首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.

Background

Major histocompatibility complex (MHC) class I genes are found in the genomes of all jawed vertebrates. The evolution of this gene family is closely tied to the evolution of the vertebrate genome. Family members are frequently found in four paralogous regions, which were formed in two rounds of genome duplication in the early vertebrates, but in some species class Is have been subject to additional duplication or translocation, creating additional clusters. The gene family is traditionally grouped into two subtypes: classical MHC class I genes that are usually MHC-linked, highly polymorphic, expressed in a broad range of tissues and present endogenously-derived peptides to cytotoxic T-cells; and non-classical MHC class I genes generally have lower polymorphism, may have tissue-specific expression and have evolved to perform immune-related or non-immune functions. As immune genes can evolve rapidly and are subject to different selection pressure, we hypothesised that there may be divergent, as yet unannotated or uncharacterised class I genes.

Results

Application of a novel method of sensitive genome searching of available vertebrate genome sequences revealed a new, extensive sub-family of divergent MHC class I genes, denoted as UT, which has not previously been characterized. These class I genes are found in both American and Australian marsupials, and in monotremes, at an evolutionary chromosomal breakpoint, but are not present in non-mammalian genomes and have been lost from the eutherian lineage. We show that UT family members are expressed in the thymus of the gray short-tailed opossum and in other immune tissues of several Australian marsupials. Structural homology modelling shows that the proteins encoded by this family are predicted to have an open, though short, antigen-binding groove.

Conclusions

We have identified a novel sub-family of putatively non-classical MHC class I genes that are specific to marsupials and monotremes. This family was present in the ancestral mammal and is found in extant marsupials and monotremes, but has been lost from the eutherian lineage. The function of this family is as yet unknown, however, their predicted structure may be consistent with presentation of antigens to T-cells.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1745-4) contains supplementary material, which is available to authorized users.  相似文献   

2.

Background  

Genomic imprinting occurs in both marsupial and eutherian mammals. The CDKN1C and IGF2 genes are both imprinted and syntenic in the mouse and human, but in marsupials only IGF2 is imprinted. This study examines the evolution of features that, in eutherians, regulate CDKN1C imprinting.  相似文献   

3.
4.
5.

Background

All jawed-vertebrates have four T cell receptor (TCR) chains: alpha (TRA), beta (TRB), gamma (TRG) and delta (TRD). Marsupials appear unique by having an additional TCR: mu (TRM). The evolutionary origin of TRM and its relationship to other TCR remain obscure, and is confounded by previous results that support TRM being a hybrid between a TCR and immunoglobulin locus. The availability of the first marsupial genome sequence allows investigation of these evolutionary relationships.

Results

The organization of the conventional TCR loci, encoding the TRA, TRB, TRG and TRD chains, in the opossumMonodelphis domesticaare highly conserved with and of similar complexity to that of eutherians (placental mammals). There is a high degree of conserved synteny in the genomic regions encoding the conventional TCR across mammals and birds. In contrast the chromosomal region containing TRM is not well conserved across mammals. None of the conventional TCR loci contain variable region gene segments with homology to those found in TRM; rather TRM variable genes are most similar to that of immunoglobulin heavy chain genes.

Conclusion

Complete genomic analyses of the opossum TCR loci continue to support an origin of TRM as a hybrid between a TCR and immunoglobulin locus. None of the conventional TCR loci contain evidence that such a recombination event occurred, rather they demonstrate a high degree of stability across distantly related mammals. TRM, therefore, appears to be derived from receptor genes no longer extant in placental mammals. These analyses provide the first genomic scale structural detail of marsupial TCR genes, a lineage of mammals used as models of early development and human disease.  相似文献   

6.
Within the mammalian immune system, natural killer (NK) cells contribute to the first line of defence against infectious agents and tumours. Their activity is regulated, in part, by cell surface NK cell receptors. NK receptors can be divided into two unrelated, but functionally analogous superfamilies based on the structure of their extracellular ligand-binding domains. Receptors belonging to the C-type lectin superfamily are predominantly encoded in the natural killer complex (NKC), while receptors belonging to the immunoglobulin superfamily are predominantly encoded in the leukocyte receptor complex (LRC). Natural killer cell receptors are emerging as a rapidly evolving gene family which can display significant intra- and interspecific variation. To date, most studies have focused on eutherian mammals, with significantly less known about the evolution of these receptors in marsupials. Here, we describe the identification of 43 immunoglobulin domain-containing LRC genes in the genome of the Tasmanian devil (Sarcophilus harrisii), the largest remaining marsupial carnivore and only the second marsupial species to be studied. We also identify orthologs of NKC genes KLRK1, CD69, CLEC4E, CLEC1B, CLEC1A and an ortholog of an opossum NKC receptor. Characterisation of these regions in a second, distantly related marsupial provides new insights into the dynamic evolutionary histories of these receptors in mammals. Understanding the functional role of these genes is also important for the development of therapeutic agents against Devil Facial Tumour Disease, a contagious cancer that threatens the Tasmanian devil with extinction.  相似文献   

