首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Liu HL  Liu SF  Ge YJ  Liu J  Wang XY  Xie LP  Zhang RQ  Wang Z 《Biochemistry》2007,46(3):844-851
To elucidate the mechanism of nacre biomineralization, the mantle of Pinctada fucata (P. fucata) from the South China Sea was used. Using the mantle cDNA library and the ESTs we have cloned through suppression subtractive hybridization (SSH), ten novel genes including PFMG1 were obtained through nested PCR. Bioinformative results showed that PFMG1 had a high homology (40%) with Onchocerca volvulus calcium-binding protein CBP-1 and had two EF-hand calcium-binding domains from the 81st to the 93rd amino acid and from the 98th to the 133rd amino acid in the deduced amino acid sequence. The results of multitissue RT-PCR and in situ hybridization demonstrated the high expression of PFMG1 in the mantle of P. fucata and confirmed the SSH method. The results of GST-PFMG1 on CaCO3 crystallization showed significant effects on nucleation and precipitation of CaCO3. PFMG1 was cloned into the pcDNA.3.1/myc-HisA vector and was subsequently transfected into MC3T3-E1 cells. RT-PCR revealed upregulation of the marker genes related to cell growth, differentiation, and mineralization, and BMP-2, osterix, and osteopontin were upregulated as a result. This research work suggests that PFMG1 plays an important role in the nacre biomineralization, and the SSH method can pave the way for the bulk cloning and characterization of new genes involved in biomineralization in P. fucata and may accelerate research on the mechanism of pearl formation.  相似文献   

4.
A novel matrix protein, designated as p10 because of its apparent molecular mass of 10 kDa, was isolated from the nacreous layer of pearl oyster (Pinctada fucata) by reverse-phase high-performance liquid chromatography. In vitro crystallization experiments showed that p10 could accelerate the nucleation of calcium carbonate crystals and induce aragonite formation, suggesting that it might play a key role in nacre biomineralization. As nacre is known to contain osteogenic factors, two mineralogenic cell lines, MRC-5 fibroblasts and MC3T3-E1 preosteoblasts, were used to investigate the biological activity of p10. The results showed that p10 could increase alkaline phosphatase activity, an early marker of osteoblast differentiation, while the viability of MRC-5 and MC3T3-E1 remained unchanged after treatment of p10. Taken together, the findings led to identification of a novel matrix protein from the nacre of P. fucata that plays a role in both the mineral phase and in the differentiation of the cells involved in biomineralization.  相似文献   

5.
Color is one of the most important factors determining the commercial value of pearls. Pinctada fucata is a well-known pearl oyster producing high-quality Akoya pearls. Phenotypic variation in amount of yellow pigmentation produces white and yellowish pearls. It has been reported that polymorphism of yellow pigmentation of Akoya pearls is genetically regulated, but the responsible gene(s) has remained unknown. Here, we prepared pearl sac pairs formed in the same recipient oyster but coming from donor oysters that differ in their color. These two pearl sacs produced pearls with different yellowness even in the same recipient oyster. Yellow tone of produced pearls was consistent with shell nacre color of donor oysters from which mantle grafts were prepared, indicating that donor oysters strongly contribute to the yellow coloration of Akoya pearls. We also conducted comparative RNA-seq analysis and retrieved several candidate genes involved in the pearl coloration. Whole gene expression patterns of pair sacs were not grouped by pearl color they produced, but grouped by recipient oysters in which they were grown, suggesting that the number of genes involved in the yellow coloration is quite small, and that recipient oyster affects gene expression of the majority of genes in the pearl sac.  相似文献   

6.
7.
8.

Background

Color polymorphism in the nacre of pteriomorphian bivalves is of great interest for the pearl culture industry. The nacreous layer of the Polynesian black-lipped pearl oyster Pinctada margaritifera exhibits a large array of color variation among individuals including reflections of blue, green, yellow and pink in all possible gradients. Although the heritability of nacre color variation patterns has been demonstrated by experimental crossing, little is known about the genes involved in these patterns. In this study, we identify a set of genes differentially expressed among extreme color phenotypes of P. margaritifera using a suppressive and subtractive hybridization (SSH) method comparing black phenotypes with full and half albino individuals.

Results

Out of the 358 and 346 expressed sequence tags (ESTs) obtained by conducting two SSH libraries respectively, the expression patterns of 37 genes were tested with a real-time quantitative PCR (RT-qPCR) approach by pooling five individuals of each phenotype. The expression of 11 genes was subsequently estimated for each individual in order to detect inter-individual variation. Our results suggest that the color of the nacre is partially under the influence of genes involved in the biomineralization of the calcitic layer. A few genes involved in the formation of the aragonite tablets of the nacre layer and in the biosynthesis chain of melanin also showed differential expression patterns. Finally, high variability in gene expression levels were observed within the black phenotypes.

