首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mangrove forests cover a small fraction of the earth’s surface, but contribute disproportionately to ecosystem services, including carbon (C) storage. These forests are being rapidly degraded as demand for economic development grows. In recognition of the multiple benefits of mangrove forests, rehabilitation of degraded forests is being carried out in many regions. This study assesses the potential for restored mangrove forests in Vietnam to sequester and store C, by characterizing two different mangrove restoration areas in the Mekong Delta region. The Can Gio Mangrove Biospheres Reserve (CGMBR) in Ho Chi Minh City was highly degraded during the Vietnam War and was subsequently replanted between 1978 and 1998. The Kien Vang Protection Forest (KVPF) in Ca Mau Province was similarly degraded during the war, but unlike CGMBR, it has experienced natural regeneration over the last 35 years. We find that vegetation structure between two sites are not different significantly, though CGMBR has richer mangrove species diversity than KVPF. The mean of total ecosystem C stocks in planted mangroves of CGMBR (889 ± 111 MgC ha?1) is not significantly different compare to natural regeneration forests of KVPF (844 ± 58 MgC ha?1). Our findings suggest that after 35 years, both anthropogenically and naturally regenerated mangroves appear to store similar levels of C.  相似文献   

2.
The conservation of mangroves and other coastal “blue carbon” ecosystems is receiving heightened attention because of recognition of their high ecosystem carbon stocks as well as vast areas undergoing land conversion. However, few studies have paired intact mangroves with degraded sites to determine carbon losses due to land conversion. To address this gap we quantified total ecosystem carbon stocks in mangroves and cattle pastures formed from mangroves in the large wetland complex of the Pantanos de Centla in SE Mexico. The mean total ecosystem carbon stocks of fringe and estuarine tall mangroves was 1358 Mg C/ha. In contrast the mean carbon stocks of cattle pastures was 458 Mg C/ha. Based upon a biomass equivalence of losses from the top 1 m of mangrove soils, the losses in carbon stocks from mangrove conversion are conservatively estimated at 1464 Mg CO2e/ha. These losses were 7-fold that of emissions from tropical dry forest to pasture conversion and 3-fold greater than emissions from Amazon forest to pasture conversion. However, we found that limiting ecosystem carbon stocks differences to the surface 1 m or even 2 m soil depth will miss losses that occurred from deeper horizons. Mangrove conversion to other land uses comes at a great cost in terms of greenhouse gas emissions as well losses of other important ecosystem services.  相似文献   

3.
Mangroves on Pacific high islands offer a number of important ecosystem services to both natural ecological communities and human societies. High islands are subjected to constant erosion over geologic time, which establishes an important source of terrigeneous sediment for nearby marine communities. Many of these sediments are deposited in mangrove forests and offer mangroves a potentially important means for adjusting surface elevation with rising sea level. In this study, we investigated sedimentation and elevation dynamics of mangrove forests in three hydrogeomorphic settings on the islands of Kosrae and Pohnpei, Federated States of Micronesia (FSM). Surface accretion rates ranged from 2.9 to 20.8 mm y?1, and are high for naturally occurring mangroves. Although mangrove forests in Micronesian high islands appear to have a strong capacity to offset elevation losses by way of sedimentation, elevation change over 6½ years ranged from ?3.2 to 4.1 mm y?1, depending on the location. Mangrove surface elevation change also varied by hydrogeomorphic setting and river, and suggested differential, and not uniformly bleak, susceptibilities among Pacific high island mangroves to sea-level rise. Fringe, riverine, and interior settings registered elevation changes of ?1.30, 0.46, and 1.56 mm y?1, respectively, with the greatest elevation deficit (?3.2 mm y?1) from a fringe zone on Pohnpei and the highest rate of elevation gain (4.1 mm y?1) from an interior zone on Kosrae. Relative to sea-level rise estimates for FSM (0.8–1.8 mm y?1) and assuming a consistent linear trend in these estimates, soil elevations in mangroves on Kosrae and Pohnpei are experiencing between an annual deficit of 4.95 mm and an annual surplus of 3.28 mm. Although natural disturbances are important in mediating elevation gain in some situations, constant allochthonous sediment deposition probably matters most on these Pacific high islands, and is especially helpful in certain hydrogeomorphic zones. Fringe mangrove forests are most susceptible to sea-level rise, such that protection of these outer zones from anthropogenic disturbances (for example, harvesting) may slow the rate at which these zones convert to open water.  相似文献   

