首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Signaling by the ureteric bud epithelium is essential for survival, proliferation and differentiation of the metanephric mesenchyme during kidney development. Most studies that have addressed ureteric signaling have focused on the proximal, branching, ureteric epithelium. We demonstrate that sonic hedgehog is expressed in the ureteric epithelium of the distal, non-branching medullary collecting ducts and continues into the epithelium of the ureter -- the urinary outflow tract that connects the kidney with the bladder. Upregulation of patched 1, the sonic hedgehog receptor and a downstream target gene of the signaling pathway in the mesenchyme surrounding the distal collecting ducts and the ureter suggests that sonic hedgehog acts as a paracrine signal. In vivo and in vitro analyses demonstrate that sonic hedgehog promotes mesenchymal cell proliferation, regulates the timing of differentiation of smooth muscle progenitor cells, and sets the pattern of mesenchymal differentiation through its dose-dependent inhibition of smooth muscle formation. In addition, we also show that bone morphogenetic protein 4 is a downstream target gene of sonic hedgehog signaling in kidney stroma and ureteral mesenchyme, but does not mediate the effects of sonic hedgehog in the control of mesenchymal proliferation.  相似文献   

2.
3.
The E11.5 mouse metanephros is comprised of a T-stage ureteric epithelial tubule sub-divided into tip and trunk cells surrounded by metanephric mesenchyme (MM). Tip cells are induced to undergo branching morphogenesis by the MM. In contrast, signals within the mesenchyme surrounding the trunk prevent ectopic branching of this region. In order to identify novel genes involved in the molecular regulation of branching morphogenesis we compared the gene expression profiles of isolated tip, trunk and MM cells using Compugen mouse long oligo microarrays. We identified genes enriched in the tip epithelium, sim-1, Arg2, Tacstd1, Crlf-1 and BMP7; genes enriched in the trunk epithelium, Innp1, Itm2b, Mkrn1, SPARC, Emu2 and Gsta3 and genes spatially restricted to the mesenchyme surrounding the trunk, CSPG2 and CV-2, with overlapping and complimentary expression to BMP4, respectively. This study has identified genes spatially expressed in regions of the developing kidney involved in branching morphogenesis, nephrogenesis and the development of the collecting duct system, calyces, renal pelvis and ureter.  相似文献   

4.
5.
Six1-/- mice were found to have apparently normal ureters in the absence of a kidney, suggesting that the growth and development of the unbranched ureter is largely independent of the more proximal portions of the UB which differentiates into the highly branched renal collecting system. Culture of isolated urinary tracts (from normal and mutant mice) on Transwell filters was employed to study the morphogenesis of this portion of the urogenital system. Examination of the ureters revealed the presence of a multi-cell layered tubule with a lumen lined by cells expressing uroplakin (a protein exclusively expressed in the epithelium of the lower urinary tract). Cultured ureters of both the wild-type and Six1 mutant become contractile and undergo peristalsis, an activity preceded by the expression of alpha-smooth muscle actin (alphaSMA). Treatment with a number of inhibitors of signaling molecules revealed that inhibition of PI3 kinase dissociates the developmental expression of alphaSMA from ureter growth and elongation. Epidermal growth factor also perturbed smooth muscle differentiation in culture. Moreover, the peristalsis of the ureter in the absence of the kidney in the Six1-/- mouse indicates that the development of this clinically important function of ureter (peristaltic movement of urine) is not dependent on fluid flow through the ureter. In keeping with this, isolated ureters cultured in the absence of surrounding tissues elongate, differentiate and undergo peristalsis when cultured on a filter and undergo branching morphogenesis when cultured in 3-dimensional extracellular matrix gels in the presence of a conditioned medium derived from a metanephric mesenchyme (MM) cell line. In addition, ureters of Six1-/- urinary tracts (i.e., lacking a kidney) displayed budding structures from their proximal ends when cultured in the presence of GDNF and FGFs reminiscent of UB budding from the wolffian duct. Taken together with the above data, this indicates that, although the distal ureter (at least early in its development) retains some of the characteristics of the more proximal UB, the growth and differentiation (i.e., development of smooth muscle actin, peristalsis and uroplakin expression) of the distal non-branching ureter are inherent properties of this portion of the UB, occurring independently of detectable influences of either the undifferentiated MM (unlike the upper portion of the ureteric bud) or more differentiated metanephric kidney. Thus, the developing distal ureter appears to be a unique anatomical structure which should no longer be considered as simply the non-branching portion of the ureteric bud. In future studies, the ability to independently analyze and study the portion of the UB that becomes the renal collecting system and that which becomes the ureter should facilitate distinguishing the developmental nephrome (renal ontogenome) from the ureterome.  相似文献   

