首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The efficacy of cardiac repair by stem cell administration relies on a successful functional integration of injected cells into the host myocardium. Safety concerns have been raised about the possibility that stem cells may induce foci of arrhythmia in the ischemic myocardium. In a previous work (36), we showed that human cord blood CD34(+) cells, when cocultured on neonatal mouse cardiomyocytes, exhibit excitation-contraction coupling features similar to those of cardiomyocytes, even though no human genes were upregulated. The aims of the present work are to investigate whether human CD34(+) cells, isolated after 1 wk of coculture with neonatal ventricular myocytes, possess molecular and functional properties of cardiomyocytes and to discriminate, using a reporter gene system, whether cardiac differentiation derives from a (trans)differentiation or a cell fusion process. Umbilical cord blood CD34(+) cells were isolated by a magnetic cell sorting method, transduced with a lentiviral vector carrying the enhanced green fluorescent protein (EGFP) gene, and seeded onto primary cultures of spontaneously beating rat neonatal cardiomyocytes. Cocultured EGFP(+)/CD34(+)-derived cells were analyzed for their electrophysiological features at different time points. After 1 wk in coculture, EGFP(+) cells, in contact with cardiomyocytes, were spontaneously contracting and had a maximum diastolic potential (MDP) of -53.1 mV, while those that remained isolated from the surrounding myocytes did not contract and had a depolarized resting potential of -11.4 mV. Cells were then resuspended and cultured at low density to identify EGFP(+) progenitor cell derivatives. Under these conditions, we observed single EGFP(+) beating cells that had acquired an hyperpolarization-activated current typical of neonatal cardiomyocytes (EGFP(+) cells, -2.24 ± 0.89 pA/pF; myocytes, -1.99 ± 0.63 pA/pF, at -125 mV). To discriminate between cell autonomous differentiation and fusion, EGFP(+)/CD34(+) cells were cocultured with cardiac myocytes infected with a red fluorescence protein-lentiviral vector; under these conditions we found that 100% of EGFP(+) cells were also red fluorescent protein positive, suggesting cell fusion as the mechanism by which cardiac functional features are acquired.  相似文献   

2.
Connexin 43 (Cx43) hexameric hemichannels, recently demonstrated to mediate NAD(+) transport, functionally interact in the plasma membrane of several cells with the ectoenzyme CD38 that converts NAD(+) to the universal calcium mobilizer cyclic ADP-ribose (cADPR). Here we demonstrate that functional uncoupling between CD38 and Cx43 in CD38-transfected 3T3 murine fibroblasts is paralleled by decreased [Ca(2+)](i) levels as a result of reduced intracellular conversion of NAD(+) to cADPR. A sharp inverse correlation emerged between [Ca(2+)](i) levels and NAD(+) transport (measured as influx into cells and as efflux therefrom), both in the CD38(+) cells (high [Ca(2+)](i), low transport) and in the CD38(-) fibroblasts (low [Ca(2+)](i), high transport). These differences were correlated with distinctive extents of Cx43 phosphorylation in the two cell populations, a lower phosphorylation with high NAD(+) transport (CD38(-) cells) and vice versa (CD38(+) cells). Conversion of NAD(+)-permeable Cx43 to the phosphorylated, NAD(+)-impermeable form occurs via Ca(2+)-stimulated protein kinase C (PKC). Thus, a self-regulatory loop emerged in CD38(+) fibroblasts whereby high [Ca(2+)](i) restricts further Ca(2+) mobilization by cADPR via PKC-mediated disruption of the Cx43-CD38 cross-talk. This mechanism may avoid: (i) leakage of NAD(+) from cells; (ii) depletion of intracellular NAD(+) by CD38; (iii) overproduction of intracellular cADPR resulting in potentially cytotoxic [Ca(2+)](i).  相似文献   