4.
Globally, carbon‐rich mangrove forests are deforested and degraded due to land‐use and land‐cover change (LULCC). The impact of mangrove deforestation on carbon emissions has been reported on a global scale; however, uncertainty remains at subnational scales due to geographical variability and field data limitations. We present an assessment of blue carbon storage at five mangrove sites across West Papua Province, Indonesia, a region that supports 10% of the world's mangrove area. The sites are representative of contrasting hydrogeomorphic settings and also capture change over a 25‐years LULCC chronosequence. Field‐based assessments were conducted across 255 plots covering undisturbed and LULCC‐affected mangroves (0‐, 5‐, 10‐, 15‐ and 25‐year‐old post‐harvest or regenerating forests as well as 15‐year‐old aquaculture ponds). Undisturbed mangroves stored total ecosystem carbon stocks of 182–2,730 (mean ± SD: 1,087 ± 584) Mg C/ha, with the large variation driven by hydrogeomorphic settings. The highest carbon stocks were found in estuarine interior (EI) mangroves, followed by open coast interior, open coast fringe and EI forests. Forest harvesting did not significantly affect soil carbon stocks, despite an elevated dead wood density relative to undisturbed forests, but it did remove nearly all live biomass. Aquaculture conversion removed 60% of soil carbon stock and 85% of live biomass carbon stock, relative to reference sites. By contrast, mangroves left to regenerate for more than 25 years reached the same level of biomass carbon compared to undisturbed forests, with annual biomass accumulation rates of 3.6 ± 1.1 Mg C ha?1 year?1. This study shows that hydrogeomorphic setting controls natural dynamics of mangrove blue carbon stocks, while long‐term land‐use changes affect carbon loss and gain to a substantial degree. Therefore, current land‐based climate policies must incorporate landscape and land‐use characteristics, and their related carbon management consequences, for more effective emissions reduction targets and restoration outcomes.  相似文献   

5.
Mangrove forests cover large areas of tropical and subtropical coastlines. They provide a wide range of ecosystem services that includes carbon storage in above- and below ground biomass and in soils. Carbon dioxide (CO2) emissions from soil, or soil respiration is important in the global carbon budget and is sensitive to increasing global temperature. To understand the magnitude of mangrove soil respiration and the influence of forest structure and temperature on the variation in mangrove soil respiration I assessed soil respiration at eleven mangrove sites, ranging from latitude 27°N to 37°S. Mangrove soil respiration was similar to those observed for terrestrial forest soils. Soil respiration was correlated with leaf area index (LAI) and aboveground net primary production (litterfall), which should aid scaling up to regional and global estimates of soil respiration. Using a carbon balance model, total belowground carbon allocation (TBCA) per unit litterfall was similar in tall mangrove forests as observed in terrestrial forests, but in scrub mangrove forests TBCA per unit litter fall was greater than in terrestrial forests, suggesting mangroves allocate a large proportion of their fixed carbon below ground under unfavorable environmental conditions. The response of soil respiration to soil temperature was not a linear function of temperature. At temperatures below 26°C Q10 of mangrove soil respiration was 2.6, similar to that reported for terrestrial forest soils. However in scrub forests soil respiration declined with increasing soil temperature, largely because of reduced canopy cover and enhanced activity of photosynthetic benthic microbial communities.  相似文献   

6.
Mangrove forests play an important role in climate change adaptation and mitigation by maintaining coastline elevations relative to sea level rise, protecting coastal infrastructure from storm damage, and storing substantial quantities of carbon (C) in live and detrital pools. Determining the efficacy of mangroves in achieving climate goals can be complicated by difficulty in quantifying C inputs (i.e., differentiating newer inputs from younger trees from older residual C pools), and mitigation assessments rarely consider potential offsets to CO2 storage by methane (CH4) production in mangrove sediments. The establishment of non‐native Rhizophora mangle along Hawaiian coastlines over the last century offers an opportunity to examine the role mangroves play in climate mitigation and adaptation both globally and locally as novel ecosystems. We quantified total ecosystem C storage, sedimentation, accretion, sediment organic C burial and CH4 emissions from ~70 year old R. mangle stands and adjacent uninvaded mudflats. Ecosystem C stocks of mangrove stands exceeded mudflats by 434 ± 33 Mg C/ha, and mangrove establishment increased average coastal accretion by 460%. Sediment organic C burial increased 10‐fold (to 4.5 Mg C ha?1 year?1), double the global mean for old growth mangrove forests, suggesting that C accumulation from younger trees may occur faster than previously thought, with implications for mangrove restoration. Simulations indicate that increased CH4 emissions from sediments offset ecosystem CO2 storage by only 2%–4%, equivalent to 30–60 Mg CO2‐eq/ha over mangrove lifetime (100 year sustained global warming potential). Results highlight the importance of mangroves as novel systems that can rapidly accumulate C, have a net positive atmospheric greenhouse gas removal effect, and support shoreline accretion rates that outpace current sea level rise. Sequestration potential of novel mangrove forests should be taken into account when considering their removal or management, especially in the context of climate mitigation goals.  相似文献   

