首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Scant information is available on how soil phosphorus (P) availability responds to atmospheric nitrogen (N) deposition, especially in the tropical zones. This study examined the effect of N addition on soil P availability, and compared this effect between forest sites of contrasting land‐use history. Effects of N addition on soil properties, litterfall production, P release from decomposing litter, and soil P availability were studied in a disturbed (reforested pine forest with previous understory vegetation and litter harvesting) and a rehabilitated (reforested mixed pine/broadleaf forest with no understory vegetation and litter harvesting) tropical forest in southern China. Experimental N‐treatments (above ambient) were the following: Control (no N addition), N50 (50 kg N ha?1 yr?1), and N100 (100 kg N ha?1 yr?1). Results indicated that N addition significantly decreased soil P availability in the disturbed forest. In the rehabilitated forest, however, soil P availability was significantly increased by N addition. Decreases in soil P availability may be correlated with decreases in rates of P release from decomposing litter in the N‐treated plots, whereas the increase in soil P availability was correlated with an increase in litterfall production. Our results suggest that response of soil P availability to N deposition in the reforested tropical forests in southern China may vary greatly with temporal changes in tree species composition and soil nutrient status, caused by different land‐use practices.  相似文献   

2.
Natural forests in South‐East Asia have been extensively converted into other land‐use systems in the past decades and still show high deforestation rates. Historically, lowland forests have been converted into rubber forests, but more recently, the dominant conversion is into oil palm plantations. While it is expected that the large‐scale conversion has strong effects on the carbon cycle, detailed studies quantifying carbon pools and total net primary production (NPPtotal) in above‐ and belowground tree biomass in land‐use systems replacing rainforest (incl. oil palm plantations) are rare so far. We measured above‐ and belowground carbon pools in tree biomass together with NPPtotal in natural old‐growth forests, ‘jungle rubber’ agroforests under natural tree cover, and rubber and oil palm monocultures in Sumatra. In total, 32 stands (eight plot replicates per land‐use system) were studied in two different regions. Total tree biomass in the natural forest (mean: 384 Mg ha?1) was more than two times higher than in jungle rubber stands (147 Mg ha?1) and >four times higher than in monoculture rubber and oil palm plantations (78 and 50 Mg ha?1). NPPtotal was higher in the natural forest (24 Mg ha?1 yr?1) than in the rubber systems (20 and 15 Mg ha?1 yr?1), but was highest in the oil palm system (33 Mg ha?1 yr?1) due to very high fruit production (15–20 Mg ha?1 yr?1). NPPtotal was dominated in all systems by aboveground production, but belowground productivity was significantly higher in the natural forest and jungle rubber than in plantations. We conclude that conversion of natural lowland forest into different agricultural systems leads to a strong reduction not only in the biomass carbon pool (up to 166 Mg C ha?1) but also in carbon sequestration as carbon residence time (i.e. biomass‐C:NPP‐C) was 3–10 times higher in the natural forest than in rubber and oil palm plantations.  相似文献   

3.
Mangrove swamps are key ecosystems along the Vietnam coast. Although mangrove litter is thought to represent an important input of organic matter and nutrients to the coastal aquatic systems, the factors determining the quality and size of this litter flux have not been studied so far. We monitored leaf, stipule, twig, and reproductive litter monthly in monocultures of Rhizophora apiculata mangrove forests of 7, 11, 17 and 24 years old in the Camau province, Mekong Delta, Vietnam. Litter traps were used to measure litter fall production from June 2001 till May 2002. Total litter fall was in the range of 8.86–14.16 t DW ha−1 year−1. Leaves were the main component, and represented 70% of litter fall production in all stands. Total litter fall was lower in the older stands but the amount of reproductive litter was significantly higher in these stands (17 and 24 years). Biomass of leaf litter was highest between the end of the wet season and the beginning of the dry season. Phosphorus and nitrogen levels in leaf litter were significantly higher in younger than in older stands. Overall, our study indicated that young stands produced the highest input of litter and particularly of nitrogen and phosphorus to the surrounding aquatic system. Consequently, these stands contribute significantly to the fisheries.  相似文献   

