首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 480 毫秒
1.
2.
The epidermal growth factor receptor (EGF-R) plays an important role in the growth and progression of estrogen receptor-negative human breast cancers. EGF binds with high affinity to the EGF-R and activates a variety of second messenger pathways that affect cellular proliferation. However, the underlying mechanisms involved in the regulation of EGF-R expression in breast cancer cells are yet to be described. Here we show that the EGF-induced upregulation of EGF-R mRNA in two human breast cancer cell lines that overexpress EGF-R (MDA-MB-468 and BT-20) is accompanied by stabilization (>2-fold) of EGF-R mRNA. Transient transfections using a luciferase reporter identified a novel EGF-regulated approximately 260-nucleotide (nt) cis-acting element in the 3' untranslated region (3'-UTR) of EGF-R mRNA. This cis element contains two distinct AU-rich sequences (~75 nt), EGF-R1A with two AUUUA pentamers and EGF-R2A with two AUUUUUA extended pentamers. Each independently regulated the mRNA stability of the heterologous reporter. Analysis of mutants of the EGF-R2A AU-rich sequence demonstrated a role for the 3' extended pentamer in regulating basal turnover. RNA gel shift analysis identified cytoplasmic proteins (~55 to 80 kDa) from breast cancer cells that bound specifically to the EGF-R1A and EGF-R2A cis-acting elements and whose binding activity was rapidly downregulated by EGF and phorbol esters. RNA gel shift analysis of EGF-R2A mutants identified a role for the 3' extended AU pentamer, but not the 5' extended pentamer, in binding proteins. These EGF-R mRNA-binding proteins were present in multiple human breast and prostate cancer cell lines. In summary, these data demonstrate a central role for mRNA stabilization in the control of EGF-R gene expression in breast cancer cells. EGF-R mRNA contains a novel complex AU-rich 260-nt cis-acting destabilizing element in the 3'-UTR that is bound by specific and EGF-regulated trans-acting factors. Furthermore, the 3' extended AU pentamer of EGF-R2A plays a central role in regulating EGF-R mRNA stability and the binding of specific RNA-binding proteins. These findings suggest that regulated RNA-protein interactions involving this novel cis-acting element will be a major determinant of EGF-R mRNA stability.  相似文献   

3.
4.
前列腺癌多发于老年男性,已成为老年男性常见肿瘤之一。内分泌治疗目前是晚期前列腺癌主要治疗方法,但仍避免不了前列腺癌最终进展成激素非依赖性前列腺癌,导致内分泌治疗的失败。当前,对前列腺癌细胞株的AR表达的研究,主要集中在DNA水平及mRNA水平,而对AR蛋白翻译后调控的研究较少。近些年来,嵌合分子(DHT-PROTAC)是基于蛋白水平,调控AR蛋白的表达,成为研究前列腺癌转归新的热点。DHT-PROTAC是一种新型人工合成的异型双功能小分子;这种小分子是DHT与泛素连接酶E3识别基团的嵌合体,它不仅能与AR结合,而且能在结合后,诱导AR的泛素化,从而通过泛素-蛋白酶途径降解AR;本文介绍了嵌合分子的作用原理,回顾了近些年前列腺癌的治疗进展,分析了嵌合分子将来在前列腺癌治疗中的应用前景。  相似文献   

5.
6.
Although inactivation of the androgen receptor (AR) by androgen-ablation or anti-androgen treatment has been frontline therapy for disseminated prostate cancer for over 60 years, it is not curative because castration-resistant prostate cancer cells retain AR activity. Therefore, curative strategy should include targeted elimination of AR protein. Since AR binds to calmodulin (CaM), and since CaM-binding proteins are targets of calpain (Cpn)-mediated proteolysis, we studied the role of CaM and Cpn in AR breakdown in prostate cancer cells. Whereas the treatment of prostate cancer cells individually with anti-CaM drug or calcimycin, which increases intracellular Ca(++) and activates Cpn, led to minimal AR breakdown, combined treatment led to a precipitous decrease in AR protein levels. This decrease in AR protein occurred without noticeable changes in AR mRNA levels, suggesting an increase in AR protein turnover rather than inhibition of AR mRNA expression. Thus, CaM inactivation seems to sensitize AR to Cpn-mediated breakdown in prostate cancer cells. Consistent with this possibility, purified recombinant human AR (rhAR) underwent proteolysis in the presence of purified Cpn, and the addition of purified CaM to the incubation blocked rhAR proteolysis. Together, these observations demonstrate that AR is a Cpn target and AR-bound CaM plays an important role in protecting AR from Cpn-mediated breakdown in prostate cancer cells. These observations raise an intriguing possibility that anti-CaM drugs in combination with Cpn-activating agents may offer a curative strategy for the treatment of prostate cancer, which relies on AR for growth and survival.  相似文献   

