首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The conservation of mangroves and other coastal “blue carbon” ecosystems is receiving heightened attention because of recognition of their high ecosystem carbon stocks as well as vast areas undergoing land conversion. However, few studies have paired intact mangroves with degraded sites to determine carbon losses due to land conversion. To address this gap we quantified total ecosystem carbon stocks in mangroves and cattle pastures formed from mangroves in the large wetland complex of the Pantanos de Centla in SE Mexico. The mean total ecosystem carbon stocks of fringe and estuarine tall mangroves was 1358 Mg C/ha. In contrast the mean carbon stocks of cattle pastures was 458 Mg C/ha. Based upon a biomass equivalence of losses from the top 1 m of mangrove soils, the losses in carbon stocks from mangrove conversion are conservatively estimated at 1464 Mg CO2e/ha. These losses were 7-fold that of emissions from tropical dry forest to pasture conversion and 3-fold greater than emissions from Amazon forest to pasture conversion. However, we found that limiting ecosystem carbon stocks differences to the surface 1 m or even 2 m soil depth will miss losses that occurred from deeper horizons. Mangrove conversion to other land uses comes at a great cost in terms of greenhouse gas emissions as well losses of other important ecosystem services.  相似文献   

2.
Globally, carbon‐rich mangrove forests are deforested and degraded due to land‐use and land‐cover change (LULCC). The impact of mangrove deforestation on carbon emissions has been reported on a global scale; however, uncertainty remains at subnational scales due to geographical variability and field data limitations. We present an assessment of blue carbon storage at five mangrove sites across West Papua Province, Indonesia, a region that supports 10% of the world's mangrove area. The sites are representative of contrasting hydrogeomorphic settings and also capture change over a 25‐years LULCC chronosequence. Field‐based assessments were conducted across 255 plots covering undisturbed and LULCC‐affected mangroves (0‐, 5‐, 10‐, 15‐ and 25‐year‐old post‐harvest or regenerating forests as well as 15‐year‐old aquaculture ponds). Undisturbed mangroves stored total ecosystem carbon stocks of 182–2,730 (mean ± SD: 1,087 ± 584) Mg C/ha, with the large variation driven by hydrogeomorphic settings. The highest carbon stocks were found in estuarine interior (EI) mangroves, followed by open coast interior, open coast fringe and EI forests. Forest harvesting did not significantly affect soil carbon stocks, despite an elevated dead wood density relative to undisturbed forests, but it did remove nearly all live biomass. Aquaculture conversion removed 60% of soil carbon stock and 85% of live biomass carbon stock, relative to reference sites. By contrast, mangroves left to regenerate for more than 25 years reached the same level of biomass carbon compared to undisturbed forests, with annual biomass accumulation rates of 3.6 ± 1.1 Mg C ha?1 year?1. This study shows that hydrogeomorphic setting controls natural dynamics of mangrove blue carbon stocks, while long‐term land‐use changes affect carbon loss and gain to a substantial degree. Therefore, current land‐based climate policies must incorporate landscape and land‐use characteristics, and their related carbon management consequences, for more effective emissions reduction targets and restoration outcomes.  相似文献   

3.
In this paper we estimate the living carbon lost from Ecuador’s mangrove forests since the advent of export-focused shrimp aquaculture. We use remote sensing techniques to delineate the extent of mangroves and aquaculture at approximately decadal periods since the arrival of aquaculture in each Ecuadorian estuary. We then spatiotemporally calculate the carbon values of the mangrove forests and estimate the amount of carbon lost due to direct displacement by aquaculture. Additionally, we calculate the new carbon stocks generated due to mangrove reforestation or afforestation. This research introduces time and LUCC (land use / land cover change) into the tropical forest carbon literature and examines forest carbon loss at a higher spatiotemporal resolution than in many earlier analyses. We find that 80 percent, or 7,014,517 t of the living carbon lost in Ecuadorian mangrove forests can be attributed to direct displacement of mangrove forests by shrimp aquaculture. We also find that IPCC (Intergovernmental Panel on Climate Change) compliant carbon grids within Ecuador’s estuaries overestimate living carbon levels in estuaries where substantial LUCC has occurred. By approaching the mangrove forest carbon loss question from a LUCC perspective, these findings allow for tropical nations and other intervention agents to prioritize and target a limited set of land transitions that likely drive the majority of carbon losses. This singular cause of transition has implications for programs that attempt to offset or limit future forest carbon losses and place value on forest carbon or other forest good and services.  相似文献   

