首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Natural killer (NK) cell receptors belong to two unrelated, but functionally analogous gene families: the immunoglobulin superfamily, situated in the leukocyte receptor complex (LRC) and the C-type lectin superfamily, located in the natural killer complex (NKC). Here, we describe the largest NK receptor gene expansion seen to date. We identified 213 putative C-type lectin NK receptor homologs in the genome of the platypus. Many have arisen as the result of a lineage-specific expansion. Orthologs of OLR1, CD69, KLRE, CLEC12B, and CLEC16p genes were also identified. The NKC is split into at least two regions of the genome: 34 genes map to chromosome 7, two map to a small autosome, and the remainder are unanchored in the current genome assembly. No NK receptor genes from the LRC were identified. The massive C-type lectin expansion and lack of Ig-domain-containing NK receptors represents the most extreme polarization of NK receptors found to date. We have used this new data from platypus to trace the possible evolutionary history of the NK receptor clusters. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Natural Killer Gene Complex (NKC)–encoded C-type lectin-like receptors (CTLRs) are expressed on various immune cells including T cells, NK cells and myeloid cells and thereby contribute to the orchestration of cellular immune responses. Some NKC-encoded CTLRs are grouped into the C-type lectin family 2 (CLEC2 family) and interact with genetically linked CTLRs of the NKRP1 family. While many CLEC2 family members are expressed by hematopoietic cells (e.g. CD69 (CLEC2C)), others such as the keratinocyte-associated KACL (CLEC2A) are specifically expressed by other tissues. Here we provide the first characterization of the orphan gene CLEC2L. In contrast to other CLEC2 family members, CLEC2L is conserved among mammals and located outside of the NKC. We show that CLEC2L-encoded CTLRs are expressed as non-glycosylated, disulfide-linked homodimers at the cell surface. CLEC2L expression is fairly tissue-restricted with a predominant expression in the brain. Thus CLEC2L-encoded CTLRs were designated BACL (brain-associated C-type lectin). Combining in situ hybridization and immunohistochemistry, we show that BACL is expressed by neurons in the CNS, with a pronounced expression by Purkinje cells. Notably, the CLEC2L locus is adjacent to another orphan CTLR gene (KLRG2), but reporter cell assays did neither indicate interaction of BACL with the KLRG2 ectodomain nor with human NK cell lines or lymphocytes. Along these lines, growth of BACL-expressing tumor cell lines in immunocompetent mice did not provide evidence for an immune-related function of BACL. Altogether, the CLEC2L gene encodes a homodimeric cell surface CTLR that stands out among CLEC2 family members by its conservation in mammals, its biochemical properties and the predominant expression in the brain. Future studies will have to reveal insights into the functional relevance of BACL in the context of its neuronal expression.  相似文献   

3.
In mammals, natural killer (NK) cell C-type lectin receptors were encoded in a gene cluster called natural killer gene complex (NKC). The NKC is not reported in chicken yet. Instead, NK receptor genes were found in the major histocompatibility complex. In this study, two novel chicken C-type lectin-like receptor genes were identified in a region on chromosome 1 that is syntenic to mammalian NKC region. The chromosomal locations were validated with fluorescent in situ hybridization. Based on 3D structure modeling, sequence homology, chromosomal location, and phlylogenetic analysis, one receptor is the orthologue of mammalian cluster of differentiation 69 (CD69), and the other is highly homologous to CD94 and NKG2. Like CD94/NKG2 gene found in teleostean fishes, chicken CD94/NKG2 has the features of both human CD94 and NKG2A. Unlike mammalian NKC, these two chicken C-type lectin receptors are not closely linked but separated by 42 million base pairs according to the chicken draft genome sequence. The arrangement of several other genes that are located outside the mammalian NKC is conserved among chicken, human, and mouse. The chicken NK C-type lectin-like receptors in the NKC syntenic region indicate that this chromosomal region existed before the divergence between mammals and aves. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. The nucleotide sequences have been submitted to the GenBank nucleotide sequence database under the accession number chicken CD69 (DQ156495), CD94/NKG2 (DQ156496), and CD94/NKG2 variant (DQ241793).  相似文献   