6.
本文旨在研究Tbx18+肾脏间质祖细胞分化为输尿管平滑肌细胞的命运及转录因子Tbx18在小鼠输尿管平滑肌发育形成中起到的作用.实验建立Tbx18:Cre/R26REYFP和Tbx18:Cre/R26RLacZ两种谱系示踪系统和Tbx18:Cre/Cre 敲除模型.该示踪模型通过cre重组酶的表达能有效地示踪Tbx18+肾脏间质祖细胞在泌尿系统的发育命运.通过免疫荧光染色和X-gal染色,同时发现Tbx18+肾脏间质祖细胞可分化为输尿管平滑肌细胞,但不分化为输尿管移行上皮细胞.在Tbx18:Cre/Cre基因突变模型中,泌尿系统出现明显的肾积水和输尿管积水,肾盏、肾盂扩张,输尿管明显缩短和扩张.实验结果揭示,Tbx18+ 肾脏间质祖细胞可以分化为输尿管平滑肌细胞,且转录因子Tbx18在哺乳动物输尿管平滑肌的发育中起到重要的作用.  相似文献   

7.
The Hox11 paralogous genes play critical roles in kidney development. They are expressed in the early metanephric mesenchyme and are required for the induction of ureteric bud formation and its subsequent branching morphogenesis. They are also required for the normal nephrogenesis response of the metanephric mesenchyme to inductive signals from the ureteric bud. In this report, we use microarrays to perform a comprehensive gene expression analysis of the Hoxa11/Hoxd11 mutant kidney phenotype. We examined E11.5, E12.5, E13.5 and E16.5 developmental time points. A novel high throughput strategy for validation of microarray data is described, using additional biological replicates and an independent microarray platform. The results identified 13 genes with greater than 3-fold change in expression in early mutant kidneys, including Hoxa11s, GATA6, TGFbeta2, chemokine ligand 12, angiotensin receptor like 1, cytochrome P450, cadherin5, and Lymphocyte antigen 6 complex, Iroquois 3, EST A930038C07Rik, Meox2, Prkcn, and Slc40a1. Of interest, many of these genes, and others showing lower fold expression changes, have been connected to processes that make sense in terms of the mutant phenotype, including TGFbeta signaling, iron transport, protein kinase C function, growth arrest and GDNF regulation. These results identify the multiple molecular pathways downstream of Hox11 function in the developing kidney.  相似文献   

8.
Smooth muscle cells (SMCs) are a key component of many visceral organs, including the ureter, yet the molecular pathways that regulate their development from mesenchymal precursors are insufficiently understood. Here, we identified epithelial Wnt7b and Wnt9b as possible ligands of Fzd1-mediated β-catenin (Ctnnb1)-dependent (canonical) Wnt signaling in the adjacent undifferentiated ureteric mesenchyme. Mice with a conditional deletion of Ctnnb1 in the ureteric mesenchyme exhibited hydroureter and hydronephrosis at newborn stages due to functional obstruction of the ureter. Histological analysis revealed that the layer of undifferentiated mesenchymal cells directly adjacent to the ureteric epithelium did not undergo characteristic cell shape changes, exhibited reduced proliferation and failed to differentiate into SMCs. Molecular markers for prospective SMCs were lost, whereas markers of the outer layer of the ureteric mesenchyme fated to become adventitial fibroblasts were expanded to the inner layer. Conditional misexpression of a stabilized form of Ctnnb1 in the prospective ureteric mesenchyme resulted in the formation of a large domain of cells that exhibited histological and molecular features of prospective SMCs and differentiated along this lineage. Our analysis suggests that Wnt signals from the ureteric epithelium pattern the ureteric mesenchyme in a radial fashion by suppressing adventitial fibroblast differentiation and initiating smooth muscle precursor development in the innermost layer of mesenchymal cells.  相似文献   

9.
The E11.5 mouse metanephros is comprised of a T-stage ureteric epithelial tubule sub-divided into tip and trunk cells surrounded by metanephric mesenchyme (MM). Tip cells are induced to undergo branching morphogenesis by the MM. In contrast, signals within the mesenchyme surrounding the trunk prevent ectopic branching of this region. In order to identify novel genes involved in the molecular regulation of branching morphogenesis we compared the gene expression profiles of isolated tip, trunk and MM cells using Compugen mouse long oligo microarrays. We identified genes enriched in the tip epithelium, sim-1, Arg2, Tacstd1, Crlf-1 and BMP7; genes enriched in the trunk epithelium, Innp1, Itm2b, Mkrn1, SPARC, Emu2 and Gsta3 and genes spatially restricted to the mesenchyme surrounding the trunk, CSPG2 and CV-2, with overlapping and complimentary expression to BMP4, respectively. This study has identified genes spatially expressed in regions of the developing kidney involved in branching morphogenesis, nephrogenesis and the development of the collecting duct system, calyces, renal pelvis and ureter.  相似文献   