7.
Wetlands can store large quantities of carbon (C) and are considered key sites for C sequestration. However, the C sequestration potential of wetlands is spatially and temporally variable, and depends on processes associated with C production, preservation and export. In this study, we assess the soil C sources and processes responsible for C sequestration of riverine wetlands (mangroves, peat swamp forest and marsh) of La Encrucijada Biosphere Reserve (LEBR, Mexican south Pacific coast). We analysed soil C and nitrogen (N) concentrations and isotopes (δ13C and δ15N) from cores dated from the last century. We compared a range of mangrove forests in different geomorphological settings (upriver and downriver) and across a gradient from fringe to interior forests. Sources and processes related to C storage differ greatly among riverine wetlands of the Reserve. In the peat swamp forest and marsh, the soil C experienced large changes in the past century, probably due to soil decomposition, changes in plant community composition, and/or changes in C sources. In the mangroves, the dominant process for C accumulation was the burial of in situ production. The C buried in mangroves has changed little in the past 100 years, suggesting that production has been fairly constant and/or that decomposition rates in the soil are slow. Mangrove forests of LEBR, regardless of geomorphological setting, can preserve very uniform soil N and C for a century or more, consistent with efficient C storage.  相似文献   

8.
Mangroves of the semiarid Caatinga region of northeastern Brazil are being rapidly converted to shrimp pond aquaculture. To determine ecosystem carbon stocks and potential greenhouse gas emissions from this widespread land use, we measured carbon stocks of eight mangrove forests and three shrimp ponds in the Acaraú and Jaguaribe watersheds in Ceará state, Brazil. The shrimp ponds were paired with adjacent intact mangroves to ascertain carbon losses and potential emissions from land conversion. The mean total ecosystem carbon stock of mangroves in this semiarid tropical landscape was 413 ± 94 Mg C/ha. There were highly significant differences in the ecosystem carbon stocks between the two sampled estuaries suggesting caution when extrapolating carbon stock across different estuaries even in the same landscape. Conversion of mangroves to shrimp ponds resulted in losses of 58%–82% of the ecosystem carbon stocks. The mean potential emissions arising from mangrove conversion to shrimp ponds was 1,390 Mg CO2e/ha. Carbon losses were largely from soils which accounted for 81% of the total emission. Losses from soils >100 cm in depth accounted for 33% of the total ecosystem carbon loss. Soil carbon losses from shrimp pond conversion are equivalent to about 182 years of soil carbon accumulation. Losses from mangrove conversion are about 10‐fold greater than emissions from conversion of upland tropical dry forest in the Brazilian Caatinga underscoring the potential value for their inclusion in climate change mitigation activities.  相似文献   

9.
Scrub mangrove wetlands colonize the intertidal zone of fossil lagoons located in carbonate continental margins along the Yucatan Peninsula of Mexico. These unique ecological types were investigated in October, 1994, by locating transects in several mangrove forests along the Caribbean coast of the peninsula. Four species of mangrove occurred at these sites including Rhizophora mangle, Avicennia germinans, Laguncularia racemosa, Conocarpus erecta. This is one of the first examples of a species rich scrub forest. The mangroves fell into three height categories: short scrub less than 1.5 m, tall scrub to 3.0 m, and basin forests between 4.5 and 6 m. Average height, diameter (dbh), basal area, and complexity index generally increased from short scrub to basin forests. Basal area, ranged from 0.16 m2 ha–1 in a short scrub forest intermixed with Cladium jamaicense to 12.9 m2 ha–1 in a basin forest. Density ranged from 1520 trees ha–1 to over 25,000 trees ha–1 in a short scrub forest dominated by R. mangle. The complexity index ranged from 0.01 to 8.3. Height, dbh, basal area, and complexity index were positively related. A number of trees were growing as sprouts from larger downed trunks, suggesting that hurricanes, such as Gilbert that occurred in 1988, are important in controlling the structure of these forests. These forests appear isolated from the sea, but are influenced by groundwater exchange occurring at the land-margin zone.  相似文献   