4.
In the present study the tidal transport of macrolitter between the mangrove forest in Gazi bay (Kenya) and the adjacent seagrass meadows in the bay was investigated, by deploying large standing nets, which extended over the entire height of the water column, in the transition zone between both ecosystems. In addition, the presence of macrolitter on the floor ofRhizophora mucronata andCeriops tagal stands was studied. The macromaterial (>2 mm) that was collected with the nets consisted of mangrove material (26%, mostly leaf material), seagrass leaves (60%) and macroalgae (14%). Transport was bidirectional, indicating shuttle movements of the litter, driven by the opposite flow direction of flood and ebb tides. Litter from the mangrove species consisted mainly of leaves from species occurring at the outer zone of the forest,i.e., Rhizophora mucronata andSonneratia alba. This finding suggests that the complex spatial structure of the forest hampers outflow of macrolitter from the more inner parts. Consequently, this material remains trapped within the forest. The dominant presence of seagrass litter in the macromaterial transported with the tidal water, and the conspicuous and persistent presence of seagrass litter in the low lying, peripheralR. mucronata plots (but not in the more elevatedC. tagal plots) suggest that the mangrove forest of Gazi bay is the recipient of carbon and nutrients from the seagrass system. It is hypothesized that the element cycling of the inner parts of the mangrove forest proceeds as that of a rather closed system, whereas element cycling in the outer parts has conspicuous reciprocal connections with the adjacent seagrass meadows.  相似文献   

5.
The net primary productivity, carbon (C) stocks and turnover rates (i.e. C dynamics) of tropical forests are an important aspect of the global C cycle. These variables have been investigated in lowland tropical forests, but they have rarely been studied in tropical montane forests (TMFs). This study examines spatial patterns of above‐ and belowground C dynamics along a transect ranging from lowland Amazonia to the high Andes in SE Peru. Fine root biomass values increased from 1.50 Mg C ha?1 at 194 m to 4.95 ± 0.62 Mg C ha?1 at 3020 m, reaching a maximum of 6.83 ± 1.13 Mg C ha?1 at the 2020 m elevation site. Aboveground biomass values decreased from 123.50 Mg C ha?1 at 194 m to 47.03 Mg C ha?1 at 3020 m. Mean annual belowground productivity was highest in the most fertile lowland plots (7.40 ± 1.00 Mg C ha?1 yr?1) and ranged between 3.43 ± 0.73 and 1.48 ± 0.40 Mg C ha?1 yr?1 in the premontane and montane plots. Mean annual aboveground productivity was estimated to vary between 9.50 ± 1.08 Mg C ha?1 yr?1 (210 m) and 2.59 ± 0.40 Mg C ha?1 yr?1 (2020 m), with consistently lower values observed in the cloud immersion zone of the montane forest. Fine root C residence time increased from 0.31 years in lowland Amazonia to 3.78 ± 0.81 years at 3020 m and stem C residence time remained constant along the elevational transect, with a mean of 54 ± 4 years. The ratio of fine root biomass to stem biomass increased significantly with increasing elevation, whereas the allocation of net primary productivity above‐ and belowground remained approximately constant at all elevations. Although net primary productivity declined in the TMF, the partitioning of productivity between the ecosystem subcomponents remained the same in lowland, premontane and montane forests.  相似文献   