7.
前列腺癌多发于老年男性,已成为老年男性常见肿瘤之一。内分泌治疗目前是晚期前列腺癌主要治疗方法,但仍避免不了前列腺癌最终进展成激素非依赖性前列腺癌,导致内分泌治疗的失败。当前,对前列腺癌细胞株的AR表达的研究,主要集中在DNA水平及mRNA水平,而对AR蛋白翻译后调控的研究较少。近些年来,嵌合分子(DHT-PROTAC)是基于蛋白水平.调控AR蛋白的表达,成为研究前列腺癌转归新的热点。DHT-PROTAC是一种新型人工合成的异型双功能小分子;这种小分子是DHT与泛素连接酶E3识别基团的嵌合体,它不仅能与AR结合,而且能在结合后,诱导AR的泛素化,从而通过泛素一蛋白酶途径降解AR;本文介绍了嵌合分子的作用原理,回顾了近些年前列腺癌的治疗进展,分析了嵌合分子将来在前列腺癌治疗中的应用前景。  相似文献   

8.
9.
10.
11.
The androgen receptor (AR) plays a central role in the development and progression of prostate cancer. AR expression is maintained throughout the progression of prostate cancer and is also associated with an aggressive, castration-resistant (CR) phenotype. Despite the critical roles of AR expression in prostate cancer progression, the exact signaling mechanism regulating AR expression remains unclear. In this study, we demonstrated that AR expression was increased by a low-affinity leukotriene B(4) receptor (BLT2)-linked pathway. We found that BLT2 was overexpressed in AR-positive prostate cancer cells, such as LNCaP cells, and BLT2 inhibition, using an inhibitor or siRNA knockdown, clearly attenuated AR expression and triggered apoptosis in these cells. These results suggest a role for BLT2 in AR expression and the survival of AR-positive prostate cancer cells. Moreover, we found that the NADPH oxidase family protein, Nox4, lay downstream of BLT2 and mediated the production of reactive oxygen species (ROS) and subsequent NF-κB stimulation, thereby inducing AR expression. Taken together, our results demonstrate that BLT2 plays a critical role in AR expression via a Nox4-ROS-NF-κB-linked pathway, thereby mediating the survival of AR-positive prostate cancer cells. Our findings point to BLT2 as a key regulator of AR expression and will contribute to the development of novel therapies for AR-positive prostate cancers, including androgen-responsive and CR prostate cancers.  相似文献   

12.
13.
14.
Androgen ablation therapy is the most common strategy for suppressing prostate cancer progression; however, tumor cells eventually escape androgen dependence and progress to an androgen-independent phase. The androgen receptor (AR) plays a pivotal role in this transition. To address this transition mystery in prostate cancer, we established an androgen-independent prostate cancer cell line (LNCaPdcc), by long-term screening of LNCaP cells in androgen-deprived conditions, to investigate changes of molecular mechanisms before and after androgen withdrawal. We found that LNCaPdcc cells displayed a neuroendocrine morphology, less aggressive growth, and lower expression levels of cell cycle-related factors, although the cell cycle distribution was similar to parental LNCaP cells. Notably, higher protein expression of AR, phospho-Ser(81)-AR, and PSA in LNCaPdcc cells were observed. The nuclear distribution and protein stability of AR increased in LNCaPdcc cells. In addition, cell proliferation results exhibited the biphasic nature of the androgen (R1881) effect in two cell lines. On the other hand, LNCaPdcc cells expressed higher levels of Her2, phospho-Tyr(1221/1222)-Her2, ErbB3, and ErbB4 proteins than parental LNCaP cells. These two cell lines exhibited distinct responses to Her2 activation (by heregulin treatment) on Her2 phosphorylation and Her2 inhibition (by AG825 or Herceptin treatments) on proliferation. In addition, the Her2 inhibitor more effectively caused AR degradation and diminished AR Ser(81) phosphorylation in LNCaPdcc cells. Taken together, our data demonstrate that Her2 plays an important role in the support of AR protein stability in the transition of androgen requirement in prostate cancer cells. We hope these findings will provide novel insight into the treatment of hormone-refractory prostate cancer.  相似文献   