10.
Shifts in ecosystem structure have been observed over recent decades as woody plants encroach upon grasslands and wetlands globally. The migration of mangrove forests into salt marsh ecosystems is one such shift which could have important implications for global ‘blue carbon’ stocks. To date, attempts to quantify changes in ecosystem function are essentially constrained to climate‐mediated pulses (30 years or less) of encroachment occurring at the thermal limits of mangroves. In this study, we track the continuous, lateral encroachment of mangroves into two south‐eastern Australian salt marshes over a period of 70 years and quantify corresponding changes in biomass and belowground C stores. Substantial increases in biomass and belowground C stores have resulted as mangroves replaced salt marsh at both marine and estuarine sites. After 30 years, aboveground biomass was significantly higher than salt marsh, with biomass continuing to increase with mangrove age. Biomass increased at the mesohaline river site by 130 ± 18 Mg biomass km?2 yr?1 (mean ± SE), a 2.5 times higher rate than the marine embayment site (52 ± 10 Mg biomass km?2 yr?1), suggesting local constraints on biomass production. At both sites, and across all vegetation categories, belowground C considerably outweighed aboveground biomass stocks, with belowground C stocks increasing at up to 230 ± 62 Mg C km?2 yr?1 (± SE) as mangrove forests developed. Over the past 70 years, we estimate mangrove encroachment may have already enhanced intertidal biomass by up to 283 097 Mg and belowground C stocks by over 500 000 Mg in the state of New South Wales alone. Under changing climatic conditions and rising sea levels, global blue carbon storage may be enhanced as mangrove encroachment becomes more widespread, thereby countering global warming.  相似文献   

11.
Mangrove forests are rapidly expanding their distribution in New Zealand, which is at the southern limit of their range. We investigated how these expanding mangrove forests develop through time. We assessed patterns in forest structure and function at the Firth of Thames, which is a rapidly accreting mangrove site in New Zealand where 1 km of mangrove of Avicennia marina has established seaward since the 1950s. Across the intertidal region, mangrove forest structure was highly variable. We used bomb-pulse radiocarbon dating to age the forest. Two major forest establishment events were identified; one in 1978–1981 and another in 1991–1995. These events coincided with sustained El Niño activity and are likely the result of reduced wind and wave energy at the site during these periods. We used the two forests of different ages to assess whether mangroves in New Zealand mature at similar rates as other mangroves and whether they conform to classic models of succession. The timing of forest maturation is similar in New Zealand as in more tropical locations with trees exhibiting features of mature forests as they age from about 10 to about 30 years. In older forest (~30 years old) trees become larger and stands more homogenous than in the younger forest (~10 years old). Carbon and nutrient concentrations in soils increased and soils become more aerobic in older forest compared to younger forest. Additionally, using fertilization experiments, we established that despite reduced growth rates in older forests, nitrogen remained limiting to growth in both older and young forests. However, in contrast to classic successional models leaf tissue nutrient concentrations and nutrient conservation (nutrient resorption from senescence leaf tissue) were similar in forests of differing ages and did not vary with fertilization. We conclude that mangrove forest expansion in New Zealand is influenced by climatic factors. Mangrove forests mature rapidly, even at the limits of their range and they satisfy many of the successional patterns predicted by Odum (1969) for the early stages of forest succession.  相似文献   

12.
Boreal forests are critical to the global carbon (C) cycle. Despite recent advances in our understanding of boreal C budgets, C dynamics during compositional transition to late-succession forests remain unclear. Using a carefully replicated 203-year chronosequence, we examined long-term patterns of forest C stocks and net ecosystem productivity (NEP) following stand-replacing fire in the boreal forest of central Canada. We measured all C pools, including understorey vegetation, belowground biomass, and soil C, which are often missing from C budgets. We found a slight decrease in total ecosystem C stocks during early stand initiation, between 1 and 8 years after fire, at ?0.90 Mg C ha?1 y?1. As stands regenerated, live vegetation biomass increased rapidly, with total ecosystem C stocks reaching a maximum of 287.72 Mg C ha?1 92 years after fire. Total ecosystem C mass then decreased in the 140- and 203-year-old stands, losing between ?0.50 and ?0.74 Mg C ha?1 y?1, contrasting with views that old-growth forests continue to maintain a positive C balance. The C decline corresponded with canopy transition from dominance of Populus tremuloides, Pinus banksiana, and Picea mariana in the 92-year-old stands to Betula papyrifera, Picea glauca, and Abies balsamea in the 203-year-old stands. Results from this study highlight the role of succession in long-term forest C dynamics and its importance when modeling terrestrial C flux.  相似文献   