4.
Preliminary estimates of the ratio of mangrove forest: shrimp pond area necessary to remove nutrients from shrimp pond effluent are made using budgets of nitrogen and phosphorus output for semi-intensive and intensive shrimp ponds combined with estimates of total net primary production in Rhizophora-dominated mangrove forests in tropical coastal areas. If effluent is delivered directly to mangrove forest plots, it is estimated that, depending on shrimp pond management, between 2 and 22 hectares of forest are required to filter the nitrogen and phosphorus loads from effluent produced by a 1 hectare pond. While such ratios may apply to small scale, integrated shrimp aquaculture — mangrove forestry farming systems, the variability in mangrove hydrodynamics makes it difficult to apply such ratios at a regional scale. Before mangroves can be used to strip shrimp pond effluent more research is required on the effects that high ammonia and particulate organic matter loads in pond effluent have on nutrient transformations in mangrove sediments and on forest growth.  相似文献   

5.
Around 1990, when in other countries mangrove protection took off, massive conversion of mangrove forest into shrimp ponds started in the Mahakam delta. To identify constraints to and options for sustainable management we analysed institutions and constraints with stakeholders. In 3 sites we used participatory tools and a complementary survey to assess the livelihood framework. Since 1970, ponds for shrimp farming gradually replaced 75% of mangrove forested area. After 2004, recovery of mangrove took off, as, mainly due to low shrimp yields, ponds were abandoned. In 2008, 54% of the delta was dedicated to ponds for shrimp production. Around 80% of livelihood activities of pond-farmers, pond caretakers, and fishermen was related to mangroves. The involvement of men and women in these activities varied between sites and types. Poor households depended more on mangroves. Most activities resulted in seasonal income peaks; only a few activities resulted in a full daily livelihood. Ponds, on the other hand, provide 50% of households’ livelihood, but this remains vulnerable in the context of the risky shrimp production. Skewed land holding, unequal sharing of benefits, competing claims and vested interests of stakeholders pose a great challenge to a transition to a more sustainable use of the mangrove area. In particular, ponds located on peat soils are non-sustainable and would require full restoration into mangrove; ponds on other soils could best be transformed into a mixed mangrove-pond system using a ‘green-water’ technology.  相似文献   

6.
The coastal ecosystems of temperate North America provide a variety of ecosystem services including high rates of carbon sequestration. Yet, little data exist for the carbon stocks of major tidal wetland types in the Pacific Northwest, United States. We quantified the total ecosystem carbon stocks (TECS) in seagrass, emergent marshes, and forested tidal wetlands, occurring along increasing elevation and decreasing salinity gradients. The TECS included the total aboveground carbon stocks and the entire soil profile (to as deep as 3 m). TECS significantly increased along the elevation and salinity gradients: 217 ± 60 Mg C/ha for seagrass (low elevation/high salinity), 417 ± 70 Mg C/ha for low marsh, 551 ± 47 Mg C/ha for high marsh, and 1,064 ± 38 Mg C/ha for tidal forest (high elevation/low salinity). Soil carbon stocks accounted for >98% of TECS in the seagrass and marsh communities and 78% in the tidal forest. Soils in the 0–100 cm portion of the profile accounted for only 48%–53% of the TECS in seagrasses and marshes and 34% of the TECS in tidal forests. Thus, the commonly applied limit defining TECS to a 100 cm depth would greatly underestimate both carbon stocks and potential greenhouse gas emissions from land‐use conversion. The large carbon stocks coupled with other ecosystem services suggest value in the conservation and restoration of temperate zone tidal wetlands through climate change mitigation strategies. However, the findings suggest that long‐term sea‐level rise effects such as tidal inundation and increased porewater salinity will likely decrease ecosystem carbon stocks in the absence of upslope wetland migration buffer zones.  相似文献   