3.
ADP-ribosyl cyclase (ADPR-cyclase) produces a Ca(2+)-mobilizing second messenger cyclic ADP-ribose (cADPR) from beta-NAD(+). In this study, we examined the molecular basis of which beta-adrenergic receptor (betaAR) stimulation induces cADPR formation and characterized cardiac ADPR-cyclase. The results revealed that isoproterenol-mediated increase of [Ca(2+)](i) in rat cardiomyocytes was blocked by pretreatment with a cADPR antagonistic derivative 8-Br-cADPR, a PKA inhibitor H89 or high concentration of ryanodine. Moreover, incubation of ventricular lysates with isoproterenol, forskolin or cAMP resulted in activation of ADPR-cyclase that was inhibited by pretreatment with H89. Supporting the observations, the cADPR antagonist and H89 blocked 8-CPT-cAMP, a cell-permeant cAMP analog-induced increase in [Ca(2+)](i) but not cGMP-mediated increase. Characterization of partially purified cardiac ADPR-cyclase showed a molecular mass of approximately 42 kDa and no cross-activity with CD38 antibodies, and the enzyme activity was inhibited by Zn(2+) but not dithiothreitol. Microinjection of the enzyme into rat cardiomyocytes increased the level of [Ca(2+)](i) in a concentration-dependent manner. The enzyme-mediated increase of [Ca(2+)](i) was blocked by the cADPR antagonist. These findings suggest that betaAR-mediated regulation of [Ca(2+)](i) in rat cardiomyocytes is primed by activation of cardiac ADPR-cyclase via cAMP/PKA signaling and that cardiac ADPR-cyclase differs from CD38 in biochemical and immunological properties.  相似文献   

4.
Although the Na(+)/H(+) exchanger (NHE) is considered to be involved in regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) through the Na(+)/Ca(2+) exchanger, the exact mechanisms of its participation in Ca(2+) handling by cardiomyocytes are not fully understood. Isolated rat cardiomyocytes were treated with or without agents that are known to modify Ca(2+) movements in cardiomyocytes and exposed to an NHE inhibitor, 5-(N-methyl-N-isobutyl)amiloride (MIA). [Ca(2+)](i) in cardiomyocytes was measured spectrofluorometrically with fura 2-AM in the absence or presence of KCl, a depolarizing agent. MIA increased basal [Ca(2+)](i) and augmented the KCl-induced increase in [Ca(2+)](i) in a concentration-dependent manner. The MIA-induced increase in basal [Ca(2+)](i) was unaffected by extracellular Ca(2+), antagonists of the sarcolemmal (SL) L-type Ca(2+) channel, and inhibitors of the SL Na(+)/Ca(2+) exchanger, SL Ca(2+) pump ATPase and mitochondrial Ca(2+) uptake. However, the MIA-induced increase in basal [Ca(2+)](i) was attenuated by inhibitors of SL Na(+)-K(+)-ATPase and sarcoplasmic reticulum (SR) Ca(2+) transport. On the other hand, the MIA-mediated augmentation of the KCl response was dependent on extracellular Ca(2+) concentration and attenuated by agents that inhibit SL L-type Ca(2+) channels, the SL Na(+)/Ca(2+) exchanger, SL Na(+)-K(+)-ATPase, and SR Ca(2+) release channels and the SR Ca(2+) pump. However, the effect of MIA on the KCl-induced increase in [Ca(2+)](i) remained unaffected by treatment with inhibitors of SL Ca(2+) pump ATPase and mitochondrial Ca(2+) uptake. MIA and a decrease in extracellular pH lowered intracellular pH and increased basal [Ca(2+)](i), whereas a decrease in extracellular pH, in contrast to MIA, depressed the KCl-induced increase in [Ca(2+)](i) in cardiomyocytes. These results suggest that NHE may be involved in regulation of [Ca(2+)](i) and that MIA-induced increases in basal [Ca(2+)](i), as well as augmentation of the KCl-induced increase in [Ca(2+)](i), in cardiomyocytes are regulated differentially.  相似文献   