13.
《Global Change Biology》2018,24(6):2325-2338
The role of mangroves in the blue carbon stock is critical and requires special focus. Mangroves are carbon‐rich forests that are not in steady‐state equilibrium at the decadal time scale. Over the last decades, the structure and zonation of mangroves have been largely disturbed by coastal changes and land use conversions. The amount of time since the last disturbance is a key parameter determining forest structure, but it has so far been overlooked in mangrove carbon stock projections. In particular, the carbon sequestration rates among mangrove successional ages after (re)establishment are poorly quantified and not used in large‐scale estimations of the blue carbon stock. Here, it is hypothesized that ecosystem age structure significantly modulates mangrove carbon stocks. We analysed a 66‐year chronosequence of the aboveground and belowground biomass and soil carbon stock of mangroves in French Guiana, and we found that in the year after forest establishment on newly formed mud banks, the aboveground, belowground and soil carbon stocks averaged 23.56 ± 7.71, 13.04 ± 3.37 and 84.26 ± 64.14 (to a depth of 1 m) Mg C/ha, respectively. The mean annual increment (MAI) in the aboveground and belowground reservoirs was 23.56 × Age−0.52 and 13.20 × Age−0.64 Mg C ha−1 year−1, respectively, and the MAI in the soil carbon reservoir was 3.00 ± 1.80 Mg C ha−1 year−1. Our results show that the plant carbon sink capacity declines with ecosystem age, while the soil carbon sequestration rate remains constant over many years. We suggest that global projections of the above‐ and belowground reservoirs of the carbon stock need to account for mangrove age structures, which result from historical changes in coastal morphology. Our work anticipates joint international efforts to globally quantify the multidecadal mangrove carbon balance based on the combined use of age‐based parametric equations and time series of mangrove age maps at regional scales.  相似文献   

14.
Mangroves provide numerous ecosystem services, including biodiversity values such as nesting sites for piscivorous waterbirds. High concentrations of waterbirds at nest sites are hypothesized to affect ecosystem dynamics, yet few studies have examined their effects as a nutrient source in mangroves. We examined the effects of nutrient enrichment by colonial waterbirds at a mangrove rookery in the Gulf of Fonseca, Honduras. We compared nutrient inputs via bird guano deposition and macronutrient levels in the vegetation and soils between a small island that hosted large numbers of roosting waterbirds and an adjacent island with little evidence of waterbird activity. Nest density at the rookery was 1721 ± 469 nests ha?1. Rookery birds deposited 7.2 ± 3.4 g m?2 day?1 guano dry weight, delivering an estimated 1.12 Mg ha?1 nitrogen and 0.16 Mg ha?1 phosphorus to the island over a 120 day breeding season. This large nutrient influx contributed to substantially higher concentrations of biologically important nutrients in the rookery soils (seven times more plant available phosphorus, eight times more nitrate, and two times more ammonium). Rookery mangrove leaves contained significantly higher concentrations of nitrogen and phosphorus compared to the control site. These results suggest that colonial waterbirds significantly influence nutrient dynamics of mangroves at local scales. Further research is needed to understand the effects of avian derived nutrients on mangrove growth rates, nutrient export to adjacent waters, invertebrate communities, and mangrove associated fisheries.  相似文献   

