首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Kim DH  Kim do Y  Kim YC  Jung JW  Lee S  Yoon BH  Cheong JH  Kim YS  Kang SS  Ko KH  Ryu JH 《Life sciences》2007,80(21):1944-1950
Nodakenin is a coumarin compound initially isolated from the roots of Angelica gigas. In the present study, we investigated the effects of nodakenin on learning and memory impairments induced by scopolamine (1 mg/kg, i.p.) using the passive avoidance test, the Y-maze test, and the Morris water maze test in mice. Nodakenin (10 mg/kg, p.o.) administration significantly reversed scopolamine-induced cognitive impairments in the passive avoidance test and the Y-maze test (P<0.05), and also reduced escape latency during training in the Morris water maze test (P<0.05). Moreover, swimming times and distances within the target zone of the Morris water maze were greater in the nodakenin-treated group than in the scopolamine-treated group (P<0.05). In an in vitro study, nodakenin was found to inhibit acetylcholinesterase activity in a dose-dependent manner (IC(50)=84.7 microM). In addition, nodakenin was also found to inhibit acetylcholinesterase activity for 6 h in an ex-vivo study. These results suggest that nodakenin may be a useful for the treatment of cognitive impairment, and that its beneficial effects are mediated, in part, via the enhancement of cholinergic signaling.  相似文献   

2.
Memory impairment is the most common symptom in patients with Alzheimer’s disease. The purpose of this study is to evaluate the memory enhancing effects of P7C3, a recently identified compound with robust proneurogenic and neuroprotective effects, on the cognitive impairment induced by scopolamine, a muscarinic acetylcholine receptor antagonist. Different behavior tests including the Y-maze, Morris water maze, and passive avoidance tests were performed to measure cognitive functions. Scopolamine significantly decreased the spontaneous alternation and step-through latency of C57BL/6J mice in Y-maze test and passive avoidance test, whereas increased the time of mice spent to find the hidden platform in Morris water maze test. Importantly, intraperitoneal administration of P7C3 effectively reversed those Scopolamine-induced cognitive impairments in C57BL/6J mice. Furthermore, P7C3 treatment significantly enhanced the level of brain-derived neurotrophic factor (BDNF) signaling pathway in the cortex and hippocampus, and the usage of selective BDNF signaling inhibitor fully blocked the anti-amnesic effects of P7C3. Therefore, these findings suggest that P7C3 could improve the scopolamine-induced learning and memory impairment possibly through activation of BDNF signaling pathway, thereby exhibiting a cognition-enhancing potential.  相似文献   

3.
The effect of α-asarone on impairment of cognitive performance caused by amnesic drug scopolamine was investigated. Treatment with α-asarone attenuated scopolamine-induced cognitive deficits as evaluated by passive avoidance and Y-maze test. Administration of α-asarone for 15 d improved memory and cognitive function as indicated by an increase in transfer latency time and spontaneous alternation in passive avoidance and the Y-maze test respectively. To understand the action of α-asarone, the levels of acetylcholinesterase (AChE), malondialdehyde (MDA), and superoxide dismutase (SOD) in the hippocampus (Hippo) and cerebral cortex (CC) of scopolamine-induced amnesic mice were evaluated. The mice treated with Scopolamine showed increased activity of AChE, MDA and SOD levels in both the Hippo and the CC area. Treatment with α-asarone attenuated the increased activity of AChE and normalized the MDA and SOD levels in the Hippo and the CC area in the scopolamine treated amnesic mice. These results suggest that α-asarone has a beneficial effect in cognitive impairment induced by dysfunction of cholinergic system in brain through inhibition of AChE activity and by influencing the antioxidant defense mechanism.  相似文献   

4.
Convulsive status epilepticus (CSE) is a neurological disease with contraction and extension of limbs, leading to damage of hippocampus and cognition. This study aimed to explore the effects of dexmedetomidine (DEX) on the cognitive function and neuroinflammation in CSE rats. All rats were divided into control group, CSE group and DEX group. Morris water maze test was used to measure cognitive function. Acute hippocampal slices were made to detect long-term potentiation (LTP). Immunohistochemistry was used to determine the expression of α7-nicotinic acetylcholine receptor (α7-nAChR) and interleukin-1β (IL-1β). Enzyme-linked immunosorbent assay (ELISA) was used to measure serum levels of IL-1β, tumor necrosis factor-α (TNF-α), S-100β and brain-derived neurotrophic factor (BDNF). Our results showed that DEX improved the memory damage caused by CSE. DEX reduced seizure severity and increased the amplitudes and sustainable time of LTP, and also inhibited the hippocampal expression of α7-nAChR and IL-1β in CSE rats. DEX treatment decreased serum IL-1β, TNF-α and S-100β levels and increased BDNF levels. The effects of DEX on seizure severity and LTP could be simulated by nicotine or attenuated by concurrent α-bungarotoxin (α-BGT) treatment. In conclusions, DEX significantly improved spatial cognitive dysfunction, reduced seizure severity and increased LTP in CSE rats. Improvements by DEX were closely related to enhancement of cholinergic anti-inflammatory pathway.  相似文献   