4.
Natural killer (NK) cells are circulating lymphocytes that function in innate immunity and placental reproduction. Regulating both development and function of NK cells is an array of variable and conserved receptors that interact with major histocompatibility complex (MHC) class I molecules. Families of lectin‐like and immunoglobulin‐like receptors are determined by genes in the natural killer complex (NKC) and leukocyte receptor complex (LRC), respectively. As a consequence of the strong, varying pressures on the immune and reproductive systems, NK cell receptors and their MHC class I ligands evolve rapidly, are highly diverse and exhibit dramatic species‐specific differences. The variable, polymorphic family of killer cell immunoglobulin‐like receptors (KIR) that regulate human NK cell development and function arose recently, from a single‐copy gene during the evolution of simian primates. Our studies of KIR and MHC class I genes in representative species show how these two unlinked but functionally intertwined genetic complexes have co‐evolved. In humans, combinations of KIR and HLA class I factors are associated with infectious diseases, including HIV/AIDS, autoimmunity, reproductive success and the outcome of therapeutic transplantation. The extraordinary, and unanticipated, divergence of human NK cell receptors and MHC class I ligands from their mouse counterparts can in part explain the difficulties experienced in finding informative mouse models for human diseases. Non‐human primate models have far greater potential, but to realize their promise will first require more complete definition of the genetics and function of KIR and MHC variation in non‐human primate species, at a level comparable to that achieved for the human species.  相似文献   

5.
6.
Nikolaidis N  Klein J  Nei M 《Immunogenetics》2005,57(1-2):151-157
In mammals many natural killer (NK) cell receptors, encoded by the leukocyte receptor complex (LRC), regulate the cytotoxic activity of NK cells and provide protection against virus-infected and tumor cells. To investigate the origin of the Ig-like domains encoded by the LRC genes, a subset of C2-type Ig-like domain sequences was compiled from mammals, birds, amphibians, and fish. Phylogenetic analysis of these sequences generated seven monophyletic groups in mammals (MI, MII, and FcI, FcIIa, FcIIb, FcIII, FcIV), two in chicken (CI, CII), four in frog (FI–FIV), and five in zebrafish (ZI–ZV). The analysis of the major groups supported the following order of divergence: ZI [or a common ancestor of ZI and F (a cluster composed of the FcIII and FIII groups)], F, CII (or a common ancestor of CII and MII), MII, and MI–CI. The relationships of the remaining groups were unclear, since the phylogenetic positions of these groups were not supported by high bootstrap values. Two main conclusions can be drawn from this analysis. First, the two groups of mammalian LRC sequences must diverged before the separation of the avian and mammalian lineages. Second, the mammalian LRC sequences are most closely related to the Fc receptor sequences and these two groups diverged before the separation of birds and mammals.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

7.
8.
Brown GK  Kreiss A  Lyons AB  Woods GM 《PloS one》2011,6(9):e24475
The Tasmanian devil (Sarcophilus harrisii), the world's largest marsupial carnivore, is under threat of extinction following the emergence of an infectious cancer. Devil facial tumour disease (DFTD) is spread between Tasmanian devils during biting. The disease is consistently fatal and devils succumb without developing a protective immune response. The aim of this study was to determine if Tasmanian devils were capable of forming cytotoxic antitumour responses and develop antibodies against DFTD cells and foreign tumour cells. The two Tasmanian devils immunised with irradiated DFTD cells did not form cytotoxic or humoral responses against DFTD cells, even after multiple immunisations. However, following immunisation with xenogenic K562 cells, devils did produce cytotoxic responses and antibodies against this foreign tumour cell line. The cytotoxicity appeared to occur through the activity of natural killer (NK) cells in an antibody dependent manner. Classical NK cell responses, such as innate killing of DFTD and foreign cancer cells, were not observed. Cells with an NK-like phenotype comprised approximately 4 percent of peripheral blood mononuclear cells. The results of this study suggest that Tasmanian devils have NK cells with functional cytotoxic pathways. Although devil NK cells do not directly recognise DFTD cancer cells, the development of antibody dependent cell-mediated cytotoxicity presents a potential pathway to induce cytotoxic responses against the disease. These findings have positive implications for future DFTD vaccine research.  相似文献   