7.
《Global Change Biology》2018,24(6):2325-2338
The role of mangroves in the blue carbon stock is critical and requires special focus. Mangroves are carbon‐rich forests that are not in steady‐state equilibrium at the decadal time scale. Over the last decades, the structure and zonation of mangroves have been largely disturbed by coastal changes and land use conversions. The amount of time since the last disturbance is a key parameter determining forest structure, but it has so far been overlooked in mangrove carbon stock projections. In particular, the carbon sequestration rates among mangrove successional ages after (re)establishment are poorly quantified and not used in large‐scale estimations of the blue carbon stock. Here, it is hypothesized that ecosystem age structure significantly modulates mangrove carbon stocks. We analysed a 66‐year chronosequence of the aboveground and belowground biomass and soil carbon stock of mangroves in French Guiana, and we found that in the year after forest establishment on newly formed mud banks, the aboveground, belowground and soil carbon stocks averaged 23.56 ± 7.71, 13.04 ± 3.37 and 84.26 ± 64.14 (to a depth of 1 m) Mg C/ha, respectively. The mean annual increment (MAI) in the aboveground and belowground reservoirs was 23.56 × Age−0.52 and 13.20 × Age−0.64 Mg C ha−1 year−1, respectively, and the MAI in the soil carbon reservoir was 3.00 ± 1.80 Mg C ha−1 year−1. Our results show that the plant carbon sink capacity declines with ecosystem age, while the soil carbon sequestration rate remains constant over many years. We suggest that global projections of the above‐ and belowground reservoirs of the carbon stock need to account for mangrove age structures, which result from historical changes in coastal morphology. Our work anticipates joint international efforts to globally quantify the multidecadal mangrove carbon balance based on the combined use of age‐based parametric equations and time series of mangrove age maps at regional scales.  相似文献   

8.
The conversion of mangrove forest to aquaculture ponds has been increasing in recent decades. One of major concerns of this habitat loss is the release of stored ‘blue’ carbon from mangrove soils to the atmosphere. In this study, we assessed carbon dioxide (CO2) efflux from soil in intensive shrimp ponds in Bali, Indonesia. We measured CO2 efflux from the floors and walls of shrimp ponds. Rates of CO2 efflux within shrimp ponds were 4.37 kg CO2 m−2 y−1 from the walls and 1.60 kg CO2 m−2 y−1 from the floors. Combining our findings with published data of aquaculture land use in Indonesia, we estimated that shrimp ponds in this region result in CO2 emissions to the atmosphere between 5.76 and 13.95 Tg y−1. The results indicate that conversion of mangrove forests to aquaculture ponds contributes to greenhouse gas emissions that are comparable to peat forest conversion to other land uses in Indonesia. Higher magnitudes of CO2 emission may be released to atmosphere where ponds are constructed in newly cleared mangrove forests. This study indicates the need for incentives that can meet the target of aquaculture industry without expanding the converted mangrove areas, which will lead to increased CO2 released to atmosphere.  相似文献   

9.
Mangroves are among the most carbon-dense ecosystems on the planet. The capacity of mangroves to store and accumulate carbon has been assessed and reported at regional, national and global scales. However, small-scale sampling is still revealing ‘hot spots’ of carbon accumulation. This study reports one of these hotspots, with one of the largest-recorded carbon stocks in mangroves associated with sinkholes (cenotes) in the Yucatan Peninsula, Mexico. We assessed soil organic carbon (SOC) stocks, sequestration rates and carbon origin of deep peat soils (1 to 6 m). We found massive amounts of SOC up to 2792 Mg C ha−1, the highest value reported in the literature so far. This SOC is primarily derived from highly preserved mangrove roots and has changed little since its deposition, which started over 3220 years ago (±30 BP). Most cenotes are owned by Mayan communities and are threatened by increased tourism and the resulting extraction and pollution of groundwater. These hot spots of carbon sequestration, albeit small in area, require adequate protection and could provide valuable financial opportunities through carbon-offsetting mechanisms and other payments for ecosystem services.  相似文献   

10.
Mangroves and brackishwater pond culture in the Philippines   总被引:1,自引:1,他引:0  
Around 50% of mangrove loss in the Philippines can be traced to brackishwater pond construction. The decrease in mangroves from 450 000 ha in 1920 to 132 500 ha in 1990 has been accompanied by expansion of culture ponds to 223 000 ha in 1990. The history of fishpond development in the country includes a government-sponsored fishpond boom in the 1950-g and 1960s, the proconservation decade of the 1970s followed by a shrimp fever in the 1980s. Production from brackisshwater ponds has increased from 15 900 mt worth P7.6 million in 1938 to 267 000 mt valued at P6.5 billion in 1990. On the other hand, the maximum valuation of over $11 000 ha–1 yr–1 for unmanaged and managed mangrove forests makes them economically on par with the most profitable pond farming systems. The loss of mangrove systems and their varied goods and services is the single most important consequence of brackishwater pond culture in the Philippines. Moreover, intensive shrimp farming is associated with other ecological and socioeconomic effects such as pollution of coastal waters and decline in domestic food crops. New legislation and enforcement of existing laws, conservation of remaining mangroves, massive rehabilitation of denuded mangrove areas, and promotion of sustainable aquaculture and fisheries are recommended.  相似文献   