6.
Recolonisation by crab species and sediment-infauna taxa (at class level) in artificially regenerated mangrove stands of Avicennia marina, Rhizophora mucronata and Sonneratia alba (5 yr old) were studied using respective bare sites (open without mangroves or denuded) and natural sites (relatively undisturbed) as controls. The controls were chosen based on site history, physical proximity and tidal inundation class in reference to the particular reforested mangrove stand and samples randomly taken. A number of environmental variables were measured; interstitial water salinity and temperature (measured at low tide) were lower, whereas sediment organic matter content was higher in the areas with mangrove cover, with the natural sites having the highest content. The bare sites were generally sandier, whereas the areas with mangrove cover had higher proportions of clay and silt. Generally, there was a higher crab density in the reforested sites than in the bare sites, whereas crab species diversity (Shannon diversity index) did not vary from one site to another for any of the mangrove species. In terms of crab species composition, the reforested sites were more similar (Sørensen similarity coefficient) to the natural sites and less to the bare controls. For sediment-infauna, the reforested sites had a significantly higher density than the respective bare controls, while the natural sites had the highest density. The number of sediment-infauna taxa in both the reforested and natural sites of all the mangrove species was similar and higher than in the comparable bare sites. The results suggest that the reforested sites are supporting more faunal recolonisation, and therefore becoming more akin to the natural mangrove sites in terms of the investigated functional indicators. The findings seem to support the use of artificial mangrove regeneration (in areas where natural regeneration has been impeded by physical conditions or otherwise) as an effective management tool in the restoration and conservation of the functional integrity of degraded mangrove habitats.Key words: Crabs, Environmental variables, Kenya, Recolonisation, Restored mangroves, Sediment-infauna  相似文献   

7.
From 1996 to 2002, we measured litterfall, standing litter crop, and litter turnover rates in scrub, basin, fringe and riverine forests in two contrasting mangrove ecosystems: a carbonate-dominated system in the Southeastern Everglades and a terrigenous-dominated system in Laguna de Terminos (LT), Mexico. We hypothesized that litter dynamics is driven by latitude, geomorphology, hydrology, soil fertility and soil salinity stress. There were significant temporal patterns in LT with litterfall rates higher during the rainy season (2.4 g m−2 day−1) than during the dry season (1.8 g m−2 day−1). Total annual litterfall was significantly higher in the riverine forest (12.8 Mg ha−2 year−1) than in the fringe and basin forests (9.7 and 5.2 Mg ha−2 year−1, respectively). In Southeastern Everglades, total annual litterfall was also significantly higher during the rainy season than during the dry season. Spatially, the scrub forest had the lowest annual litterfall (2.5 Mg ha−2 year−1), while the fringe and basin had the highest (9.1 and 6.5 Mg ha−2 year−1, respectively). In LT, annual standing litter crop was 3.3 Mg ha−1 in the fringe and 2.2 Mg ha−1 in the basin. Litter turnover rates were significantly higher in the fringe mangrove forest (4.1 year−1) relative to the basin forests (2.2 year−1). At Southeastern Everglades there were significant differences in annual standing litter crop: 1.9, 3.3 and 4.5 Mg ha−1 at scrub, basin and fringe mangrove sites, respectively. Furthermore, turnover rates were similar at both basin and fringe mangrove types (2.1 and 2.0 year−1, respectively) but significantly higher than scrub mangrove forest (1.3 year−1). These findings suggest that litter export is important in regulating litter turnover rates in frequently flooded riverine and fringe forests, while in infrequently flooded basin forests, in situ litter decomposition controls litter turnover rates.  相似文献   