7.
The amino acid sequences of the -lactalbumins of the echidna, Tachyglossus aculeatus, and the platypus, Ornithorhynchus anatinus, were compared with each other and with those of 13 eutherian and 3 marsupial species. Phylogenetic parsimony analyses, in which selected mammalian lysozymes were used as outgroups, yielded trees whose consensus indicated that the two monotremes are sister taxa to marsupials and eutherians and that the latter two clades are each other's closest relatives. The data do not support the notion of a Marsupionta (monotreme–marsupial) clade. Pairwise comparison between the -lactalbumins yielded maximum-likelihood distances from which divergence dates were estimated on the basis of three calibration points. The distance data support the view that the echidna and platypus lineages diverged from their last common ancestor at least 50 to 57 Ma (million years ago) and that monotremes diverged from marsupials and eutherian mammals about 163 to 186 Ma.  相似文献   

8.
In humans and mice, there are 11 genes derived from sushi-ichi related retrotransposons, some of which are known to play essential roles in placental development. Interestingly, this family of retrotransposons was thought to exist only in eutherian mammals, indicating their significant contributions to the eutherian evolution, but at least one, PEG10, is conserved between marsupials and eutherians. Here we report a novel sushi-ichi retrotransposon-derived gene, SIRH12, in the tammar wallaby, an Australian marsupial species of the kangaroo family. SIRH12 encodes a protein highly homologous to the sushi-ichi retrotransposon Gag protein in the tammar wallaby, while SIRH12 in the South American short-tailed grey opossum is a pseudogene degenerated by accumulation of multiple nonsense mutations. This suggests that SIRH12 retrotransposition occurred only in the marsupial lineage but acquired and retained some as yet unidentified novel function, at least in the lineage of the tammar wallaby.  相似文献   

9.
10.

Background

We describe new cranial and post-cranial marsupial fossils from the early Eocene Tingamarra Local Fauna in Australia and refer them to Djarthia murgonensis, which was previously known only from fragmentary dental remains.

Methodology/Principal Findings

The new material indicates that Djarthia is a member of Australidelphia, a pan-Gondwanan clade comprising all extant Australian marsupials together with the South American microbiotheres. Djarthia is therefore the oldest known crown-group marsupial anywhere in the world that is represented by dental, cranial and post-cranial remains, and the oldest known Australian marsupial by 30 million years. It is also the most plesiomorphic known australidelphian, and phylogenetic analyses place it outside all other Australian marsupials.

Conclusions/Significance

As the most plesiomorphic and oldest unequivocal australidelphian, Djarthia may approximate the ancestral morphotype of the Australian marsupial radiation and suggests that the South American microbiotheres may be the result of back-dispersal from eastern Gondwana, which is the reverse of prevailing hypotheses.  相似文献   

11.

Background

The early evolution of living marsupials is poorly understood in part because the early offshoots of this group are known almost exclusively from jaws and teeth. Filling this gap is essential for a better understanding of the phylogenetic relationships among living marsupials, the biogeographic pathways that led to their current distribution as well as the successive evolutionary steps that led to their current diversity, habits and various specializations that distinguish them from placental mammals.

Methodology/Principal Findings

Here we report the first skull of a 55 million year old peradectid marsupial from the early Eocene of North America and exceptionally preserved skeletons of an Oligocene herpetotheriid, both representing critical groups to understand early marsupial evolution. A comprehensive phylogenetic cladistic analysis of Marsupialia including the new findings and close relatives of marsupials show that peradectids are the sister group of living opossums and herpetotheriids are the sister group of all living marsupials.

Conclusions/Significance

The results imply that North America played an important role in early Cenozoic marsupial evolutionary history and may have even been the center of origin of living marsupials and opossums. New data from the herpetotheriid postcranium support the view that the ancestral morphotype of Marsupialia was more terrestrial than opossums are. The resolution of the phylogenetic position of peradectids reveals an older calibration point for molecular estimates of divergence times among living marsupials than those currently used.  相似文献   

12.