15.
Mangrove species are uniquely adapted to tropical and subtropical coasts, and although relatively low in number of species, mangrove forests provide at least US $1.6 billion each year in ecosystem services and support coastal livelihoods worldwide. Globally, mangrove areas are declining rapidly as they are cleared for coastal development and aquaculture and logged for timber and fuel production. Little is known about the effects of mangrove area loss on individual mangrove species and local or regional populations. To address this gap, species-specific information on global distribution, population status, life history traits, and major threats were compiled for each of the 70 known species of mangroves. Each species'' probability of extinction was assessed under the Categories and Criteria of the IUCN Red List of Threatened Species. Eleven of the 70 mangrove species (16%) are at elevated threat of extinction. Particular areas of geographical concern include the Atlantic and Pacific coasts of Central America, where as many as 40% of mangroves species present are threatened with extinction. Across the globe, mangrove species found primarily in the high intertidal and upstream estuarine zones, which often have specific freshwater requirements and patchy distributions, are the most threatened because they are often the first cleared for development of aquaculture and agriculture. The loss of mangrove species will have devastating economic and environmental consequences for coastal communities, especially in those areas with low mangrove diversity and high mangrove area or species loss. Several species at high risk of extinction may disappear well before the next decade if existing protective measures are not enforced.  相似文献   

16.
Mangrove forests are active carbon sinks and important for nutrient cycling in coastal ecosystems. Restoration of degraded mangrove habitats enhances return of ecosystem goods and services, including carbon sequestration. Our objective was to assess the restoration of primary productivity of reforested mangrove stands in comparison with natural reference stands in Gazi Bay, Kenya. Litter fall data were collected in nine Rhizophora mucronata and Sonneratia alba monospecific stands by use of litter traps over 2 years. Litter was emptied monthly, dried, sorted, and weighed. The reforested and natural stands showed seasonality patterns only in the production of reproductive material. Leaves constituted the highest percentage to total litter fall. Litter productivity rates for the R. mucronata stands were not significantly different and ranged from 6.61–10.15 to 8.36–11.02 t ha?1 yr?1 for the restored and natural stands, respectively. The productivity of 5 years R. mucronata stands reached 5.22 t ha?1 yr?1 and was significantly different from other stands. Litter productivity rates for S. alba stands was 7.77–7.85 for the restored stands and 10.15 t ha?1 yr?1 for the natural stand but differences were not significant. Our results indicate that plantations of at least 11 years have attained litter productivity rates comparable to the natural forests. This suggests that productivity of replanted mangroves is likely to reach complete recovery by this age under the prevailing environmental conditions.  相似文献   

17.
Origins of mangrove ecosystems and the mangrove biodiversity anomaly   总被引:7,自引:0,他引:7  
1. Mangrove species richness declines dramatically from a maximum in the Indo-West Pacific (IWP) to a minimum in the Caribbean and Western Atlantic. Explaining this ‘anomalous’ biogeographic pattern has been a focus of discussion for most of this century. 2. Two hypotheses have been put forward to explain the mangrove biodiversity anomaly. The ‘centre-of-origin hypothesis’ asserts that all mangrove taxa originated in the IWP and subsequently dispersed to other parts of the world. The ‘vicariance hypothesis’ asserts that mangrove taxa evolved around the Tethys Sea during the Late Cretaceous, and regional species diversity resulted from in situ diversification after continental drift. 3. Five lines of evidence are used to test between these two hypotheses. First, we review the mangrove fossil record. Second, we compare modern and fossil distributions of mangroves and eight genera of gastropods that show high fidelity to the mangrove environment. Third, we describe species-area relationships of mangroves and associated gastropods with respect to area of available habitat. Fourth, we analyse patterns of nestedness of individual plant and gastropod communities in mangrove forests. Fifth, we analyse patterns of nestedness of individual plant and gastropod species. 4. All five lines of evidence support the vicariance hypothesis. The first occurrences in the fossil record of most mangrove genera and many genera of gastropods associated with mangrove forests appear around the Tethys Sea from the Late Cretaceous through the Early Tertiary. Globally, species richness in any given mangrove forest is tightly correlated with available area. Patterns of nestedness at the community and species-level both point towards three independent regions of diversification of mangrove ecosystems: South-east Asia, the Caribbean and Eastern Pacific, and the Indian Ocean region.  相似文献   