9.
Populations of Australia’s largest terrestrial marsupial carnivore, the Tasmanian devil (Sarcophilus harrisii), are rapidly declining in the wild due to Tasmanian Devil Facial Tumour Disease (TDFTD). One tool which can reduce the loss of genetic diversity is genome resource banking. This study examines the application of an oocyte vitrification protocol, initially developed in a model marsupial carnivore, to the endangered Tasmanian devil. Ovarian tissue was transported to the laboratory on ice from Tasmania which took up to 48 h. Individual granulosa oocyte complexes (GOC) were isolated enzymatically and the viability of oocytes from primary GOC was assessed immediately following isolation or after exposure to cold shock, vitrification and thawing media without exposure to liquid nitrogen or the full vitrification and thawing process. There was no decline in oocyte viability following cold shock or exposure to the vitrification and thawing media. Following the full vitrification and thawing process there was a decline in oocyte viability (χ2 = 20.0, P < 0.001) but approximately 70% of oocytes remained viable. This study provides further evidence that oocyte vitrification is a promising strategy for genome resource banking in carnivorous marsupials and suggests that it should be considered in conservation plans for the survival of the iconic Tasmanian devil.  相似文献   

10.
11.
Threatened by devil facial tumour disease, the Tasmanian devil (Sarcophilus harrisii), a carnivorous marsupial confined to Tasmania, Australia, is the subject of conservation management under the Save the Tasmanian Devil Program. Conservation actions such as captive breeding and translocation may impact upon parasite ecology, presenting risk of increased disease through stress and impaired immunity, and by exposing hosts to parasites to which they are immunologically naïve. Given the importance of parasites to ecosystem function, it has been argued from a biodiversity perspective that parasites should be conserved in their own right. In this review we describe current knowledge, and limitations in our knowledge, of Tasmanian devil parasites. We then discuss the potential for changes in host–parasite interactions as a result of host-population decline and conservation management, both generally and with examples from the Tasmanian devil. The review closes with a recommendation for a systematic evaluation of parasites in captive and wild devils to aid conservation of this host–parasite system in its entirety.  相似文献   

12.
Human killer immunoglobulin-like receptors (KIR) are expressed on natural killer (NK) cells and are involved in their immunoreactivity. While KIR with a long cytoplasmic tail deliver an inhibitory signal when bound to their respective major histocompatibility complex class I ligands, KIR with a short cytoplasmic tail can activate NK responses. The expansion of the KIR gene family originally appeared to be a phenomenon restricted to primates (human, apes, and monkeys) in comparison to rodents, which via convergent evolution have numerous C-type lectin-like Ly49 molecules that function analogously. Further studies have shown that multiple KIR are also present in cow and horse. In this study, we have identified by comparative genomics the first and possibly only KIR gene, named KIR2DL1, in the domesticated pig (Sus scrofa) allowing further evolutionary comparisons to be made. It encodes a protein with two extracellular immunoglobulin domains (D0 + D2), and a long cytoplasmic tail containing two inhibitory motifs. We have mapped the pig KIR2DL1 gene to chromosome 6q. Flanked by LILRa, LILRb, and LILRc, members of the leukocyte immunoglobulin-like receptor (LILR) family, on the centromeric end, and FCAR, NCR1, NALP7, NALP2, and GP6 on the telomeric end, pig demonstrates conservation of synteny with the human leukocyte receptor complex (LRC). Both the porcine KIR and LILR genes have diverged sufficiently to no longer be clearly orthologous with known human LRC family members.  相似文献   

13.