Background

X-linked alpha thalassemia, mental retardation syndrome in humans is a rare recessive disorder caused by mutations in the ATRX gene. The disease is characterised by severe mental retardation, mild alpha-thalassemia, microcephaly, short stature, facial, skeletal, genital and gonadal abnormalities.

Results

We examined the expression of ATRX and ATRY during early development and gonadogenesis in two distantly related mammals: the tammar wallaby (a marsupial) and the mouse (a eutherian). This is the first examination of ATRX and ATRY in the developing mammalian gonad and fetus. ATRX and ATRY were strongly expressed in the developing male and female gonad respectively, of both species. In testes, ATRY expression was detected in the Sertoli cells, germ cells and some interstitial cells. In the developing ovaries, ATRX was initially restricted to the germ cells, but was present in the granulosa cells of mature ovaries from the primary follicle stage onwards and in the corpus luteum. ATRX mRNA expression was also examined outside the gonad in both mouse and tammar wallaby whole embryos. ATRX was detected in the developing limbs, craniofacial elements, neural tissues, tail and phallus. These sites correspond with developmental deficiencies displayed by ATR-X patients.

Conclusions

There is a complex expression pattern throughout development in both mammals, consistent with many of the observed ATR-X syndrome phenotypes in humans. The distribution of ATRX mRNA and protein in the gonads was highly conserved between the tammar and the mouse. The expression profile within the germ cells and somatic cells strikingly overlaps with that of DMRT1, suggesting a possible link between these two genes in gonadal development. Taken together, these data suggest that ATRX has a critical and conserved role in normal development of the testis and ovary in both the somatic and germ cells, and that its broad roles in early mammalian development and gonadal function have remained unchanged for over 148 million years of mammalian evolution.  相似文献   

13.
Two major gene families derived from Ty3/Gypsy long terminal repeat (LTR) retrotransposons were recently identified in mammals. The sushi-ichi retrotransposon homologue (SIRH) family comprises 12 genes: 11 in eutherians including Peg10 and Peg11/Rtl1 that have essential roles in the eutherian placenta and 1 that is marsupial specific. Fifteen and 12 genes were reported in the second gene family, para-neoplastic antigen MA (PNMA), in humans and mice, respectively, although their biological functions and evolutionary history remain largely unknown. Here, we identified two novel candidate PNMA genes, PNMA-MS1 and -MS2 in marsupials. Like all eutherian-specific PNMA genes, they exhibit the highest homology to a Gypsy12_DR (DR, Danio rerio) Gag protein. PNMA-MS1 is conserved in both Australian and South American marsupial species, the tammar wallaby and grey short-tailed opossum. However, no PNMA-MS1 orthologue was found in eutherians, monotremes or non-mammalian vertebrates. PNMA-MS1 was expressed in the ovary, mammary gland and brain during development and growth in the tammar, suggesting that PNMA-MS1 may have acquired a marsupial-specific function. However, PNMA-MS2 seems to be a pseudogene. The absence of marsupial orthologues of eutherian PNMA genes suggests that the retrotransposition events of the Gypsy12_DR-related retrotransposons that gave rise to the PNMA family occurred after the divergence of marsupials and eutherians.  相似文献   

14.
We report the cloning and mapping of a gene (PDHA)for the pyruvate dehydrogenase E1α subunit in marsupials. In situ hybridization and Southern blot analysis show that PDHA is autosomal in marsupials, mapping to chromosome 3q in Sminthopsis macroura and 5p in Macropus eugenii. Since these locations represent a region that was translocated to the p arm of the human X chromosome following marsupial/eutherian divergence, we suggest that the marsupial PDHA gene is homologous to PDHA1, the somatic eutherian isoform located on human Xp and mouse X. Only one copy of PDHA is found in marsupials, whereas a second, testis-specific, intronless form is observed in eutherian mammals. We also suggest that translocation of PDHA to the eutherian X chromosome, which is inactivated during spermatogenesis, led to the evolution of a second testis-specific locus by retroposition to an autosome.  相似文献   

15.
16.

Background

As a chronic antigenic stressor human Cytomegalovirus (CMV) contributes substantially to age-related alterations of the immune system. Even though monocytes have the greatest propensity for CMV-infection and seem to be an important host for the virus during latency, fibroblasts are also discussed to be target cells of CMV in vivo. However, little is known so far about general immunoregulatory properties of CMV in fibroblasts. We therefore investigated the immunoregulatory effects of CMV-infection in human lung fibroblasts and the impact on replicative senescence.