5.
Olfactory bulbectomized (OBX) mice showed significant impairment of learning and memory-related behaviors 14 days after olfactory bulbectomy, as measured by passive avoidance and Y-maze tasks. We here observed a large impairment of hippocampal long-term potentiation (LTP) in the OBX mice. Concomitant with decreased acetylcholinesterase expression, protein kinase C (PKC)alpha autophosphorylation and NR1(Ser-896) phosphorylation significantly decreased in the hippocampal CA1 region of OBX mice. Both PKCalpha and NR1(Ser-896) phosphorylation significantly increased following LTP in the control mice, whereas increases were not observed in OBX mice. Like PKC activities, calcium/calmodulin-dependent protein kinase II (CaMKII) autophosphorylation significantly decreased in the hippocampal CA1 region of OBX mice as compared with that of control mice. In addition, increased CaMKII autophosphorylation following LTP was not observed in OBX mice. Finally, the impairment of CaMKII autophosphorylation was closely associated with reduced pGluR1(Ser-831) phosphorylation, without change in synapsin I (site 3) phosphorylation in the hippocampal CA1 region of OBX mice. Taken together, in OBX mice NMDA receptor hypofunction, possibly through decreased PKCalpha activity, underlies decreased CaMKII activity in the post-synaptic regions, thereby impairing LTP induction in the hippocampal CA1 region. Both decreased PKC and CaMKII activities with concomitant LTP impairment account for the learning disability observed in OBX mice.  相似文献   

6.
目的:探究ZLA对神经元型AChE的抑制活性及其对中枢胆碱能神经功能障碍导致的学习记忆功能减退的改善作用。方法:通过体外实验观察ZLA对神经元型AChE活性的影响;通过ex vivo实验观察ZLA体内AChE抑制活性;利用Morris水迷宫行为学实验探讨ZLA对东莨菪碱诱发的小鼠学习记忆功能障碍的改善作用。结果:ZLA明显抑制人SH-SY5Y神经元细胞和小鼠海马神经元来源的AChE活性。另外,ZLA腹腔注射后以剂量依赖性方式抑制小鼠脑内AChE活性。Morris水迷宫实验结果显示,ZLA显著改善东莨菪碱引起的学习和记忆功能障碍。结论:ZLA能够抑制神经元型AChE活性并具有促智作用。  相似文献   

7.
Parkinson's disease (PD) patients frequently reveal deficit in cognitive functions during the early stage in PD. The dopaminergic neurotoxin, MPTP-induced neurodegeneration causes an injury of the basal ganglia and is associated with PD-like behaviors. In this study, we demonstrated that deficits in cognitive functions in MPTP-treated mice were associated with reduced calcium/calmodulin-dependent protein kinase II (CaMKII) autophosphorylation and impaired long-term potentiation (LTP) induction in the hippocampal CA1 region. Mice were injected once a day for 5days with MPTP (25mg/kg i.p.). The impaired motor coordination was observed 1 or 2week after MPTP treatment as assessed by rota-rod and beam-walking tasks. In immunoblotting analyses, the levels of tyrosine hydroxylase protein and CaMKII autophosphorylation in the striatum were significantly decreased 1week after MPTP treatment. By contrast, deficits of cognitive functions were observed 3-4weeks after MPTP treatment as assessed by novel object recognition and passive avoidance tasks but not Y-maze task. Impaired LTP in the hippocampal CA1 region was also observed in MPTP-treated mice. Concomitant with impaired LTP induction, CaMKII autophosphorylation was significantly decreased 3weeks after MPTP treatment in the hippocampal CA1 region. Finally, the reduced CaMKII autophosphorylation was closely associated with reduced AMPA-type glutamate receptor subunit 1 (GluR1; Ser-831) phosphorylation in the hippocampal CA1 region of MPTP-treated mice. Taken together, decreased CaMKII activity with concomitant impaired LTP induction in the hippocampus likely account for the learning disability observed in MPTP-treated mice.  相似文献   