8.
Rice  Steven K.  Westerman  Bryant  Federici  Robert 《Plant Ecology》2004,174(1):97-107
We investigated the influence of the exotic nitrogen-fixing black locust (Robinia pseudoacacia) on nitrogen cycling in a pitch pine (Pinus rigida) −scrub oak (Quercus ilicifolia, Q. prinoides) ecosystem. Within paired pine-oak and adjacent black locust stands that were the result of a 20-35 year-old invasion, we evaluated soil nutrient contents, soil nitrogen transformation rates, and annual litterfall biomass and nitrogen concentrations. In the A horizon, black locust soils had 1.3-3.2 times greater nitrogen concentration relative to soils within pine-oak stands. Black locust soils also had elevated levels of P and Ca, net nitrification rates and total net N-mineralization rates. Net nitrification rates were 25-120 times greater in black locust than in pine-oak stands. Elevated net N-mineralization rates in black locust stands were associated with an abundance of high nitrogen, low lignin leaf litter, with 86 kg N ha–1 yr–1 in leaf litter returned compared with 19 kg N ha–1 yr–1 in pine-oak stands. This difference resulted from a two-fold greater litterfall mass combined with increased litter nitrogen concentration in black locust stands (1.1% and 2.6% N for scrub oak and black locust litter, respectively). Thus, black locust supplements soil nitrogen pools, increases nitrogen return in litterfall, and enhances soil nitrogen mineralization rates when it invades nutrient poor, pine-oak ecosystems. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Abstract. Litter fall and litter decomposition were studied in four mature stands of Pinus sylvestris (Scots pine) in the eastern Pyrenees. The stands were located in environments differing in bedrock type and exposition and were studied for two years. Mass-loss during the first year of decomposition was compared with other European P. sylvestris forests and regressed with environmental variables (temperature and rainfall) and latitude. The results suggested that the mean amount of needle fall (1760 kg-ha-1·yr-1) was within the range reported for northern European stands. There were more differences in the amount of litter fall between the four stands than between the two years studied. However, the needle fall pattern over the year showed significant differences between years in three of the four stands. Litter decomposition was similar in all the stands and only the one in drier conditions showed a lower decomposition rate. On the European scale the decomposition rate was positively related to mean annual temperature and annual rainfall. However, regression analysis suggests that there are other factors, not taken into account in this study, that are important for predicting the decomposition rate.  相似文献   

10.
We used satellite‐derived estimates of global fire emissions and a chemical transport model to estimate atmospheric nitrogen (N) fluxes from savanna and deforestation fires in tropical ecosystems. N emissions and reactive N deposition led to a net transport of N equatorward, from savannas and areas undergoing deforestation to tropical forests. Deposition of fire‐emitted N in savannas was only 26% of emissions – indicating a net export from this biome. On average, net N loss from fires (the sum of emissions and deposition) was equivalent to approximately 22% of biological N fixation (BNF) in savannas (4.0 kg N ha?1 yr?1) and 38% of BNF in ecosystems at the deforestation frontier (9.3 kg N ha?1 yr?1). Net N gains from fires occurred in interior tropical forests at a rate equivalent to 3% of their BNF (0.8 kg N ha?1 yr?1). This percentage was highest for African tropical forests in the Congo Basin (15%; 3.4 kg N ha?1 yr?1) owing to equatorward transport from frequently burning savannas north and south of the basin. These results provide evidence for cross‐biome atmospheric fluxes of N that may help to sustain productivity in some tropical forest ecosystems on millennial timescales. Anthropogenic fires associated with slash and burn agriculture and deforestation in the southern part of the Amazon Basin and across Southeast Asia have substantially increased N deposition in these regions in recent decades and may contribute to increased rates of carbon accumulation in secondary forests and other N‐limited ecosystems.  相似文献   

