强直刺激后10 min内减小到基础值的80%以下,后逐渐有所恢复。以上受体动力学分析结果提示,部分MNs的iVLF-LTP早期可能涉及突触后受体亲和力增强的机制。  相似文献   

4.
全身麻醉若操作不当可能造成致命的中枢神经系统损伤,因此其安全性受到广泛关注.为了揭示麻醉不断加深的过程中神经元活动的变化规律,本文研究了大鼠在乌拉坦(urethane)深度麻醉至脑死亡期间海马区神经元兴奋性和信号传导功能的变化.利用微电极阵列记录和电刺激技术,在海马CA1区胞体层分别记录Schaffer侧支上正向刺激和海马白质上反向刺激诱发的群峰电位(population spike,PS).以PS的幅值和潜伏期为指标,分析海马神经元活动的变化.结果表明,随着乌拉坦血药浓度的增加,PS幅值逐渐减小,潜伏期逐渐延长,意味着乌拉坦抑制了神经元的兴奋性以及轴突传导和突触传递.特别是这些变化存在明显的转折点(即突变),将整个衰减过程分成慢变和快变2个阶段.快变期的剧烈衰减迅速导致脑死亡.而且,引起突变的决定性因素可能是乌拉坦的血药浓度,而非麻醉时间的长短.但是,当乌拉坦注射速率较慢时,延长的慢变期仍然会使神经元功能的受损加重.这些研究结果为动物实验的麻醉操作和临床麻醉的安全应用提供了重要的信息.  相似文献   

5.
外侧隔—海马CA1通路电生理分析   总被引:1,自引:0,他引:1  
解夏平  王福庄 《生理学报》1991,43(2):113-119
电刺激外侧隔区可在海马 CA1区锥体细胞层记录到群锋电位,在 CA1辐射层顶树突记录到兴奋性突触后电位(EPSP)。侧脑室注射微量海人酸损毁海马 CA3-CA4区锥体细胞后,电刺激外侧隔区在 CA1顶树突不再诱发 EPSP,由此认为外侧隔-CA1顶树突的神经联系是通过同侧海马 CA3锥体细胞侧支实现的。但 CA3-CA4损毁后,电刺激外侧隔区在海马 CA1起层锥体细胞底树突仍可记录到 EPSP。这一在正常情况下被掩盖的外侧隔-CA1底树突神经联系及其来源尚有待探讨。  相似文献   

6.
尼古丁对学习记忆间接作用的研究鲜有报道。昆明小鼠母鼠受孕后随机分为对照组(CON)和尼古丁组(NIC)。CON组母鼠自由饮水,NIC组母鼠饮水中给予浓度为50μg/mL的尼古丁。子代小鼠60日龄时,进行Morris水迷宫实验,之后在体记录海马区穿通纤维通路(perforant pathway,PP)至齿状回(dentate gyrus,DG)的长时程增强(long-term potentiation,LTP)。结果显示,NIC组仔鼠的逃避潜伏期从第3天开始明显大于CON组,目标象限停留时间所占百分比和穿越平台次数均低于CON组,LTP群峰电位幅值和场兴奋性突触后电位斜率也都显著低于CON组。说明由母体摄入的尼古丁,可经胎盘和乳汁明显作用于其子代,导致子代学习记忆功能的明显损伤,其可能机制是因为海马神经元突触传递可塑性的效率显著降低。  相似文献   

7.
微波照射对大鼠在体海马诱发电位长时程增强的影响   总被引:7,自引:0,他引:7  
海马诱发电位长时程增强现象(Long- term potentiatio,LTP),常被用来研究与突触可塑性密切相关的学习与记忆过程的分子机制。为了研究微波照射对海马突触可塑性的影响,采用海马齿状回诱发电位的群峰电位幅度(the amplitude of population spikes ,PS amplitude)和群体兴奋性突触后电位的始终上升斜率(the initial slope of the population excitatory postsynaptic potentials,pEPSP slope)两个观察指标。观察10mW/cm^2,15mW/cm^2和25mW/cm^2三个强度,2450MHz微波照射对乌拦坦麻醉在大鼠在体海马齿状回诱发电位和LTP的影响。结果表明,每天1小时,连续7天的慢性连续型2450MHz微波照射阻碍麻醉大鼠在体海马齿状回LTP的产生,并使LTP的幅度减小。提示 微波照射造成学习记忆的损害,可能是通过阻碍海马LTP的产生来实现的。  相似文献   