8.
Evolvulus alsinoides, also known as Shankpushapi, is a commonly used traditional medicine for enhancing memory. We evaluated the in vitro free radical scavenging and enzymes [acetylcholinesterase, butyrylcholinestrase, glycogen synthase kinase-3-β (GSK-3-β), rho kinase (ROCK II), prolyl endopeptidase (PEP), catechol-O-methyl transferase (COMT) and lipoxygenase (LOX)] inhibitory activities of aqueous and hydro-alcoholic extracts of E. alsinoides. Hydro-alcoholic extract of E. alsinoides demonstrated more free radical scavenging activity as compared to aqueous extract. Hydro-alcoholic extract also showed higher cholinesterase, GSK-3-β, ROCK II, PEP, COMT and LOX enzyme inhibitory activities as compared to aqueous extract. Phytochemical analysis revealed more flavanoids in hydro-alcoholic extract as compared to aqueous extract but no significant difference in phenolic content of the two extracts was observed. Based on in vitro data, hydro-alcoholic extract (100, 300 and 500 mg/kg, p.o.) was selected for in vivo study in intracerebroventricularly injected streptozotocin (STZ) induced cognitive impairment in male Wistar rats. Elevated plus maze, passive avoidance and Morris water maze were used for assessment of cognitive function on 14th, 21st and 28th day after STZ injection. Oxidative stress parameters (malondialdehyde, reduced glutathione, nitric oxide levels and superoxide dismutase activity), cholinergic dysfunction and rho kinase (ROCK II) expression were studied in cerebral cortex and hippocampus of rat brain at the end of the study. Hydro-alcoholic extract of E. alsinoides dose dependently prevented STZ induced cognitive impairment by reducing the oxidative stress, improving cholinergic function and preventing the increase in rho kinase expression. The results suggest an anti-Alzheimer potential of hydro-alcoholic extract of E. alsinoides.  相似文献   

9.
Memory impairment is a common symptom in patients with neurodegenerative disorders, and its suppression could be beneficial to improve the quality of life of those patients. Z-guggulsterone, a compound extracted from the resin of plant Commiphora whighitii, exhibits numerous pharmacological effects in clinical practice, such as treatment of inflammation, arthritis, obesity and lipid metabolism disorders. However, the role and possible mechanism of Z-guggulsterone on brain-associated memory impairments are largely unknown. This issue was addressed in the present study in a memory impairment model induced by scopolamine, a muscarinic acetylcholine receptor antagonist, using the passive avoidance, Y-maze and Morris water maze tests. Results showed that scopolamine significantly decreased the step-through latency and spontaneous alternation of C57BL/6J mice in passive avoidance and Y-maze test, whereas increased the mean escape latency and decreased the swimming time in target quadrant in Morris water maze test. Pretreatment of mice with Z-guggulsterone at doses of 30 and 60 mg/kg effectively reversed the scopolamine-induced memory impairments. Mechanistic studies revealed that Z-guggulsterone pretreatment reversed the scopolamine-induced increase in acetylcholinesterase (AchE) activity, as well as decreases in brain-derived neurotrophic factor (BDNF) protein expression and cAMP response element-binding protein (CREB), extracellular regulated kinase 1/2 (ERK1/2) and protein kinase B (Akt) phosphorylation levels in the hippocampus and cortex. Inhibition of the BDNF signal, however, blocked the memory-enhancing effect of Z-guggulsterone. Therefore, these findings demonstrate that Z-guggulsterone attenuates the scopolamine-induced memory impairments mainly through activation of the CREB-BDNF signaling pathway, thereby exhibiting memory-improving effects.  相似文献   