Background

The major histocompatibility complex (MHC) is the most important genomic region that contributes to the risk of graft versus host disease (GVHD) after haematopoietic stem cell transplantation. Matching of MHC class I and II genes is essential for the success of transplantation. However, the MHC contains additional genes that also contribute to the risk of developing acute GVHD. It is difficult to identify these genes by genetic association studies alone due to linkage disequilibrium in this region. Therefore, we aimed to identify MHC genes and other genes involved in the pathophysiology of GVHD by mRNA expression profiling.

Methodology/Principal Findings

To reduce the complexity of the task, we used genetically well-defined rat inbred strains and a rat skin explant assay, an in-vitro-model of the graft versus host reaction (GVHR), to analyze the expression of MHC, natural killer complex (NKC), and other genes in cutaneous GVHR. We observed a statistically significant and strong up or down regulation of 11 MHC, 6 NKC, and 168 genes encoded in other genomic regions, i.e. 4.9%, 14.0%, and 2.6% of the tested genes respectively. The regulation of 7 selected MHC and 3 NKC genes was confirmed by quantitative real-time PCR and in independent skin explant assays. In addition, similar regulations of most of the selected genes were observed in GVHD-affected skin lesions of transplanted rats and in human skin explant assays.

Conclusions/Significance

We identified rat and human MHC and NKC genes that are regulated during GVHR in skin explant assays and could therefore serve as biomarkers for GVHD. Several of the respective human genes, including HLA-DMB, C2, AIF1, SPR1, UBD, and OLR1, are polymorphic. These candidates may therefore contribute to the genetic risk of GVHD in patients.  相似文献   

14.
Natural killer (NK) cells play important roles in controlling tumor cells and against a range of infectious organisms. Recent studies of mouse NK cell surface receptors, which may be involved in the specificity of NK cells, have shown that many of these molecules are encoded by theLy49andLy55(Nkrp1) multigene families that map to distal mouse chromosome 6. Also mapping to this NK cell gene complex (NKC) is the resistance locus,Cmv1,which is involved in genetically determined resistance to murine cytomegalovirus (MCMV). The aim of this study was to localizeCmv1more precisely in relation to other NKC loci by generating a high-resolution genetic map of the region. We have analyzed 1250 backcross mice comprising panels of 700 (BALB/c × C57BL/6J)F1× BALB/c and 550 (A/J × C57BL/6J)F1× A/J progeny. A total of 25 polymorphic genes or microsatellite markers were analyzed over a region of 10 map units fromD6Mit134toD6Mit59.TheCmv1phenotypes of mice recombinant in this interval were tested by infection with MCMV. The results obtained indicate that the functionally important NKC region is a tightly linked cluster of loci spanning at least 0.4 map units. Furthermore,Cmv1maps distal to, but very closely linked to, theLy49multigene family (<0.2 map units), suggesting that MCMV resistance may be conferred by MHC class I-specific NK cell receptors.  相似文献   

15.
16.

Background

Cytokines are small proteins that regulate immunity in vertebrate species. Marsupial and eutherian mammals last shared a common ancestor more than 180 million years ago, so it is not surprising that attempts to isolate many key marsupial cytokines using traditional laboratory techniques have been unsuccessful. This paucity of molecular data has led some authors to suggest that the marsupial immune system is 'primitive' and not on par with the sophisticated immune system of eutherian (placental) mammals.

Results

The sequencing of the first marsupial genome has allowed us to identify highly divergent immune genes. We used gene prediction methods that incorporate the identification of gene location using BLAST, SYNTENY + BLAST and HMMER to identify 23 key marsupial immune genes, including IFN-γ, IL-2, IL-4, IL-6, IL-12 and IL-13, in the genome of the grey short-tailed opossum (Monodelphis domestica). Many of these genes were not predicted in the publicly available automated annotations.