18.
Mangrove species are broadly classified as ‘true mangroves’ and ‘mangrove associates’. We hypothesized that the leaf litter decomposition rates of true mangroves differ significantly from the mangrove associates under the same ecological and bio-climatic conditions. In order to test this hypothesis, the leaf litter decay rates of 24 true mangrove species and 10 mangrove associates along with the concomitant carbon and nitrogen dynamics of the litters were studied in the tropical mangrove forest of Sundarban by means of litter bags. The decomposition was monitored for six consecutive weeks in the pre-monsoon, monsoon and post-monsoon season. All the species in general went through a rapid decay phase in the first 2 weeks, however, the rate substantially decreased in the following 4 weeks. Most of the species studied had significant seasonal variability (p < 0.05) in the decay rate. Species-specific decay was highest throughout the monsoon and least during the post-monsoon season. The mean dry weight composition (i.e. percentage of dry weight of the leaf litters remaining at the end of weekly intervals) of the true mangroves was 10–12 % higher than the mangrove associates throughout the sampling period. The mean decay constants (K in week?1) of the true mangroves were 0.15 ± 0.05, 0.20 ± 0.06 and 0.16 ± 0.05 in the pre-monsoon, monsoon and post-monsoon season respectively. The mangrove associates had significantly higher decay constants in the respective seasons that followed the order 0.23 ± 0.09, 0.25 ± 0.06 and 0.24 ± 0.09. As a consequence, the computed mean half-life period of the true mangrove litters (32 ± 11 days) was much higher than the mangrove associates (23 ± 11 days). This showed that collectively the leaf litters of mangrove associates degraded at a much faster rate than the true mangroves throughout the annual cycle and thus our hypothesis was justified.  相似文献   

19.
Mangrove forests are highly productive and have large carbon sinks while also providing numerous goods and ecosystem services. However, effective management and conservation of the mangrove forests are often dependent on spatially explicit assessments of the resource. Given the remote and highly dispersed nature of mangroves, estimation of biomass and carbon in mangroves through routine field-based inventories represents a challenging task which is impractical for large-scale planning and assessment. Alternative approaches based on geospatial technologies are needed to support this estimation in large areas. However, spatial data processing and analysis approaches used in this estimation of mangrove biomass and carbon have not been adequately investigated. In this study, we present a spatially explicit analytical framework that integrate remotely sensed data and spatial analyses approaches to support the estimation of mangrove biomass and carbon stock and their spatial patterns in West Africa. Forest canopy height derived from SRTM and ICESat/GLAS data was used to estimate mangrove biomass and carbon in nine West African countries. We developed a geospatial software toolkit that implemented the proposed framework. The spatial analysis framework and software toolkit provide solid support for the estimation and relative comparisons of mangrove-related metrics. While the mean canopy height of mangroves in our study area is 10.2 m, the total biomass and carbon were estimated as 272.56 and 136.28 Tg. Nigeria has the highest total mangrove biomass and carbon in the nine countries, but Cameroon is the country with the largest mean biomass and carbon density. The resulting spatially explicit distributions of mangrove biomass and carbon hold great potential in guiding the strategic planning of large-scale field-based assessment of mangrove forests. This study demonstrates the utility of online geospatial data and spatial analysis as a feasible solution for estimating the distribution of mangrove biomass and carbon at larger or smaller scales.  相似文献   

20.
Aim The long‐term stability of coastal ecosystems such as mangroves and salt marshes depends upon the maintenance of soil elevations within the intertidal habitat as sea level changes. We examined the rates and processes of peat formation by mangroves of the Caribbean Region to better understand biological controls on habitat stability. Location Mangrove‐dominated islands on the Caribbean coasts of Belize, Honduras and Panama were selected as study sites. Methods Biological processes controlling mangrove peat formation were manipulated (in Belize) by the addition of nutrients (nitrogen or phosphorus) to Rhizophora mangle (red mangrove), and the effects on the dynamics of soil elevation were determined over a 3‐year period using rod surface elevation tables (RSET) and marker horizons. Peat composition and geological accretion rates were determined at all sites using radiocarbon‐dated cores. Results The addition of nutrients to mangroves caused significant changes in rates of mangrove root accumulation, which influenced both the rate and direction of change in elevation. Areas with low root input lost elevation and those with high rates gained elevation. These findings were consistent with peat analyses at multiple Caribbean sites showing that deposits (up to 10 m in depth) were composed primarily of mangrove root matter. Comparison of radiocarbon‐dated cores at the study sites with a sea‐level curve for the western Atlantic indicated a tight coupling between peat building in Caribbean mangroves and sea‐level rise over the Holocene. Main conclusions Mangroves common to the Caribbean region have adjusted to changing sea level mainly through subsurface accumulation of refractory mangrove roots. Without root and other organic inputs, submergence of these tidal forests is inevitable due to peat decomposition, physical compaction and eustatic sea‐level rise. These findings have relevance for predicting the effects of sea‐level rise and biophysical processes on tropical mangrove ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号