10.
Aging-related cholinergic dysfunction, extensive neuroinflammation and oxidative stress in brain are predominant pathogenic factors for dementia. In the present study, we aimed to evaluate the protective effects of piperine, an alkaloid nutrient component of Piper nigrum, against cognitive impairment in a senescent mouse model induced by D-galactose (D-Gal) and to explore the underlying mechanisms. Senescent mouse model was established by repeated subcutaneous injection of D-Gal (150 mg/kg, once daily for 42 days). Fourteen days after the first D-Gal exposure, piperine (2.5, 5, 10 mg/kg) or vehicle was intraperitoneally administered once daily for 28 days. The cognitive function of mice was evaluated by Morris water maze test (MWM). Twenty-four hours after behavioral test, the cholinergic function and oxidative stress level in mouse hippocampus were measured by spectrophotometric assays. In addition, the hippocampal levels of proinflammatory cytokines, including tumor necrosis factor-α, interleukin-1β and interleukin-6, were quantified using enzyme-linked immunosorbent assay. Expressions of glycogen synthase kinase-3β (GSK-3β) and its upstream or downstream molecules including phosphatidylinositol 3-kinase (PI3K),protein kinase B (AKT), protein kinase C (PKC), NF-E2-related factor 2, nuclear factor-κB and microtubule-associated protein tau in hippocampus were determined by western blotting, immunohistochemical or immunofluorescent staining. Our data revealed that chronic D-Gal exposure in mice led to cognitive impairment in MWM, along with cholinergic malfunction, extensive oxidative stress and neuroinflammation, as well as hyperphosphorylation of tau protein in hippocampus. All these neurochemical, neuroinflammatory and cognitive alterations could be ameliorated by 4-week repeated piperine administration. Moreover, piperine also reversed D-Gal-induced GSK-3β activation through modulating PKC and PI3K/AKT pathways in senescent mouse hippocampus, suggesting GSK-3β-related signaling might be involved in the benefits of piperine against D-Gal-induced cognitive decline in mice.  相似文献   

11.
Alzheimer’s disease (AD) is a neurodegenerative disease induced by cholinergic neuron damage or amyloid-beta aggregation in the basal forebrain region and resulting in cognitive disorder. We previously reported on the neuroprotective effects of Betula platyphylla bark (BPB) in an amyloid-beta-induced amnesic mouse model. In this study, we obtained a cognitive-enhancing compound by assessing results using a scopolamine-induced amnesic mouse model. Our results show that oral treatment of mice with BPB and betulin significantly ameliorated scopolamine-induced memory deficits in both passive avoidance and Y-maze tests. In the Morris water maze test, administration of BPB and betulin significantly improved memory and cognitive function indicating the formation of working and reference memories in treated mice. Moreover, betulin significantly increased glutathione content in mouse hippocampus, and the increase was greater than that from betulinic acid treatment. We conclude that BPB and its active component betulin have potential as therapeutic, cognitive enhancer in AD.  相似文献   

12.
Multitarget molecular hybrids of N-benzyl pyrrolidine derivatives were designed, synthesized, and biologically evaluated for the treatment of Alzheimer’s disease (AD). Among the synthesized compounds, 4k and 4o showed balanced enzyme inhibitions against cholinesterases (AChE and BChE) and BACE-1. Both leads showed considerable PAS-AChE binding capability, excellent brain permeation, potential disassembly of Aβ aggregates, and neuroprotective activity against Aβ-induced stress. Compounds 4k and 4o also ameliorated cognitive dysfunction against the scopolamine-induced amnesia model in the Y-maze test. The ex vivo study signified attenuated brain AChE activity and antioxidant potential of compounds 4k and 4o. Furthermore, compound 4o also showed improvement in Aβ-induced cognitive dysfunction by the Morris water maze test with excellent oral absorption characteristics ascertained by the pharmacokinetic study. In silico molecular docking and dynamics simulation studies of leads suggested their consensual binding affinity toward PAS-AChE in addition to aspartate dyad of BACE-1.  相似文献   

13.
The supramammillary area (SUM) of the hypothalamus has wide spread connection with numerous brain structures. It is known that the SUM can control the frequency of the hippocampal theta rhythm, which plays a role in the cognitive functions of the hippocampal formation. In order to examine the role of the specific cells of the SUM in learning and memory, selective cholinergic neurotoxic or excitotoxic lesioned rats of the SUM were tested for spatial memory on the Morris water maze (MWM) test. After the behavior tests, the expression of acetylcholinesterase (AChE) in the hippocampus was studied using the immunohistochemistry. In the MWM test, both lesion of the SUM with 192 IgG-saporin or ibotenic acid produced the impairment of spatial learning and memory. The expression of AChE immunreactive neurons in the hippocampal CA3 region was decreased after injections of 192 IgG-saporin into the SUM. These findings suggest that cholinoceptive cells of the SUM area may play a critical role in the process of learning and memory.  相似文献   