Conclusions

Our results revealed that three main genetic processes were involved in color polymorphisms: the biomineralization of the nacreous and calcitic layers and the synthesis of pigments such as melanin, suggesting that color polymorphism takes place at different levels in the shell structure. The high variability of gene expression found within black phenotypes suggests that the present work should serve as a basis for future studies exploring more thoroughly the expression patterns of candidate genes within black phenotypes with different dominant iridescent colors.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1776-x) contains supplementary material, which is available to authorized users.  相似文献   

9.
Understanding the molecular composition is of great interest for both nacre formation mechanism and biomineralization in mollusk shell. A cDNA clone encoding an MSI31 relative, termed MSI7 because of its estimated molecular mass of 7.3 kDa, was isolated from the pearl oyster, Pinctada fucata. This novel protein shares similarity with MSI31, a prismatic framework protein of P. fucata. It is peculiar that MSI7 is much shorter in size, harboring only the Gly-rich sequence that has been proposed to be critical for Ca(2+) binding. In situ hybridization result showed that MSI7 mRNA was expressed specifically at the folds and outer epithelia of the mantle, indicating that MSI7 participates in the framework formation of both the nacreous layer and prismatic layer. In vitro experiment on the function of MSI7 suggested that it accelerates the nucleation and precipitation of CaCO(3). Taken together, we have identified a novel matrix protein of the pearl oyster, which may play an important role in determining the texture of nacre.  相似文献   

10.
Biomineralization is a common biological phenomenon resulting in strong tissue, such as bone, tooth, and shell. Pinctada fucata martensii is an ideal animal for the study of biomineralization. Here, microarray technique was used to identify biomineralization gene in mantle edge (ME), mantle center (MC), and both ME and MC (ME-MC) for this pearl oyster. Results revealed that 804, 306, and 1127 contigs expressed at least three times higher in ME, MC, and ME-MC as those in other tissues. Blast against non-redundant database showed that 130 contigs (16.17 %), 53 contigs (17.32 %), and 248 contigs (22.01 %) hit reference genes (E?≤??10), among which 91 contigs, 48 contigs, and 168 contigs could be assigned to 32, 26, and 63 biomineralization genes in tissue of ME, MC, and ME-MC at a threshold of 3 times upregulated expression level. The ratios of biomineralization contigs to homologous contigs were similar at 3 times, 10 times, and 100 times of upregulated expression level in either ME, MC, or ME-MC. Moreover, the ratio of biomineralization contigs was highest in MC. Although mRNA distribution characters were similar to those in other studies for eight biomineralization genes of PFMG3, Pif, nacrein, MSI7, mantle gene 6, Pfty1, prismin, and the shematrin, most biomineralization genes presented different expression profiles from existing reports. These results provided massive fundamental information for further study of biomineralization gene function, and it may be helpful for revealing gene nets of biomineralization and the molecular mechanisms underlining formation of shell and pearl for the oyster.  相似文献   

11.
The pearl oyster, Pinctada martensii, is the primary species used for the aquaculture production of marine pearls in China and Japan. Genetic tools and resources are needed to study the genome of this species and to understand the molecular basis of development, growth, host defense, pearl formation, and other important traits. In this study, we developed a set of expressed sequence tags (ESTs) for P. martensii. We constructed cDNA libraries from adult tissues and sequenced 7,128 ESTs. Clustering analysis identified 788 contigs (covering 5,769 ESTs) and 1,351 singletons, yielding a total of 2,139 unique genes. Of these unique genes, only 935 had significant (E-value ≤ 0.005) hits in GenBank, and the remaining 1,204 (56.3%) were novel. Most of the known genes are related to cellular structure, protein binding, and metabolic processes. Putative host-defense genes (86) were identified including C-type lectin, ferritin, polyubiquitin, proteases, protease inhibitors, scavenger receptors, heat shock proteins, and RAS oncogenes. The EST sequences developed in this study provide a valuable resource for future efforts on gene identification, marker development, and studies on molecular mechanism of host defense in pearl oysters.  相似文献   