15.
Endocrine therapy for advanced prostate cancer is based on androgen ablation or blockade of the androgen receptor (AR). AR action in prostate cancer has been investigated in a number of cell lines, their derivatives, and transgenic animals. AR expression is heterogenous in prostate cancer in vivo; it could be detected in most primary tumors and their metastases. However, some cells lack the AR because of epigenetic changes in the gene promoter. AR expression increases after chronic androgen ablation in vitro. In several xenografts, AR upregulation is the most consistent change identified during progression towards therapy resistance. In contrast, the AR pathway may be by-passed during chronic treatment with a nonsteroidal anti-androgen. AR sensitivity in prostate cancer increases as a result of activation of the Ras/mitogen-activated protein kinase pathway. One of the major difficulties in endocrine therapy for prostate cancer is acquisition of agonistic properties of AR antagonists observed in the presence of mutated AR. Enhancement of AR function by associated coactivator proteins has been extensively investigated. Cofactors SRC-1, RAC3, p300/CBP, TIF-2, and Tip60 are upregulated in advanced prostate cancer. Most studies on ligand-independent activation of the AR are focused on Her-2/neu and interleukin-6 (IL-6). On the basis of studies that showed overexpression and activation of the AR in advanced prostate cancer, it was suggested that novel therapies that reduce AR expression will provide a benefit to patients. There is experimental evidence showing that prostate tumor growth in vitro and in vivo is inhibited following administration of chemopreventive drugs or antisense oligonucleotides that downregulate AR mRNA and protein expression.  相似文献   

16.
Prohibitin (PHB) is an evolutionarily conserved protein with multiple functions in both normal and cancer cells. Androgen receptor (AR) was reported to act as a different role in the ER-positive and ER-negative breast cancer. However, little is known about the role of PHB and whether PHB could regulate AR expression in the ER-positive breast cancer. Here, we determined the expression and clinical outcomes of PHB in breast cancer samples using 121 breast cancer tissues and published databases, and investigated the role of PHB in breast cancer cell growth, apoptosis and cell cycle arrest in the ER-positive breast cancer cells. We obtained the expression of PHB is significantly low in breast cancer samples, and low PHB expression positively correlated with poor prognosis of breast cancer. We detected that PHB could inhibit breast cancer cell proliferation, change cell cycle distribution and promote cell apoptosis in the ER-positive breast cancer cells. Moreover, we found PHB could significantly increase AR expression in both mRNA and protein levels in the ER-positive breast cancer cells. Additionally, a significant positive correlation between PHB and AR expression was identified in the 121 breast cancer tissues. PHB and AR expression are associated with prognosis in the ER-positive breast cancer patients. Our results indicate that PHB promotes AR activation in ER-positive breast cancer, making PHB and AR potential molecular targets for ER-positive breast cancer therapy.  相似文献   

17.
18.
19.
20.
The realization, that the androgen receptor (AR) is essential for prostate cancer (PC) even after relapse following androgen deprivation therapy motivated the search for novel types of AR inhibitors. We proposed that targeting AR expression versus its function would work in cells having either wild type or mutant AR as well as be independent of androgen synthesis pathways. Previously, using a phenotypic screen in androgen-independent PC cells we identified a small molecule inhibitor of AR, ARTIK-52. Treatment with ARTIK-52 caused the loss of AR protein and death of AR-positive, but not AR-negative, PC cells. Here we present data that ARTIK-52 induces degradation of AR mRNA through a mechanism that we were unable to establish. However, we found that ARTIK-52 is toxic to breast cancer (BC) cells expressing AR, although they were not sensitive to AR knockdown, suggesting an AR-independent mechanism of toxicity. Using different approaches we detected that ARTIK-52 induces replication-dependent double strand DNA breaks exclusively in cancer cells of prostate and breast origin, while not causing DNA damage, or any toxicity, in normal cells, as well as in non-PC and non-BC tumor cells, independent of their proliferation status. This amazing specificity, combined with such a basic mechanism of toxicity, makes ARTIK-52 a potentially useful tool to discover novel attractive targets for the treatment of BC and PC. Thus, phenotypic screening allowed us to identify a compound, whose properties cannot be predicted based on existing knowledge and moreover, uncover a barely known link between AR and DNA damage response in PC and BC epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号