8.
本研究旨在探讨α-氨基-3-羟基-5-甲基-4-异恶唑丙酸(AMPA)受体参与的出生后大鼠海马发育早期的电生理学特点。选择出生后0.5月龄、1月龄、2月龄和3月龄Wistar大鼠共计48只(每组各12只)。应用全细胞膜片钳技术及MED64平面微电极阵列技术检测海马CA1区锥体神经元的被动膜特性及AMPA受体参与的自发兴奋性突触后电流(spontaneous exctitatory postsynaptic current,sEPSC)和场兴奋性突触后电位(field excitatory postsynaptic potential,fEPSP)。结果显示,海马CA1区锥体神经元在出生后0.5~3月龄期间,在被动膜特性方面表现为:膜电容与静息膜电位无显著性变化;膜输入电阻与时间常数均显著下降。在主动膜特性方面,呈现出阶段性变化:0.5~1月龄期间,s EPSC的反应表现为:振幅显著升高,频率明显增大,上升时间及下降时间显著增加;1~3月龄期间,sEPSC的反应特性与0.5~1月龄期间相反。此外,0.5~3月龄期间,海马CA1区诱发出的f EPSP范围明显扩大,而幅值显著减小;各月龄海马CA1区诱发出的fEPSP幅值均可被AMPA受体竞争性拮抗剂6-氰基-7-硝基喹喔啉-2,3-二酮(CNQX)明显降低。以上结果提示,在出生后大鼠海马发育早期过程中,AMPA受体作为调节突触传递和突触联系的主要兴奋性受体,可以促进海马的发育及功能成熟。  相似文献   

9.
Ma B  Yi BD  Xing BR 《生理学报》1998,50(6):679-682
用单个方波电刺激牛蛙离体椎旁经节前纤维,细胞内记录节后B细胞快兴奋性突后电位,观察糖皮质激素对B细胞f-EPSP的快速抑制作用。结果发现,GC灌注3min,。B细胞f-EPSP的幅值减小,撤除GC后,EPSP的幅值恢复到对照水平。作用具有剂量信赖性。  相似文献   

10.
本文研究人参总皂甙在海马齿状回颗粒细胞层诱发LTP效应和促进大鼠记忆保持能力时,对海马神经元核仁组织者区和苔藓纤维末梢出芽的影响。给人参总皂甙第7天可显著提高群峰电位幅度。缩短PS起始和峰潜伏期,并可显著提高大鼠记忆保持能力,此时人参总皂甙可使海马CA3区锥体细胞和齿状回颗粒细胞Ag-NOR数较盐水组大鼠的平均提高66.17±2.32%和72.07±0.93%(P〈0.01)。同时还可使大鼠的海马  相似文献   

11.
Computer simulations of external current stimulations of dentate gyrus granule cells of rats with Status Epilepticus induced by pilocarpine and control rats were used to evaluate whether morphological differences alone between these cells have an impact on their electrophysiological behavior. The cell models were constructed using morphological information from tridimensional reconstructions with Neurolucida software. To evaluate the effect of morphology differences alone, ion channel conductances, densities and distributions over the dendritic trees of dentate gyrus granule cells were the same for all models. External simulated currents were injected in randomly chosen dendrites belonging to one of three different areas of dentate gyrus granule cell molecular layer: inner molecular layer, medial molecular layer and outer molecular layer. Somatic membrane potentials were recorded to determine firing frequencies and inter-spike intervals. The results show that morphologically altered granule cells from pilocarpine-induced epileptic rats are less excitable than control cells, especially when they are stimulated in the inner molecular layer, which is the target area for mossy fibers that sprout after pilocarpine-induced cell degeneration. This suggests that morphological alterations may act as a protective mechanism to allow dentate gyrus granule cells to cope with the increase of stimulation caused by mossy fiber sprouting.  相似文献   

12.
目的研究生长休止蛋白7(Gas7)在大鼠海马和齿状回不同发育阶段的表达。方法采用免疫组织化学方法观察Gas7在SD大鼠胚胎第18d(E18)、新生(P0)、生后第7d(P7)、P14、P21和成年海马和齿状回中的表达和分布。结果在大鼠脑海马和齿状回部位的冠状切片上,Gas7免疫反应阳性产物主要表达在海马的锥体细胞、齿状回的颗粒细胞和门区的多形层细胞。随着发育的进程,在海马,Gas7较早表达在CA3区,其次是CA2和CA1区;在齿状回,Gas7在外臂的表达早于内臂,在颗粒细胞层的表达是按先外层后内层的顺序。在围生期,Gas7在海马和齿状回各区的表达逐渐增强,至P14达到高峰,后逐渐降低,至P21其表达强度和分布趋于恒定至成年水平。结论 Gas7在大鼠海马和齿状回发育过程中的动态表达具有时间和空间上的特异性,提示Gas7可能参与了海马和齿状回形态形成和功能成熟的调控。  相似文献   