11.
Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.  相似文献   

12.
Mangrove forests play an important role in climate change adaptation and mitigation by maintaining coastline elevations relative to sea level rise, protecting coastal infrastructure from storm damage, and storing substantial quantities of carbon (C) in live and detrital pools. Determining the efficacy of mangroves in achieving climate goals can be complicated by difficulty in quantifying C inputs (i.e., differentiating newer inputs from younger trees from older residual C pools), and mitigation assessments rarely consider potential offsets to CO2 storage by methane (CH4) production in mangrove sediments. The establishment of non‐native Rhizophora mangle along Hawaiian coastlines over the last century offers an opportunity to examine the role mangroves play in climate mitigation and adaptation both globally and locally as novel ecosystems. We quantified total ecosystem C storage, sedimentation, accretion, sediment organic C burial and CH4 emissions from ~70 year old R. mangle stands and adjacent uninvaded mudflats. Ecosystem C stocks of mangrove stands exceeded mudflats by 434 ± 33 Mg C/ha, and mangrove establishment increased average coastal accretion by 460%. Sediment organic C burial increased 10‐fold (to 4.5 Mg C ha?1 year?1), double the global mean for old growth mangrove forests, suggesting that C accumulation from younger trees may occur faster than previously thought, with implications for mangrove restoration. Simulations indicate that increased CH4 emissions from sediments offset ecosystem CO2 storage by only 2%–4%, equivalent to 30–60 Mg CO2‐eq/ha over mangrove lifetime (100 year sustained global warming potential). Results highlight the importance of mangroves as novel systems that can rapidly accumulate C, have a net positive atmospheric greenhouse gas removal effect, and support shoreline accretion rates that outpace current sea level rise. Sequestration potential of novel mangrove forests should be taken into account when considering their removal or management, especially in the context of climate mitigation goals.  相似文献   

13.
From half a million hectares at the turn of the century, Philippine mangroves have declined to only 120,000 ha while fish/shrimp culture ponds have increased to 232,000 ha. Mangrove replanting programs have thus been popular, from community initiatives (1930s–1950s) to government-sponsored projects (1970s) to large-scale international development assistance programs (1980s to present). Planting costs escalated from less than US$100 to over $500/ha, with half of the latter amount allocated to administration, supervision and project management. Despite heavy funds for massive rehabilitation of mangrove forests over the last two decades, the long-term survival rates of mangroves are generally low at 10–20%. Poor survival can be mainly traced to two factors: inappropriate species and site selection. The favored but unsuitable Rhizophora are planted in sandy substrates of exposed coastlines instead of the natural colonizers Avicennia and Sonneratia. More significantly, planting sites are generally in the lower intertidal to subtidal zones where mangroves do not thrive rather than the optimal middle to upper intertidal levels, for a simple reason. Such ideal sites have long been converted to brackishwater fishponds whereas the former are open access areas with no ownership problems. The issue of pond ownership may be complex and difficult, but such should not outweigh ecological requirements: mangroves should be planted where fishponds are, not on seagrass beds and tidal flats where they never existed. This paper reviews eight mangrove initiatives in the Philippines and evaluates the biophysical and institutional factors behind success or failure. The authors recommend specific protocols (among them pushing for a 4:1 mangrove to pond ratio recommended for a healthy ecosystem) and wider policy directions to make mangrove rehabilitation in the country more effective.  相似文献   

14.
杨平  金宝石  谭立山  仝川 《生态学报》2018,38(6):1994-2006
以福建闽江和九龙江河口陆基养虾塘为研究对象,通过野外原位观测和室内模拟培养实验,开展了河口陆基养虾塘养殖期间水体溶解性有机碳(DOC)和溶解性无机碳(DIC)及养虾塘沉积物-水界面碳交换通量变化特征的研究。结果表明:时间变化上,养虾塘水体溶解性碳浓度及沉积物-水界面碳通量在闽江河口呈现8月中旬10月中旬6月中旬的特征,在九龙江河口表现为随养殖阶段推移而增加的趋势;空间变化上,闽江河口养虾塘水体溶解性碳浓度及沉积物-水界面碳通量显著高于九龙江河口;沉积物释放溶解性碳速率与水体溶解性碳浓度呈现显著正相关关系,沉积物碳释放过程是引起养虾塘水体溶解性碳浓度时空变化的重要因素。表明河口区水产养虾塘碳循环研究时需考虑不同形态碳生物地球化学循环的时空差异性。  相似文献   