Findings

We observed that CMV-infection led to the induction of several immunoregulatory host cell genes associated with the innate and adaptive immune system. These were genes of different function such as genes regulating apoptosis, cytokines/chemokines and genes that are responsible for the detection of pathogens. Some of the genes upregulated following CMV-infection are also upregulated during cellular senescence, indicating that CMV causes an immunological phenotype in fibroblasts, which is partially reminiscent of replicative senescent cells.

Conclusion

In summary our results demonstrate that CMV not only affects the T cell pool but also induces inflammatory processes in human fibroblasts.  相似文献   

17.

Background

Foam cell formation in diabetic patients often occurs in the presence of high insulin and glucose levels. To test whether hyperinsulinemic hyperglycemic conditions affect foam cell differentiation, we examined gene expression, cytokine production, and Akt phosphorylation in human monocyte-derived macrophages incubated with two types of oxidized low density lipoprotein (LDL), minimally modified LDL (mmLDL) and extensively oxidized LDL (OxLDL).

Methods and results

Using Affymetrix GeneChip® arrays, we found that several genes directly related to insulin signaling were changed. The insulin receptor and glucose-6-phosphate dehydrogenase were upregulated by mmLDL and OxLDL, whereas insulin-induced gene 1 was significantly down-regulated. In hyperinsulinemic hyperglycemic conditions, modified LDL upregulated Akt phosphorylation and expression of the insulin-regulated aminopeptidase. The level of proinflammatory cytokines, IL-lβ, IL-12, and IL-6, and of a 5-lipoxygenase eicosanoid, 5-hydroxyeicosatetraenoic acid (5-HETE), was also increased.

Conclusion

These results suggest that the exposure of macrophages to modified low density lipoproteins in hyperglycemic hyperinsulinemic conditions affects insulin signaling and promotes the release of proinflammatory stimuli, such as cytokines and eicosanoids. These in turn may contribute to the development of insulin resistance.  相似文献   

18.

Background

The homologues of human disease genes are expected to contribute to better understanding of physiological and pathogenic processes. We made use of the present availability of vertebrate genomic sequences, and we have conducted the most comprehensive comparative genomic analysis of the prion protein gene PRNP and its homologues, shadow of prion protein gene SPRN and doppel gene PRND, and prion testis-specific gene PRNT so far.

Results

While the SPRN and PRNP homologues are present in all vertebrates, PRND is known in tetrapods, and PRNT is present in primates. PRNT could be viewed as a TE-associated gene. Using human as the base sequence for genomic sequence comparisons (VISTA), we annotated numerous potential cis-elements. The conserved regions in SPRNs harbour the potential Sp1 sites in promoters (mammals, birds), C-rich intron splicing enhancers and PTB intron splicing silencers in introns (mammals, birds), and hsa-miR-34a sites in 3'-UTRs (eutherians). We showed the conserved PRNP upstream regions, which may be potential enhancers or silencers (primates, dog). In the PRNP 3'-UTRs, there are conserved cytoplasmic polyadenylation element sites (mammals, birds). The PRND core promoters include highly conserved CCAAT, CArG and TATA boxes (mammals). We deduced 42 new protein primary structures, and performed the first phylogenetic analysis of all vertebrate prion genes. Using the protein alignment which included 122 sequences, we constructed the neighbour-joining tree which showed four major clusters, including shadoos, shadoo2s and prion protein-likes (cluster 1), fish prion proteins (cluster 2), tetrapode prion proteins (cluster 3) and doppels (cluster 4). We showed that the entire prion protein conformationally plastic region is well conserved between eutherian prion proteins and shadoos (18–25% identity and 28–34% similarity), and there could be a potential structural compatibility between shadoos and the left-handed parallel beta-helical fold.

Conclusion

It is likely that the conserved genomic elements identified in this analysis represent bona fide cis-elements. However, this idea needs to be confirmed by functional assays in transgenic systems.  相似文献   

19.
20.

Background

The EST database provides a rich resource for gene discovery and in silico expression analysis. We report a novel computational approach to identify co-expressed genes using EST database, and its application to IL-8.

Results

IL-8 is represented in 53 dbEST cDNA libraries. We calculated the frequency of occurrence of all the genes represented in these cDNA libraries, and ranked the candidates based on a Z-score. Additional analysis suggests that most IL-8 related genes are differentially expressed between non-tumor and tumor tissues. To focus on IL-8's function in tumor tissues, we further analyzed and ranked the genes in 16 IL-8 related tumor libraries.

Conclusions

This method generated a reference database for genes co-expressed with IL-8 and could facilitate further characterization of functional association among genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号