13.
The treatment of pregnant and lactating female rats with ethanol inhibits the proliferation of matrix cells in the lateral brain ventricles of fetuses and, during the early postnatal period, granule cells in the dentate gyrus and cells of the ventral horn of Ammon. A low proliferation rate leads to a decrease in the number of neurons forming the granule layer of the dentate gyrus and pyramidal neurons in the CA-1 field of the horn of Ammon.  相似文献   

14.
Liu N  He S  Yu X 《PloS one》2012,7(1):e30803
The dentate gyrus is the primary afferent into the hippocampal formation, with important functions in learning and memory. Granule cells, the principle neuronal type in the dentate gyrus, are mostly formed postnatally, in a process that continues into adulthood. External stimuli, including environmental enrichment, voluntary exercise and learning, have been shown to significantly accelerate the generation and maturation of dentate granule cells in adult rodents. Whether, and to what extent, such environmental stimuli regulate the development and maturation of dentate granule cells during early postnatal development is largely unknown. Furthermore, whether natural stimuli affect the synaptic properties of granule cells had been investigated neither in newborn neurons of the adult nor during early development. To examine the effect of natural sensory stimulation on the dentate gyrus, we reared newborn mice in an enriched environment (EE). Using immunohistochemistry, we showed that dentate granule cells from EE-reared mice exhibited earlier morphological maturation, manifested as faster peaking of doublecortin expression and elevated expression of mature neuronal markers (including NeuN, calbindin and MAP2) at the end of the second postnatal week. Also at the end of the second postnatal week, we found increased density of dendritic spines across the entire dentate gyrus, together with elevated levels of postsynaptic scaffold (post-synaptic density 95) and receptor proteins (GluR2 and GABA(A)Rγ2) of excitatory and inhibitory synapses. Furthermore, dentate granule cells of P14 EE-reared mice had lower input resistances and increased glutamatergic and GABAergic synaptic inputs. Together, our results demonstrate that EE-rearing promotes morphological and electrophysiological maturation of dentate granule cells, underscoring the importance of natural environmental stimulation on development of the dentate gyrus.  相似文献   

15.
In the guinea pig, EPSPs and population spikes were found to be generated in the apical dendrites of pyramidal neurons of middle and ventral hippocampus, in response to dorsal hippocampal commissure (PSD) stimulation, without any involvement of dentate gyrus granule cells of corresponding segments. These long-latency synaptic effects were evoked only by repetitive (0.2-2.0 c/sec) PSD stimulation and showed increasing latency in ventral direction. A cross section between dorsal and middle hippocampus was followed by the disappearance of the responses ventrally to the section. The results show that the postsynaptic discharge of dorsal pyramidal neurons is transferred to more ventral hippocampal segments by an intrahippocampal longitudinal association system.  相似文献   

16.
Memory is lost by the increased influx of extracellular Zn2+ into neurons. It is possible that intracellular Zn2+ dynamics is modified even at non-zincergic medial perforant pathway-dentate granule cell synapses along with aging and that vulnerability to the modification is linked to age-related cognitive decline. To examine these possibilities, vulnerability of long-term potentiation (LTP) maintenance, which underlies memory retention, to modification of synaptic Zn2+ dynamics was compared between young and aged rats. The influx of extracellular Zn2+ into dentate granule cells was increased in aged rats after injection of high K+ into the dentate gyrus, but not in young rats. This increase impaired maintained LTP in aged rats. However, the impairment was rescued by co-injection of CaEDTA, an extracellular Zn2+ chelator, or CNQX, an AMPA receptor antagonist, which suppressed the Zn2+ influx. Maintained LTP was also impaired in aged rats after injection of ZnAF-2DA into the dentate gyrus that chelates intracellular Zn2+, but not in young rats. Interestingly, the capacity of chelating intracellular Zn2+ with intracellular ZnAF-2 was almost lost in the aged dentate gyrus 2 h after injection of ZnAF-2DA into the dentate gyrus, suggesting that intracellular Zn2+-buffering is weakened in the aged dentate gyrus, compared to the young dentate gyrus. In the dentate gyrus of aged rats, maintained LTP is more vulnerable to modification of intracellular Zn2+ dynamics than in young rats, probably due to weakened intracellular Zn2+-buffering.  相似文献   

17.
The chemokine SDF1 regulates migration of dentate granule cells   总被引:11,自引:0,他引:11  
The dentate gyrus is the primary afferent pathway into the hippocampus, but there is little information concerning the molecular influences that govern its formation. In particular, the control of migration and cell positioning of dentate granule cells is not clear. We have characterized more fully the timing and route of granule cell migration during embryogenesis using in utero retroviral injections. Using this information, we developed an in vitro assay that faithfully recapitulates important events in dentate gyrus morphogenesis. In searching for candidate ligands that may regulate dentate granule cell migration, we found that SDF1, a chemokine that regulates cerebellar and leukocyte migration, and its receptor CXCR4 are expressed in patterns that suggest a role in dentate granule cell migration. Furthermore, CXCR4 mutant mice have a defect in granule cell position. Ectopic expression of SDF1 in our explant assay showed that it directly regulates dentate granule cell migration. Our study shows that a chemokine is necessary for the normal development of the dentate gyrus, a forebrain structure crucial for learning and memory.  相似文献   