Conclusion

The power of this approach was demonstrated by the identification of orthologous cytokines between marsupials and eutherians that share only 30% identity at the amino acid level. Furthermore, the presence of key immunological genes suggests that marsupials do indeed possess a sophisticated immune system, whose function may parallel that of eutherian mammals.  相似文献   

17.
The Tasmanian devil (Sarcophilus harrisii) is currently threatened by an emerging wildlife disease, devil facial tumour disease. The disease is decreasing devil numbers dramatically and may lead to the extinction of the species. At present, nothing is known about the immune genes or basic immunology of the devil. In this study, we report the construction of the first genetic library for the Tasmanian devil, a spleen cDNA library, and the isolation of full-length MHC Class I and Class II genes. We describe six unique Class II beta chain sequences from at least three loci, which belong to the marsupial Class II DA gene family. We have isolated 13 unique devil Class I sequences, representing at least seven Class I loci, two of which are most likely non-classical genes. The MHC Class I sequences from the devil have little heterogeneity, indicating recent divergence. The MHC genes described here are most likely involved in antigen presentation and are an important first step for studying MHC diversity and immune response in the devil.  相似文献   

18.
Many receptors on natural killer (NK) cells recognize major histocompatibility complex class I molecules in order to monitor unhealthy tissues, such as cells infected with viruses, and some tumors. Genes encoding families of NK receptors and related sequences are organized into two main clusters in humans: the natural killer complex on Chromosome 12p13.1, which encodes C-type lectin molecules, and the leukocyte receptor complex on Chromosome 19q13.4, which encodes immunoglobulin superfamily molecules. The composition of these gene clusters differs markedly between closely related species, providing evidence for rapid, lineage-specific expansions or contractions of sets of loci. The choice of NK receptor genes is polarized in the two species most studied, mouse and human. In mouse, the C-type lectin-related Ly49 gene family predominates. Conversely, the single Ly49 sequence is a pseudogene in humans, and the immunoglobulin superfamily KIR gene family is extensive. These different gene sets encode proteins that are comparable in function and genetic diversity, even though they have undergone species-specific expansions. Understanding the biological significance of this curious situation may be aided by studying which NK receptor genes are used in other vertebrates, especially in relation to species-specific differences in genes for major histocompatibility complex class I molecules.  相似文献   

19.
Novel immune-type receptors (NITRs) are encoded by large multi-gene families and share structural and signaling similarities to mammalian natural killer receptors (NKRs). NITRs have been identified in multiple bony fish species, including zebrafish, and may be restricted to this large taxonomic group. Thirty-nine NITR genes that can be classified into 14 families are encoded on zebrafish chromosomes 7 and 14. Herein, we demonstrate the expression of multiple NITR genes in the zebrafish ovary and during embryogenesis. All 14 families of zebrafish NITRs are expressed in hematopoietic kidney, spleen and intestine as are immunoglobulin and T cell antigen receptors. Furthermore, all 14 families of NITRs are shown to be expressed in the lymphocyte lineage, but not in the myeloid lineage, consistent with the hypothesis that NITRs function as NKRs. Sequence analyses of NITR amplicons identify known alleles and reveal additional alleles within the nitr1, nitr2, nitr3, and nitr5 families, reflecting the recent evolution of this gene family.  相似文献   

20.
The Tasmanian devil (Sarcophilius harrisii) is the largest living marsupial carnivore left on Earth. In this paper we report the results of the first thorough characterization of the keratin fibres comprising the Tasmanian devil pelage. The fibre's morphology, structure, composition and surface have been investigated. The results have been compared with those of a number of other mammalian species including carnivores and herbivores. The fibres structure was found to be consistent with that expected for a keratin fibre. From the results of the bound lipid analysis it can be concluded that the Tasmanian devil is a typical mammal in which the 21‐carbon atom anteiso branched fatty acid is the predominant bound fatty acid. This is consistent with the Tasmanian devil's position in the mammalian phylogenetic tree. The amino acid analysis places the devil in line with other carnivores. The high cystine and proline content may correlate with the Tasmanian devil's diet which is rich in muscle and collagen proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号