12.
Fang D  Xu G  Hu Y  Pan C  Xie L  Zhang R 《PloS one》2011,6(7):e21860
Mollusk shell formation is a fascinating aspect of biomineralization research. Shell matrix proteins play crucial roles in the control of calcium carbonate crystallization during shell formation in the pearl oyster, Pinctada fucata. Characterization of biomineralization-related genes during larval development could enhance our understanding of shell formation. Genes involved in shell biomineralization were isolated by constructing three suppression subtractive hybridization (SSH) libraries that represented genes expressed at key points during larval shell formation. A total of 2,923 ESTs from these libraries were sequenced and gave 990 unigenes. Unigenes coding for secreted proteins and proteins with tandem-arranged repeat units were screened in the three SSH libraries. A set of sequences coding for genes involved in shell formation was obtained. RT-PCR and in situ hybridization assays were carried out on five genes to investigate their spatial expression in several tissues, especially the mantle tissue. They all showed a different expression pattern from known biomineralization-related genes. Inhibition of the five genes by RNA interference resulted in different defects of the nacreous layer, indicating that they all were involved in aragonite crystallization. Intriguingly, one gene (UD_Cluster94.seq.Singlet1) was restricted to the 'aragonitic line'. The current data has yielded for the first time, to our knowledge, a suite of biomineralization-related genes active during the developmental stages of P. fucata, five of which were responsible for nacreous layer formation. This provides a useful starting point for isolating new genes involved in shell formation. The effects of genes on the formation of the 'aragonitic line', and other areas of the nacreous layer, suggests a different control mechanism for aragonite crystallization initiation from that of mature aragonite growth.  相似文献   

13.
Nacre formation is an ideal model to study biomineralization processes. Although much has been done about biomineralization mechanism of nacre, little is known as to how cellular signaling regulates this process. We are interested in whether G protein signaling plays a role in mineralization. Degenerate primers against conserved amino acid regions of G proteins were employed to amplify cDNA from the pearl oyster Pinctada fucata. As a result, the cDNA encoding a novel Gsα (pfGsα) from the pearl oyster was isolated. The Gsα cDNA encodes a polypeptide of 377 amino acid residues, which shares high similarity to the octopus (Octopus vulgaris) Gsα. The well-conserved A, C, G (switch I), switch II functional domains and the carboxyl terminus that is a critical site for interaction with receptors are completely identical to those from other mollusks. However, pfGsα has a unique amino acid sequence, which encodes switch III and interaction sites of adenylyl cyclase respectively. In situ hybridization and Northern blotting analysis revealed that the oyster Gsα mRNA is widely expressed in a variety of tissues, with highest levels in the outer fold of mantle and epithelia of gill, the regions essential for biomineralization. We also show that overexpression of the pfGsα in mammalian MC3T3-E1 cells resulted in increased cAMP levels. Mutant pfGsα that has impaired CTX substrate diminished its ability to induce cAMP production. Furthermore, the alkaline phosphatase (ALP) activity, an indicator for mineralization, is induced by the Gsα in MC3T3-E1 cells. These results indicated that Gsα may be involved in regulation of physiological function, particularly in biological biomineralization.  相似文献   

14.
This study compares the expression levels of nacrein, N16, MSI60, Prismalin-14, aspein and MSI31 genes during the ontogeny of Pinctada fucata. Several novel findings were obtained: 1) The early calcitic prismatic layer was distinguished as a thin membrane-like structure. 2) Initial formation of the nacreous layer started from the mantle pallial region at the age of 31 days. 3) 18S rRNA of P. fucata was determined to be more suitable as a real-time PCR reference gene compared with GAPDH and β-actin genes. 4) A relationship was recognized between the expression levels of the above six organic matrix genes and biomineralization of the larval shell. The lack of calcite in the shells of the veliger and pediveliger stages, when MSI31 and Prismalin-14 genes were expressed, makes a role of polymorph control by these genes less likely. The hypothetical involvement of N16 and MSI60 proteins in aragonitic nacreous layer formation was corroborated by the expression levels of N16 and MSI60 genes during ontogeny. Our results are important with respect to the control of CaCO3 crystal polymorphism and shell microstructures in P. fucata.  相似文献   

15.
软体动物engrailed蛋白和骨形成相关蛋白对胚胎贝壳区域边界形成可能具有重要作用,engrailed还被推测为调节基质蛋白在外套膜组织区域化表达的重要调控因子.因此,弄清调控engrailed在软体动物中特征表达的分子机制有着重要的研究意义.但是,由于贝类基因组测序尚不完整,目前也没有建立获得贝类细胞系,以致于许多预测可能参与调控的基因需要通过克隆来鉴定,而且经典的研究细胞信号通路的方法也很难得到应用.目前,在中国南海广泛养殖的合浦珠母贝中,已获知其BMP2和Smad3的cDNA全长,以该贝的基因组为模板,PCR扩增获得了一段engrailed编码区片段.经软件分析,该片段含有EH4结构域,且与其他物种engrailed蛋白具有很高的同源性.研究的贝中,特别是外套膜组织中,engrailed、BMP2和Smad3三者表达之间的相关性,将有助于我们理解贝壳形成的分子机制.贝壳缺刻后半定量PCR试验结果表明,三者均参与贝壳修复,且在贝壳缺刻后的修复过程中,engrailed和Smad3的mRNA表达变化规律非常相似,提示它们之间可能存在相互影响的联系.用地塞米松(DXM)和过氧化氢(H2O2)分别处理原代培养的贝外套膜组织迁出细胞,实时相对定量PCR检测engrailed、BMP2和Smad3的mRNA表达水平,统计分析结果表明,三者具有显著的相关性.上述所有结果为进一步研究贝类生物矿化的发育和信号转导机制提供了新的思路和基础.  相似文献   