11.
Changes in carbon storage and fluxes in a chronosequence of ponderosa pine   总被引:14,自引:1,他引:13  
Forest development following stand‐replacing disturbance influences a variety of ecosystem processes including carbon exchange with the atmosphere. On a series of ponderosa pine (Pinius ponderosa var. Laws.) stands ranging from 9 to> 300 years in central Oregon, USA, we used biological measurements to estimate carbon storage in vegetation and soil pools, net primary productivity (NPP) and net ecosystem productivity (NEP) to examine variation with stand age. Measurements were made on plots representing four age classes with three replications: initiation (I, 9–23 years), young (Y, 56–89 years), mature (M, 95–106 years), and old (O, 190–316 years) stands typical of the forest type in the region. Net ecosystem productivity was lowest in the I stands (?124 g C m?2 yr?1), moderate in Y stands (118 g C m?2 yr?1), highest in M stands (170 g C m?2 yr?1), and low in the O stands (35 g C m?2 yr?1). Net primary productivity followed similar trends, but did not decline as much in the O stands. The ratio of fine root to foliage carbon was highest in the I stands, which is likely necessary for establishment in the semiarid environment, where forests are subject to drought during the growing season (300–800 mm precipitation per year). Carbon storage in live mass was the highest in the O stands (mean 17.6 kg C m?2). Total ecosystem carbon storage and the fraction of ecosystem carbon in aboveground wood mass increased rapidly until 150–200 years, and did not decline in older stands. Forest inventory data on 950 ponderosa pine plots in Oregon show that the greatest proportion of plots exist in stands ~ 100 years old, indicating that a majority of stands are approaching maximum carbon storage and net carbon uptake. Our data suggests that NEP averages ~ 70 g C m?2 year?1 for ponderosa pine forests in Oregon. About 85% of the total carbon storage in biomass on the survey plots exists in stands greater than 100 years, which has implications for managing forests for carbon sequestration. To investigate variation in carbon storage and fluxes with disturbance, simulation with process models requires a dynamic parameterization for biomass allocation that depends on stand age, and should include a representation of competition between multiple plant functional types for space, water, and nutrients.  相似文献   

12.
Accession, decomposition and accumulation of litter were studied in three sub-alpine eucalypt forest communities (dominated by overstoreys of Eucalyptus delegatensis, E. pauciflora or E. dives) located in the Brindabella Range. Australian Capital Territory, at an elevation of 1100–1250 m. The sites had either been protected from fire for more than 20 years or been burnt by low-intensity prescribed fires. After a prescribed burn, the rate of decomposition of abscised leaves was reduced by 22% in E. delegatensis forest and by 34% in E. pauciflora forest, but was little affected in the drier E. dives community. Lowered decomposition was apparently due to greater aridity after fire, a consequence of removal of the shading understorey and reduction in the depth and hence mulching effect of the titter layer. Litter accumulates rapidly after prescribed burning, reaching a mass of 10–12 t ha?1 within 4–5 years in all communities. Such quantities are dangerous from a fire control viewpoint. The quasi steady-state mass of accumulated litter ranges from about 17 t ha?1 in E. dives and E. pauciflora forests to about 25 t ha?1 in old-growth E. delegatensis forests. The rapid re-accumulation of litter after fire is not the result of any significant change in litterfall rate, but is due to a marked reduction in the total amount of litter decomposing—and this reduction is more a consequence of a decrease in the weight of the forest floor than to any fire-induced lowering of the rate of litter decomposition. The rapid build-up of litter is a consequence of the relatively high rates of litterfall (3.4–5.0 t ha?1 year?1) and low rates of litter decomposition (k = 0.19–0.32 year?1) in these forests. In most cases the pattern of litter accumulation was well described by an exponential equation of the form Xt= Xss (1—e-kt), where Xt is the weight (t ha?1) of litter accumulated at time t (year). Xss is the weight of litter accumulated under steady-state conditions, and k is a decomposition rate constant (year?1). Marked temporal variations in annual litterfall and mass of accumulated litter were found at specific forest sites which had been unburnt for more than 4.5 years. Variation from the long-term mean was greater for litterfall (31–37%) than for accumulated litter (14–26%). The maximum error when calculating decomposition rate (k) as the ratio of annual litterfall: accumulated titter, when based on single measurements of these parameters, ranged from 43 to 69% of that based on long-term measurements. Decomposition rates of the entire titter layer, calculated for periods of 22–79 months, and based on measurements of litter input and change in mass of accumulated titter, were positively correlated with the average number of days per month during each period that the litter layer remained moist (>approx. 60% ODW). The implications of these findings for fire management planning in sub-alpine and other eucalypt forests are briefly discussed.  相似文献   