14.
The preventive effect of schisandrin B (Sch B), an antioxidant ingredient of Schisandra chinensis, was studied on scopolamine-induced dementia in mouse. Scopolamine developed oxidative stress in the brain with the decreased levels of antioxidant enzymes and increased nitrite level. At the same time, a significant impairment of learning and memory occurred when evaluated by passive avoidance task (PAT) and Morris water maze (MWM) with concomitant increase of acetylcholinesterase (AChE) activity and decreased acetylcholine levels. Pre-treatment by Sch B (10, 25, 50 mg/kg) effectively prevented scopolamine-induced oxidative stress and improved behavioural tasks. Further, the scopolamine-induced increase in AChE activity was significantly suppressed and the level of acetylcholine was maintained as normal by Sch B treatment. These results suggest that Sch B have protective function against cerebral functional defects such as dementia not only by antioxidant prevention but also exerting its potent cognitive-enhancing activity through modulation of acetylcholine level.  相似文献   

15.
Hippocampal function is important for learning and memory, and dysfunction of the hippocampus has been linked to the pathophysiology of neuropsychiatric diseases such as schizophrenia. Neuregulin1 (NRG1) and ErbB4, two susceptibility genes for schizophrenia, reportedly modulate long-term potentiation (LTP) at hippocampal Schaffer collateral (SC)-CA1 synapses. However, little is known regarding the contribution of hippocampal NRG1/ErbB4 signaling to learning and memory function. Here, quantitative real-time PCR and Western blotting were used to assess the mRNA and protein levels of NRG1 and ErbB4. Pharmacological and genetic approaches were used to manipulate NRG1/ErbB4 signaling, following which learning and memory behaviors were evaluated using the Morris water maze, Y-maze test, and the novel object recognition test. Spatial learning was found to reduce hippocampal NRG1 and ErbB4 expression. The blockade of NRG1/ErbB4 signaling in hippocampal CA1, either by neutralizing endogenous NRG1 or inhibiting/ablating ErbB4 receptor activity, enhanced hippocampus-dependent spatial learning, spatial working memory, and novel object recognition memory. Accordingly, administration of exogenous NRG1 impaired those functions. More importantly, the specific ablation of ErbB4 in parvalbumin interneurons also improved learning and memory performance. The manipulation of NRG1/ErbB4 signaling in the present study revealed that NRG1/ErbB4 activity in the hippocampus is critical for learning and memory. These findings might provide novel insights on the pathophysiological mechanisms of schizophrenia and a new target for the treatment of Alzheimer’s disease, which is characterized by a progressive decline in cognitive function.  相似文献   

16.
Gao  Shan  Tang  Yi-Yun  Jiang  Li  Lan  Fang  Li  Xiang  Zhang  Ping  Zou  Wei  Chen  Yong-Jun  Tang  Xiao-Qing 《Neurochemical research》2021,46(8):1941-1952

Sleep deprivation (SD) is widespread in society causing serious damage to cognitive function. Hydrogen sulfide (H2S), the third gas signal molecule, plays important regulatory role in learning and memory functions. Inhibition of excessive autophagy and upregulation of silent information regulator 1 (Sirt-1) have been reported to prevent cognitive dysfunction. Therefore, this present work was to address whether H2S attenuates the cognitive impairment induced by SD in Wistar rats and whether the underlying mechanisms involve in inhibition of excessive autophagy and upregulation of Sirt-1. After treatment with SD for 72 h, the cognitive function of Wistar rats was evaluated by Y-maze, new object recognition, object location, and Morris water maze tests. The results shown that SD-caused cognitive impairment was reversed by treatment with NaHS (a donor of H2S). NaHS also prevented SD-induced hippocampal excessive autophagy, as evidenced by the decrease in autophagosomes, the down-regulation of Beclin1, and the up-regulation of p62 in the hippocampus of SD-exposed Wistar rats. Furthermore, Sirtinol, an inhibitor of Sirt-1, reversed the inhibitory roles of NaHS in SD-induced cognitive impairment and excessive hippocampal autophagy in Wistar rats. Taken together, our results suggested that H2S improves the cognitive function of SD-exposed rats by inhibiting excessive hippocampal autophagy in a hippocampal Sirt-1-dependent way.