15.
One of the most serious threats to tropical mangrove ecosystems caused by shrimp farming activities is the poor management of pond waste materials. We hypothesise that mangroves can tolerate chemical residues discharged from shrimp farms and can be used as biofilters, but the capability of mangroves to cope with solid sediments dredged from shrimp ponds is limited. Our study in Pak Phanang, Thailand, confirmed that the excess sediments discharged from nearby shrimp ponds reduced mangrove growth rates and increased mortality rates. A series of transformed multi-temporal satellite images was used in combination with the field data to support this claim. In addition, a comparison between four dominant mangrove species revealed that Avicennia marina could tolerate sedimentation rates of >6 cm year−1, while Bruguiera cylindrica tolerated sedimentation rates of 5 cm year−1 (total sediment depth = 25 cm) before dying, while Excoecaria agallocha and Lumnitzera racemosa performed intermediate. This outcome implied that in our situation A. marina and to lesser extent E. agallocha and L. racemosa could be more effective as biofilters than B. cylindrica, as they may survive the sedimentation longer in the disposal areas. Further studies on the impact of sedimentation and chemical pollution of shrimp farm wastes on mangrove mortality and growth are required.  相似文献   

16.
Mangroves have been identified as blue carbon ecosystems that are natural carbon sinks. In Bangladesh, the establishment of mangrove plantations for coastal protection has occurred since the 1960s, but the plantations may also be a sustainable pathway to enhance carbon sequestration, which can help Bangladesh meet its greenhouse gas (GHG) emission reduction targets, contributing to climate change mitigation. As a part of its Nationally Determined Contribution (NDC) under the Paris Agreement 2016, Bangladesh is committed to limiting the GHG emissions through the expansion of mangrove plantations, but the level of carbon removal that could be achieved through the establishment of plantations has not yet been estimated. The mean ecosystem carbon stock of 5–42 years aged (average age: 25.5 years) mangrove plantations was 190.1 (±30.3) Mg C ha−1, with ecosystem carbon stocks varying regionally. The biomass carbon stock was 60.3 (±5.6) Mg C ha−1 and the soil carbon stock was 129.8 (±24.8) Mg C ha−1 in the top 1 m of which 43.9 Mg C ha−1 was added to the soil after plantation establishment. Plantations at age 5 to 42 years achieved 52% of the mean ecosystem carbon stock calculated for the reference site (Sundarbans natural mangroves). Since 1966, the 28,000 ha of established plantations to the east of the Sundarbans have accumulated approximately 76,607 Mg C year−1 sequestration in biomass and 37,542 Mg C year−1 sequestration in soils, totaling 114,149 Mg C year−1. Continuation of the current plantation success rate would sequester an additional 664,850 Mg C by 2030, which is 4.4% of Bangladesh's 2030 GHG reduction target from all sectors described in its NDC, however, plantations for climate change mitigation would be most effective 20 years after establishment. Higher levels of investment in mangrove plantations and higher plantation establishment success could contribute up to 2,098,093 Mg C to blue carbon sequestration and climate change mitigation in Bangladesh by 2030.  相似文献   

17.
Among the many ecosystem services provided by mangrove ecosystems, their role in carbon (C) sequestration and storage is quite high compared to other tropical forests. Mangrove forests occupy less than 1 % of tropical forested areas but account for approximately 3 % of global carbon sequestration by tropical forests. Yet there remain many areas where little data on the size and variation of mangrove C stocks exist. To address this gap and examine the range of C stocks in mangroves at landscape scales, we quantified C stocks of Honduran mangroves along the Pacific and Caribbean coasts and the Bay Islands. We also examined differences in ecosystem C stocks due to size and structure of mangrove vegetation found in Honduras. Ecosystem C stocks ranged from 570 Mg C ha?1 in the Pacific coast to ~1000 Mg C ha?1 in Caribbean coast and the Bay Islands. Ecosystem C stocks on the basis of mangrove structure were 1200, 800 and 900 Mg C ha?1, in low, medium and tall mangroves, respectively. We did not find significant differences in ecosystem C stocks on the basis of location (Pacific coast, Caribbean coast and Bay Islands) or mangrove type (low, medium and tall). Mangrove soils represented the single largest pool of total C in these ecosystems, with 87, 81 and 94 % at the Pacific coast, Caribbean coast and the Bay Islands, respectively. While there were no significant differences in total ecosystem stocks among mangrove types, there were differences in where carbon is stored. Mangrove soils among low, medium and tall mangroves contained 99, 93 and 80 % of the total ecosystem C stocks. In addition, we found a small yet significant negative correlation between vegetation C pools and pore water salinity and pH at the sampled sites. Conversion of mangroves into other land use types such as aquaculture or agriculture could result in loses of these soil C reserves due to mineralization and oxidation. Coupled with their other ecosystem services, an understanding of the size of mangrove ecosystem C stocks underscores their values in the formulation of conservation and climate change mitigation strategies in Central America.  相似文献   