10.
Vagal gastrointestinal (GI) afferents are essential for the regulation of eating, body weight, and digestion. However, their functional organization and the way that this develops are poorly understood. Neurotrophin-3 (NT-3) is crucial for the survival of vagal sensory neurons and is expressed in the developing GI tract, possibly contributing to their survival and to other aspects of vagal afferent development. The identification of the functions of this peripheral NT-3 thus requires a detailed understanding of the localization and timing of its expression in the developing GI tract. We have studied embryos and neonates expressing the lacZ reporter gene from the NT-3 locus and found that NT-3 is expressed predominantly in the smooth muscle of the outer GI wall of the stomach, intestines, and associated blood vessels and in the stomach lamina propria and esophageal epithelium. NT-3 expression has been detected in the mesenchyme of the GI wall by embryonic day 12.5 (E12.5) and becomes restricted to smooth muscle and lamina propria by E15.5, whereas its expression in blood vessels and esophageal epithelium is first observed at E15.5. Expression in most tissues is maintained at least until postnatal day 4. The lack of colocalization of β-galactosidase and markers for myenteric ganglion cell types suggests that NT-3 is not expressed in these ganglia. Therefore, NT-3 expression in the GI tract is largely restricted to smooth muscle at ages when vagal axons grow into the GI tract, and when vagal mechanoreceptors form in smooth muscle, consistent with its role in these processes and in vagal sensory neuron survival.  相似文献   

11.
Proper formation of ureteral smooth muscle cells (SMCs) during embryogenesis is essential for ureter peristalsis that propels urine from the kidney to the bladder in mammals. Currently the molecular factors that regulate differentiation of ureteral mesenchymal cells into SMCs are incompletely understood. A recent study has reported that Smad4 deficiency reduces the number of ureteral SMCs. However, its precise role in the ureteral smooth muscle development remains largely unknown. Here, we used Tbx18:Cre knock-in mouse line to delete Smad4 to examine its requirement in the development of ureteral mesenchyme and SMC differentiation. We found that mice with specific deletion of Smad4 in Tbx18-expressing ureteral mesenchyme exhibited hydroureter and hydronephrosis at embryonic day (E) 16.5, and the mutant mesenchymal cells failed to differentiate into SMCs with increased apoptosis and decreased proliferation. Molecular markers for SMCs including alpha smooth muscle actin (α-SMA) and smooth muscle myosin heavy chain (SM-MHC) were absent in the mutant ureters. Moreover, disruption of Smad4 significantly reduced the expression of genes, including Sox9, Tbx18 and Myocardin associated with SMC differentiation. These findings suggest that Smad4 is essential for initiating the SMC differentiation program during ureter development.  相似文献   

12.
13.
WNT/beta-catenin signaling has an established role in nephron formation during kidney development. Yet, the role of beta-catenin during ureteric morphogenesis in vivo is undefined. We generated a murine genetic model of beta-catenin deficiency targeted to the ureteric bud cell lineage. Newborn mutant mice demonstrated bilateral renal aplasia or renal dysplasia. Analysis of the embryologic events leading to this phenotype revealed that abnormal ureteric branching at E12.5 precedes histologic abnormalities at E13.5. Microarray analysis of E12.5 kidney tissue identified decreased Emx2 and Lim1 expression among a small subset of renal patterning genes disrupted at the stage of abnormal branching. These alterations are followed by decreased expression of genes downstream of Emx2, including Lim1, Pax2, and the ureteric tip markers, c-ret and Wnt 11. Together, these data demonstrate that beta-catenin performs essential functions during renal branching morphogenesis via control of a hierarchy of genes that control ureteric branching.  相似文献   

14.
Most cases of congenital obstructive nephropathy are the result of ureteropelvic junction obstructions, and despite their high prevalence, we have a poor understanding of their etiology and scarcity of genetic models. The eight-protein exocyst complex regulates polarized exocytosis of intracellular vesicles in a large variety of cell types. Here we report generation of a conditional knockout mouse for Sec10, a central component of the exocyst, which is the first conditional allele for any exocyst gene. Inactivation of Sec10 in ureteric bud-derived cells using Ksp1.3-Cre mice resulted in severe bilateral hydronephrosis and complete anuria in newborns, with death occurring 6–14 hours after birth. Sec10FL/FL;Ksp-Cre embryos developed ureteropelvic junction obstructions between E17.5 and E18.5 as a result of degeneration of the urothelium and subsequent overgrowth by surrounding mesenchymal cells. The urothelial cell layer that lines the urinary tract must maintain a hydrophobic luminal barrier again urine while remaining highly stretchable. This barrier is largely established by production of uroplakin proteins that are transported to the apical surface to establish large plaques. By E16.5, Sec10FL/FL;Ksp-Cre ureter and pelvic urothelium showed decreased uroplakin-3 protein at the luminal surface, and complete absence of uroplakin-3 by E17.5. Affected urothelium at the UPJ showed irregular barriers that exposed the smooth muscle layer to urine, suggesting this may trigger the surrounding mesenchymal cells to overgrow the lumen. Findings from this novel mouse model show Sec10 is critical for the development of the urothelium in ureters, and provides experimental evidence that failure of this urothelial barrier may contribute to human congenital urinary tract obstructions.  相似文献   