  相似文献   

17.
Protein tyrosine phosphatase delta (PTPdelta) is a receptor-type PTP expressed in the specialized regions of the brain including the hippocampal CA2 and CA3, B lymphocytes and thymic medulla. To elucidate the physiological roles of PTPdelta, PTPdelta-deficient mice were produced by gene targeting. It was found that PTPdelta-deficient mice were semi-lethal due to insufficient food intake. They also exhibited learning impairment in the Morris water maze, reinforced T-maze and radial arm maze tasks. Interestingly, although the histology of the hippocampus appeared normal, the magnitudes of long-term potentiation (LTP) induced at hippocampal CA1 and CA3 synapses were significantly enhanced in PTPdelta-deficient mice, with augmented paired-pulse facilitation in the CA1 region. Thus, it was shown that PTPdelta plays important roles in regulating hippocampal LTP and learning processes, and that hippocampal LTP does not necessarily positively correlate with spatial learning ability. To our knowledge, this is the first report of a specific PTP involved in the regulation of synaptic plasticity or in the processes regulating learning and memory.  相似文献   

18.
Many studies have shown that the steamed root of Rehmannia glutinosa (SRG), which is widely used in the treatment of various neurodegenerative diseases in the context of Korean traditional medicine, is effective for improving cognitive and memory impairments. The purpose of this study was to examine whether SRG extracts improved memory defects caused by administering scopolamine (SCO) into the brains of rats. The effects of SRG on the acetylcholinergic system and proinflammatory cytokines in the hippocampus were also investigated. Male rats were administered daily doses of SRG (50, 100, and 200 mg/kg, i.p.) for 14 days, 1 h before scopolamine injection (2 mg/kg, i.p.). After inducing cognitive impairment via scopolamine administration, we conducted a passive avoidance test (PAT) and the Morris water maze (MWM) test as behavioral assessments. Changes in cholinergic system reactivity were also examined by measuring the immunoreactive neurons of choline acetyltransferase (ChAT) and the reactivity of acetylcholinesterase (AchE) in the hippocampus. Daily administration of SRG improved memory impairment according to the PAT, and reduced the escape latency for finding the platform in the MWM. The administration of SRG consistently significantly alleviated memory-associated decreases in cholinergic immunoreactivity and decreased interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) mRNA expression in the hippocampus. The results demonstrated that SRG had a significant neuroprotective effect against the neuronal impairment and memory dysfunction caused by scopolamine in rats. These results suggest that SRG may be useful for improving cognitive functioning by stimulating cholinergic enzyme activities and alleviating inflammatory responses.  相似文献   

19.
The present study examined the neuroprotective effects of immunosuppressant cyclosporine-A (CsA) and anti-inflammatory methylprednisolone (MP) in a stroke model. Adult Sprague-Dawley rats were initially subjected to transient middle cerebral artery occlusion (MCAo) then randomly assigned to one of the following treatment conditions: low dose CsA, MP, low dose CsA plus MP, high dose CsA, or vehicle. Ischemic animals that received low dose CsA, MP or vehicle exhibited significant cognitive impairments, as revealed by passive avoidance and Morris water maze tasks, at days 1-3 after stroke. In contrast, ischemic animals that received high dose CsA exhibited near normal cognitive performance throughout the test period. Ischemic animals that received low dose CsA plus MP also showed significantly less cognitive deficits but such attenuation of stroke-induced behavioral impairments was only consistently reflected in the passive avoidance task, while performance in the Morris water maze task deteriorated over time. Histological analysis at 3 days post-stroke revealed that only those ischemic animals treated with high dose CsA had significantly reduced cerebral infarcts. These observations suggest that despite overt cerebral damage, alterations in simple, but not complex, cognitive tasks produced by MCAo could be ameliorated by low dose CsA when combined with MP.  相似文献   

20.
Aggregated β-amyloid (Aβ) plays crucial roles in Alzheimer's disease (AD) pathogenesis, therefore blockade of Aβ aggregation is considered as a potential therapeutic target. We designed and synthesized small molecules to reduce Aβ-induced cytotoxicity by inhibiting Aβ aggregation. The small molecules were screened via ThT, MTT, and cell-based cytotoxicity assay (Aβ burden assay). Selected compounds 1c, 1d, 1e, and 1f were then investigated by evaluating their effects on cognitive impairment of acute AD mice model. Learning and memory dysfunction by injection of Aβ(1-42) was recovered by administration of these molecules. Especially, 1d showed the best recovery activity in Y-maze task, object recognition task, and passive avoidance task with dose dependent manner. These results suggest that 1d has high potential as a therapeutic agent for AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号