18.
In the hippocampus, neurons and fiber projections are strictly organized in layers and supplied with oxygen via a vascular network that also develops layer-specific characteristics in wild-type mice, as shown in the present study for the first time in a quantitative manner. By contrast, in the reeler mutant, well known for its neuronal migration defects due to the lack of the extracellular matrix protein reelin, emerging layer-specific characteristics of the vascular pattern were found to be remodeled during development of the dentate gyrus. Remarkably, in the first postnatal week, when a granule cell layer was still discernable in the reeler dentate gyrus, also the reeler vascular pattern resembled wild type. Thus, at postnatal day 6, unbranched microvessels traversed the granule cell layer and bifurcated when reaching the subgranular zone. Only after the first postnatal week vascular network remodeling in the reeler dentate gyrus became apparent, when the proportion of dispersed granule cells increased. Hence, vessel bifurcation frequency decreased in the maturing reeler dentate gyrus, but increased in wild type, resulting in significant differences (approx. 100%; p < 0.01) between adult wild type and reeler. Moreover, layer-specific vessel bifurcation frequencies disappeared in the maturing reeler dentate gyrus. Finally, a wild type-like vascular pattern was also found in the dentate gyrus of mice deficient for the reelin receptor very low density lipoprotein receptor (VLDLR), precluding a requirement of VLDLR for normal vascular pattern formation in the dentate gyrus. In sum, our findings show that vascular network remodeling in the reeler dentate gyrus is closely linked to the progression of granule cell dispersion.  相似文献   

19.

Background

Theta rhythm in the hippocampal formation is a main feature of exploratory behaviour and is believed to enable the encoding of new spatial information and the modification of synaptic weights. Cyclic changes of dentate gyrus excitability during theta rhythm are related to its function, but whether theta epochs per se are able to alter network properties of dentate gyrus for long time-periods is still poorly understood.

Methodology/Principal Findings

We used low-frequency stimulation protocols that amplify the power of endogenous theta oscillations, in order to estimate the plasticity effect of endogenous theta oscillations on a population level. We found that stimulation-induced augmentation of the theta rhythm is linked to a subsequent increase of neuronal excitability and decrease of the synaptic response. This EPSP-to-Spike uncoupling is related to an increased postsynaptic spiking on the positive phases of theta frequency oscillations. Parallel increase of the field EPSP slope and the population spike occurs only after concurrent pre- and postsynaptic activation. Furthermore, we observed that long-term potentiation (>24 h) occurs in the dentate gyrus of freely behaving adult rats after phasic activity of entorhinal afferents in the theta-frequency range. This plasticity is proportional to the field bursting activity of granule cells during the stimulation, and may comprise a key step in spatial information transfer. Long-term potentiation of the synaptic component occurs only when the afferent stimulus precedes the evoked population burst, and is input-specific.

Conclusions/Significance

Our data confirm the role of the dentate gyrus in filtering information to the subsequent network during the activated state of the hippocampus.  相似文献   

20.
Neurogenesis in the dentate gyrus occurs throughout life. We observed regional differences in neurogenesis in the dentate gyrus of adult rats following transient forebrain ischemia. Nine days after ischemic-reperfusion or sham manipulation, rats were given 5-bromo-2'-deoxyuridine-5'-monophosphate (BrdU), a marker for dividing cells. They were killed 1 or 28 days later to distinguish between cell proliferation and survival. Neurogenesis was evaluated by BrdU incorporation as well by identifying neuronal and glial markers in six regions of the dentate gyrus: rostral, middle and caudal along the rostrocaudal axis, each further divided into suprapyramidal and infrapyramidal blade subregions. In control rats BrdU-positive cells in the rostral subregions were significantly lower in the suprapyramidal than in the infrapyramidal blades at both 1 and 28 days after BrdU injection. One day after injection, BrdU-positive cells had increased more in five of the subregions in the ischemic rats than in the controls, the exception being the suprapyramidal blade of the rostral subregion. At 28 days after BrdU injection, numbers of BrdU-positive cells were higher in four subregions in the ischemic group, the exceptions being the rostral suprapyramidal and middle infrapyramidal blades. At 28 days after BrdU injection, the percentages of BrdU positive cells that expressed a neuronal marker (NeuN) were the same in the dentate granule cell layers of ischemic and control rats. Our data thus demonstrate regional differences in enhanced neurogenesis in the dentate gyrus of adult rats after transient forebrain ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号