13.
Abstract. Lantana camara shrubland is compared with the adjacent Quercus leucotrichophora and Pinus roxburghii forests to understand changes occurring in net primary productivity and nutrient cycling, as a consequence of degradation of these forests. The total net primary productivity of Lantana camara shrubland was 17 t ha-1 yr-1, which is similar to the values reported for forests: 16 - 21 t ha-1 yr-1. Total nutrient content (N, P) in the soil in the L. camara shrubland: 2932 kg ha-1 N and 111 kg ha-1 P, was lower than that of the forest soils.  相似文献   

14.
Nearly all published rates of secondary forest (SF) regrowth for Amazonia are inferred from chronosequences. We examined SF regrowth on abandoned pastures over a 4‐year period to determine if measured rates of forest recovery differ from chronosequence predictions. We studied the emergence, development and death of over 1300 stems in 10 SFs representing three age classes (<1–5, 6–10 and 11–14 years old). Mean tree biomass accumulation in both the <1–5 and 6–10 years old (4.4 and 5.7 Mg ha−1 yr−1, respectively) abandoned pastures was lower than predicted and deviated significantly (57% and 41%) from rates estimated from the chronosequence. The older SFs, with a mean growth rate of 9.9 Mg ha−1 yr−1 followed the rate predicted by the chronosequence. Understocking was the primary cause of low biomass recovery rates in the youngest forests; although the youngest stands had a diameter at breast height increment three times the oldest stands, the youngest stands lacked sufficient density to cumulatively produce high biomass accumulation rates. Four years of measurement indicated that the youngest stands had developed 59% of the stems measured in the older stands during the same time period. The 6–10‐year‐old stands were rapidly self‐thinning and approached stem density values measured in the same aged stands at the onset of the study. Mortality was high for all stands, with 54% of the original stems remaining after 4 years in intermediate‐aged stands. The forests were dominated by the tree Vismia, which represented 55–66% of the biomass in all stands. The Vismia share of the biomass was decreasing over time, with other genera replacing the pioneer. Our measured rates of regrowth indicate that generalized estimates of forest regrowth through chronosequence studies will overestimate forest regrowth for the youngest forests that were under land use for longer time‐periods before abandonment. Certified Emission Reductions under the Clean Development Mechanism of the Kyoto protocol should consider these results when predicting and compensating for carbon sequestered under natural forest management.  相似文献   

15.
Approximately half of the tropical biome is in some stage of recovery from past human disturbance, most of which is in secondary forests growing on abandoned agricultural lands and pastures. Reforestation of these abandoned lands, both natural and managed, has been proposed as a means to help offset increasing carbon emissions to the atmosphere. In this paper we discuss the potential of these forests to serve as sinks for atmospheric carbon dioxide in aboveground biomass and soils. A review of literature data shows that aboveground biomass increases at a rate of 6.2 Mg ha? 1 yr? 1 during the first 20 years of succession, and at a rate of 2.9 Mg ha? 1 yr? 1 over the first 80 years of regrowth. During the first 20 years of regrowth, forests in wet life zones have the fastest rate of aboveground carbon accumulation with reforestation, followed by dry and moist forests. Soil carbon accumulated at a rate of 0.41 Mg ha? 1 yr? 1 over a 100‐year period, and at faster rates during the first 20 years (1.30 Mg carbon ha? 1 yr? 1 ). Past land use affects the rate of both above‐ and belowground carbon sequestration. Forests growing on abandoned agricultural land accumulate biomass faster than other past land uses, while soil carbon accumulates faster on sites that were cleared but not developed, and on pasture sites. Our results indicate that tropical reforestation has the potential to serve as a carbon offset mechanism both above‐ and belowground for at least 40 to 80 years, and possibly much longer. More research is needed to determine the potential for longer‐term carbon sequestration for mitigation of atmospheric CO2 emissions.  相似文献   