18.
Global vegetated coastal habitats (VCHs) represent a large sink for organic carbon (OC) stored within their soils. The regional patterns and causes of spatial variation, however, remain uncertain. The sparsity and regional bias of studies on soil OC stocks from Chinese VCHs have limited the reliable estimation of their capacity as regional and global OC sinks. Here, we use field and published data from 262 sampled soil cores and 181 surface soils to report estimates of soil OC stocks, burial rates and losses of VCHs in China. We find that Chinese mangrove, salt marsh and seagrass habitats have relatively low OC stocks, storing 6.3 ± 0.6, 7.5 ± 0.6, and 1.6 ± 0.6 Tg C (±95% confidence interval) in the top meter of the soil profile with burial rates of 44 ± 17, 159 ± 57, and 6 ± 45 Gg C/year, respectively. The variability in the soil OC stocks is linked to biogeographic factors but is mostly impacted by sedimentary processes and anthropic activities. All habitats have experienced significant losses, resulting in estimated emissions of 94.2–395.4 Tg CO2e (carbon dioxide equivalent) over the past 70 years. Reversing this trend through conservation and restoration measures has, therefore, great potential in contributing to the mitigation of climate change while providing additional benefits. This assessment, on a national scale from highly sedimentary environments under intensive anthropogenic pressures, provides important insights into blue carbon sink mechanism and sequestration capacities, thus contributing to the synchronous progression of global blue carbon management.  相似文献   

19.
Joseph Rasowo 《Hydrobiologia》1992,247(1-3):209-214
Pond culture of brackishwater prawns and shrimps has recently generated much interest in Kenya. The mangrove areas are the target zones for the construction of these ponds. With the increasing awareness of the unique ecological role played by the mangroves, there is an urgent need to stop the conversion of mangrove swamps into aquaculture ponds. To develop pond aquaculture without destroying the mangroves, a shift from tide-fed to pump-fed pond systems is recommended in order to divert the farming from the mangroves to higher grounds. Mangrove-friendly mariculture practices like pen, cage and raft culture are discussed. Methods of efficiently utilising the already destroyed mangrove areas are considered.  相似文献   

20.
李婷  叶勇 《生态学报》2012,32(9):2810-2818
模拟直接排入红树林的虾池清塘排出物在林地的不同沉积厚度(0、2、4、8 cm),研究其对培养424 d的红树植物老鼠簕(Acanthus ilicifolius)幼苗生长和生理的影响。清塘排出物的加入对老鼠簕幼苗茎高、基径、叶片数、叶面积、生物量和相对生长率等生长指标都有显著促进作用。总体长势表现为沉积厚度8 cm>4 cm> 2 cm>0 cm。生长指标显示只需少量清塘排出物的沉积(沉积厚度2 cm、4 cm)就能对幼苗的生长产生明显的促进作用,但大量排出物沉积的积累并不会带来更明显的促进作用。清塘排出物沉积的加入能显著提高叶片光合能力,尤其利于叶绿素a的合成。沉积厚度2 cm和4 cm时,幼苗叶片游离脯氨酸的积累并不显著,但丙二醛、可溶性糖、可溶性蛋白含量显著高于正常水平;沉积厚度8 cm则使叶片中游离脯氨酸、丙二醛和水溶性化合物均有大量积累;而叶片中抗氧化酶活性只有在大量沉积物加入(沉积厚度8 cm)时才显著低于对照组水平。总之,老鼠簕幼苗对清塘排出物沉积厚度4 cm以下具有较强的抗逆性和适应力,沉积厚度8 cm会使老鼠簕幼苗受到一定程度的逆境伤害,但本实验期间还未影响其生长。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号