16.
Perlucin is an important functional protein that regulates shell and pearl formation. In this study, we cloned the perlucin gene from the freshwater pearl mussel Hyriopsis cumingii, designated as Hcperlucin. The full-length cDNA transcribed from the Hcperlucin gene was 1460 bp long, encoding a putative signal peptide of 20 amino acids and a mature protein of 141 amino acids. The mature Hcperlucin peptide contained six conserved cysteine residues and a carbohydrate recognition domain, similar to other members of the C-type lectin families. In addition, a “QPS” and an invariant “WND” motif near the C-terminal region were also found, which are extremely important for polysaccharide recognition and calcium binding of lectins. The mRNA of Hcperlucin was constitutively expressed in all tested H. cumingii tissues, with the highest expression levels observed in the mantle, adductor, gill and hemocytes. In situ hybridization was used to detect the presence of Hcperlucin mRNA in the mantle, and the result showed that the mRNA was specifically expressed in the epithelial cells of the dorsal mantle pallial, an area known to express genes involved in the biosynthesis of the nacreous layer of the shell. The significant Hcperlucin mRNA expression was detected on day 14 post shell damage and implantation, suggesting that the Hcperlucin might be an important gene in shell nacreous layer and pearl formation. The change of perlucin expression in pearl sac also confirmed that the mantle transplantation results in a new expression pattern of perlucin genes in pearl sac cells that are required for pearl biomineralization. These findings could help better understanding the function of perlucin in the shell and pearl formation.  相似文献   

17.
In this study, we established and characterized a long-term primary mantle tissue culture from the marine pearl oyster Pinctada fucata for in vitro investigation of nacre biomineralization. In this culture system, the viability of mantle tissue cells lasted up to 2 months. The tissue cells were demonstrated to express nacre matrix proteins by RT-PCR, and a soluble shell matrix protein, nacrein, was detected in the culture medium by Western blot analysis. On the other hand, 15 days after initiating culture, a large amount of calcium deposits with major elements, including calcium, carbon, and oxygen, were generated in the mantle explants and cell outgrowth area. The quantity and size of calcium deposits increased with the prolonged cultivation, and their location and nanogranular structure suggested their biogenic origin. These calcium deposits specifically appeared in mantle tissue cultures, but not in heart tissue cultures. Taken together, these results demonstrate that the mantle tissue culture functions similarly to mantle cells in vivo. This study provides a reliable approach for the further investigation on nacre biomineralization at the cellular level.  相似文献   

18.
Nacre of the Pinctada pearl oyster shells is composed of 98% CaCO3 and 2% organic matrix. The relationship between the organic matrix and the mechanism of nacre formation currently constitutes the main focus regarding the biomineralization process. In this study, we isolated a new nacre matrix protein in P. margaritifera and P. maxima, we called Pmarg- and Pmax-MRNP34 (methionine-rich nacre protein). MRNP34 is a secreted hydrophobic protein, which is remarkably rich in methionine, and which is specifically localised in mineralizing the epithelium cells of the mantle and in the nacre matrix. The structure of this protein is drastically different from those of the other nacre proteins already described. This unusual methionine-rich protein is a new member in the growing list of low complexity domain containing proteins that are associated with biocalcifications. These observations offer new insights to the molecular mechanisms of biomineralization.  相似文献   

19.
20.
For pearl culture, nucleus and mantle grafts are implanted into the gonad of the host oyster. The epithelial cells of the implanted mantle graft elongate and surround the nucleus, and a pearl sac is formed. Shell matrix proteins secreted by the pearl sac play an important role in pearl formation. We studied the gene expression patterns of six shell matrix proteins (msi60, n16, nacrein, msi31, prismalin-14, and aspein) in the epithelial cells associated with pearl sac formation. There were differences in the expression patterns of the six genes in the epithelial cells, and the relative expression levels for msi60 and aspein differed between the mantle graft and pearl sac (48 days after implantation). Therefore, the gene expression patterns of the epithelial cells were genetically undetermined, and changed between before and after pearl sac formation. The gene expression patterns of the epithelial cells of the pearl sac may be regulated by the host oysters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号