16.
The importance of mangrove forests in carbon sequestration and coastal protection has been widely acknowledged. Large-scale damage of these forests, caused by hurricanes or clear felling, can enhance vulnerability to erosion, subsidence and rapid carbon losses. However, it is unclear how small-scale logging might impact on mangrove functions and services. We experimentally investigated the impact of small-scale tree removal on surface elevation and carbon dynamics in a mangrove forest at Gazi bay, Kenya. The trees in five plots of a Rhizophora mucronata (Lam.) forest were first girdled and then cut. Another set of five plots at the same site served as controls. Treatment induced significant, rapid subsidence (−32.1±8.4 mm yr−1 compared with surface elevation changes of +4.2±1.4 mm yr−1 in controls). Subsidence in treated plots was likely due to collapse and decomposition of dying roots and sediment compaction as evidenced from increased sediment bulk density. Sediment effluxes of CO2 and CH4 increased significantly, especially their heterotrophic component, suggesting enhanced organic matter decomposition. Estimates of total excess fluxes from treated compared with control plots were 25.3±7.4 tCO2 ha−1 yr−1 (using surface carbon efflux) and 35.6±76.9 tCO2 ha−1 yr−1 (using surface elevation losses and sediment properties). Whilst such losses might not be permanent (provided cut areas recover), observed rapid subsidence and enhanced decomposition of soil sediment organic matter caused by small-scale harvesting offers important lessons for mangrove management. In particular mangrove managers need to carefully consider the trade-offs between extracting mangrove wood and losing other mangrove services, particularly shoreline stabilization, coastal protection and carbon storage.  相似文献   

17.
Functionality of restored mangroves: A review   总被引:11,自引:9,他引:2  
Widespread mangrove degradation coupled with the increasing awareness of the importance of these coastal forests have spurred many attempts to restore mangroves but without concomitant assessment of recovery (or otherwise) at the ecosystem level in many areas. This paper reviews literature on the recovery of restored mangrove ecosystems using relevant functional indicators. While stand structure in mangrove stands is dependent on age, site conditions and silvicultural management, published data indicates that stem densities are higher in restored mangroves than comparable natural stands; the converse is true for basal area. Biomass increment rates have been found to be higher in younger stands than older stands (e.g. 12 t ha−1 year−1 for a 12 years plantation compared to 5.1 t ha−1 year−1 for a 80-year-old plantation). Disparities in patterns of tree species recruitment into the restored stands have been observed with some stands having linear recruitment rates with time (hence enhancing stand complexity), while some older stands completely lacked the understorey. Biodiversity assessments suggest that some fauna species are more responsive to mangrove degradation (e.g. herbivorous crabs and mollusks in general), and thus mangrove restoration encourages the return of such species, in some cases to levels equivalent to those in comparable natural stands. The paper finally recommends various mangrove restoration pathways in a functional framework dependent on site conditions and emphasizes community involvement and ecosystem level monitoring as integral components of restoration projects.  相似文献   