15.
Antagonists act to restrict and negatively modulate the activity of secreted signals during progression of embryogenesis. In mouse embryos lacking the extra-cellular BMP antagonist gremlin 1 (Grem1), metanephric development is disrupted at the stage of initiating ureteric bud outgrowth. Treatment of mutant kidney rudiments in culture with recombinant gremlin 1 protein induces additional epithelial buds and restores outgrowth and branching. All epithelial buds express Wnt11, and Gdnf is significantly upregulated in the surrounding mesenchyme, indicating that epithelial-mesenchymal (e-m) feedback signalling is restored. In the wild type, Bmp4 is expressed by the mesenchyme enveloping the Wolffian duct and ureteric bud and Grem1 is upregulated in the mesenchyme around the nascent ureteric bud prior to initiation of its outgrowth. In agreement, BMP activity is reduced locally as revealed by lower levels of nuclear pSMAD protein in the mesenchyme. By contrast, in Grem1-deficient kidney rudiments, pSMAD proteins are detected in many cell nuclei in the metanephric mesenchyme, indicative of excessive BMP signal transduction. Indeed, genetic lowering of BMP4 levels in Grem1-deficient mouse embryos completely restores ureteric bud outgrowth and branching morphogenesis. The reduction of BMP4 levels in Grem1 mutant embryos enables normal progression of renal development and restores adult kidney morphology and functions. This study establishes that initiation of metanephric kidney development requires the reduction of BMP4 activity by the antagonist gremlin 1 in the mesenchyme, which in turn enables ureteric bud outgrowth and establishment of autoregulatory GDNF/WNT11 feedback signalling.  相似文献   

16.
SALL1 is a mammalian homolog of the Drosophila region-specific homeotic gene spalt (sal); heterozygous mutations in SALL1 in humans lead to Townes-Brocks syndrome. We have isolated a mouse homolog of SALL1 (Sall1) and found that mice deficient in Sall1 die in the perinatal period and that kidney agenesis or severe dysgenesis are present. Sall1 is expressed in the metanephric mesenchyme surrounding ureteric bud; homozygous deletion of Sall1 results in an incomplete ureteric bud outgrowth, a failure of tubule formation in the mesenchyme and an apoptosis of the mesenchyme. This phenotype is likely to be primarily caused by the absence of the inductive signal from the ureter, as the Sall1-deficient mesenchyme is competent with respect to epithelial differentiation. Sall1 is therefore essential for ureteric bud invasion, the initial key step for metanephros development.  相似文献   

17.
18.
Six1 is required for the early organogenesis of mammalian kidney   总被引:12,自引:0,他引:12  
  相似文献   

19.
Little is known about the mechanism of bladder smooth muscle differentiation. We hypothesize that epithelial-mesenchymal signaling induces the expression of smooth muscle proteins in bladder mesenchyme resulting in smooth muscle differentiation. We confirmed that smooth muscle differentiation in the mouse urinary bladder occurs first at gestational day 14 (E14) based upon immunohistochemical localization of smooth muscle alpha-actin (SMAA). To investigate murine bladder smooth muscle differentiation and epithlelial-mesenchymal signaling in the developing bladder, we analyzed gene expression profiles of intact embryonic murine bladders and separated epithelial and mesenchymal components at embryonic days E13, E14, E15, E16, and postnatal day 1 (P1). Using cDNA microarray, we identified regulators of vascular smooth muscle differentiation in bladder mesenchyme, including serum response factor (SRF) and its cofactors, ELK1 and SRF accessory protein (SAP)1, as well as two SRF-associated pathways, angiotension receptor II and transforming growth factor- beta2. Immunohistochemistry showed diffuse expression of SRF in the bladder at E12 with localization of expression to the peripheral mesenchyme at E13 and E14. Our results suggest that bladder smooth muscle differentiation may share a similar gene expression program as occurs during vascular smooth muscle differentiation. The unique structure of the urinary bladder makes it an ideal model for studies of smooth muscle differentiation and epithelial-mesenchymal signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号