18.
Temperate forest ecosystems have recently been identified as an important net sink in the global carbon budget. The factors responsible for the strength of the sinks and their permanence, however, are less evident. In this paper, we quantify the present carbon sequestration in Thuringian managed coniferous forests. We quantify the effects of indirect human‐induced environmental changes (increasing temperature, increasing atmospheric CO2 concentration and nitrogen fertilization), during the last century using BIOME‐BGC, as well as the legacy effect of the current age‐class distribution (forest inventories and BIOME‐BGC). We focused on coniferous forests because these forests represent a large area of central European forests and detailed forest inventories were available. The model indicates that environmental changes induced an increase in biomass C accumulation for all age classes during the last 20 years (1982–2001). Young and old stands had the highest changes in the biomass C accumulation during this period. During the last century mature stands (older than 80 years) turned from being almost carbon neutral to carbon sinks. In high elevations nitrogen deposition explained most of the increase of net ecosystem production (NEP) of forests. CO2 fertilization was the main factor increasing NEP of forests in the middle and low elevations. According to the model, at present, total biomass C accumulation in coniferous forests of Thuringia was estimated at 1.51 t C ha?1 yr?1 with an averaged annual NEP of 1.42 t C ha?1 yr?1 and total net biome production of 1.03 t C ha?1 yr?1 (accounting for harvest). The annual averaged biomass carbon balance (BCB: biomass accumulation rate‐harvest) was 1.12 t C ha?1 yr?1 (not including soil respiration), and was close to BCB from forest inventories (1.15 t C ha?1 yr?1). Indirect human impact resulted in 33% increase in modeled biomass carbon accumulation in coniferous forests in Thuringia during the last century. From the forest inventory data we estimated the legacy effect of the age‐class distribution to account for 17% of the inventory‐based sink. Isolating the environmental change effects showed that these effects can be large in a long‐term, managed conifer forest.  相似文献   

19.
Prosopis woodlands in the Sonoran Desert have levels of above-ground biomass and productivity much higher than those predicted for desert plant communities with such low levels of precipitation. A stand ofP. glandulosa near the Salton Sea, California, has 13,000 kg ha?1 aboveground biomass and a productivity of 3700 kg ha?1 yr?1. Such a high level of productivity is possible because Prosopis is decoupled from the normal limiting factors of water and nitrogen availability. Soil nitrogen contents for the upper 60 cm of soil beneath Prosopis canopies have 1020 g m?2 total nitrogen, 25 per cent of which is in the form of nitrate. Such accumulations of nitrogen may be the result of active symbiotic nitrogen fixation. Early estimates suggest that about 25–30 kg N ha?1 yr?1 is fixed in these stands. Since Prosopis covers only 34% of the ground surface and its water resources are not limiting, much higher levels of nitrogen fixation and productivity may be possible in managed stands at greater densities.  相似文献   

20.
Invasive insects impact forest carbon dynamics   总被引:3,自引:0,他引:3  
Invasive insects can impact ecosystem functioning by altering carbon, nutrient, and hydrologic cycles. In this study, we used eddy covariance to measure net CO2 exchange with the atmosphere (NEE), and biometric measurements to characterize net ecosystem productivity (NEP) in oak‐ and pine‐dominated forests that were defoliated by Gypsy moth (Lymantria dispar L.) in the New Jersey Pine Barrens. Three years of data were used to compare C dynamics; 2005 with minimal defoliation, 2006 with partial defoliation of the canopy and understory in a mixed stand, and 2007 with complete defoliation of an oak‐dominated stand, and partial defoliation of the mixed and pine‐dominated stands. Previous to defoliation in 2005, annual net CO2 exchange (NEEyr) was estimated at ?187, ?137 and ?204 g C m?2 yr?1 at the oak‐, mixed‐, and pine‐dominated stands, respectively. Annual NEP estimated from biometric measurements was 108%, 100%, and 98% of NEEyr in 2005 for the oak‐, mixed‐, and pine‐dominated stands, respectively. Gypsy moth defoliation strongly reduced fluxes in 2006 and 2007 compared with 2005; NEEyr was ?122, +103, and ?161 g C m?2 yr?1 in 2006, and +293, +129, and ?17 g C m?2 yr?1 in 2007 at the oak‐, mixed‐, and pine‐dominated stands, respectively. At the landscape scale, Gypsy moths defoliated 20.2% of upland forests in 2007. We calculated that defoliation in these upland forests reduced NEEyr by 41%, with a 55% reduction in the heavily impacted oak‐dominated stands. ‘Transient’ disturbances such as insect defoliation, nonstand replacing wildfires, and prescribed burns are major factors controlling NEE across this landscape, and when integrated over time, may explain much of the patterning of aboveground biomass and forest floor mass in these upland forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号