5.
Although inhibition of the sarcolemmal (SL) Na(+)-K(+)-ATPase is known to cause an increase in the intracellular concentration of Ca(2+) ([Ca(2+)](i)) by stimulating the SL Na(+)/Ca(2+) exchanger (NCX), the involvement of other SL sites in inducing this increase in [Ca(2+)](i) is not fully understood. Isolated rat cardiomyocytes were treated with or without different agents that modify Ca(2+) movements by affecting various SL sites and were then exposed to ouabain. Ouabain was observed to increase the basal levels of both [Ca(2+)](i) and intracellular Na(+) concentration ([Na(+)](i)) as well as to augment the KCl-induced increases in both [Ca(2+)](i) and [Na(+)](i) in a concentration-dependent manner. The ouabain-induced changes in [Na(+)](i) and [Ca(2+)](i) were attenuated by treatment with inhibitors of SL Na(+)/H(+) exchanger and SL Na(+) channels. Both the ouabain-induced increase in basal [Ca(2+)](i) and augmentation of the KCl response were markedly decreased when cardiomyocytes were exposed to 0-10 mM Na(+). Inhibitors of SL NCX depressed but decreasing extracellular Na(+) from 105-35 mM augmented the ouabain-induced increase in basal [Ca(2+)](i) and the KCl response. Not only was the increase in [Ca(2+)](i) by ouabain dependent on the extracellular Ca(2+) concentration, but it was also attenuated by inhibitors of SL L-type Ca(2+) channels and store-operated Ca(2+) channels (SOC). Unlike the SL L-type Ca(2+)-channel blocker, the blockers of SL Na(+) channel and SL SOC, when used in combination with SL NCX inhibitor, showed additive effects in reducing the ouabain-induced increase in basal [Ca(2+)](i). These results support the view that in addition to SL NCX, SL L-type Ca(2+) channels and SL SOC may be involved in raising [Ca(2+)](i) on inhibition of the SL Na(+)-K(+)-ATPase by ouabain. Furthermore, both SL Na(+)/H(+) exchanger and Na(+) channels play a critical role in the ouabain-induced Ca(2+) increase in cardiomyocytes.  相似文献   

6.
Chen LH  Liu XS  Liu F  Jin BQ 《生理学报》2003,55(3):355-359
为观察CD226单克隆抗体(mAb)对培养人脐静脉内皮细胞(HUVECs)胞质钙离子变化的影响,我们用Fluo-3作为钙指示剂,用激光共聚焦显微镜观测不同状态下CD226 mAb作用后HUVECs胞质钙离子[Ca2 ]i的变化。结果发现:(1)用Hanks液平衡,CD226 mAb作用后HUVECs[Ca2 ]i水平缓慢升高后回到原位;加入二抗(羊抗鼠IgG)交联后[Ca2 ]i水平有较大幅度的升高,随后回到原位,与此同时,细胞外液中[Ca2 ]。水平有一定程度的下降;(2)用D-Hanks液平衡,CD226 mAb作用后HUVECs[Ca2 ]i水平无显著变化,加入二抗发生交联作用后,[Ca2 ]:水平有较大幅度的下降;(3)用EGTA预处理后,CD226 mAb及其二抗交联对HUVECs[Ca2 ]i变化无显著影响。以上结果提示,CD226mAb及其二抗交联可诱导不同状态的HUVECs胞质钙离子水平发生不同程度的变化,从而参与一系列的生理和病理过程。  相似文献   

7.
The cellular mechanisms underlying hypoxic pulmonary vasoconstriction are not fully understood. We examined the effect of hypoxia on Ca(2+) efflux from the cytosol in single Fura-2-loaded pulmonary artery myocytes. During mild hypoxia (pO(2)=50-60 Torr), peak [Ca(2+)](i) was increased and the rate of Ca(2+) removal from the cytosol was markedly slowed after stimuli that elevated [Ca(2+)](i). Removal of extracellular Na(+) potentiated the peak [Ca(2+)](i) rise and slowed the Ca(2+) decay rate in cells recorded under normoxic conditions; it did not further slow the Ca(2+) decay rate or potentiate the [Ca(2+)](i) increase in hypoxic cells. An Na(+)/Ca(2+) exchange current was recorded in isolated pulmonary artery myocytes. Switching from Li(+) to Na(+) (130 mM) revealed an inward current with reversal potential consistent with the Na(+)/Ca(2+) exchange current in cells in which [Ca(2+)](i) was clamped at 1 microM similar currents, although smaller, were observed with normal resting [Ca(2+)](i) using the perforated patch clamp technique. The Na(+)/Ca(2+) exchange current was markedly inhibited in myocytes exposed to mild hypoxia. RT-PCR revealed the expression of specific alternatively spliced RNAs of NCX1 in rat pulmonary arteries. These findings provide an enhanced understanding of the molecular mechanisms underlying hypoxic sensing in pulmonary arteries.  相似文献   

8.
This study was undertaken to examine the role of K(+) channels on cytosolic Ca(2+) ([Ca(2+)](i)) in insulin secreting cells. [Ca(2+)](i) was measured in single glucose-responsive INS-1 cells using the fluorescent Ca(2+) indicator Fura-2. Glucose, tolbutamide and forskolin elevated [Ca(2+)](i) and induced [Ca(2+)] oscillations. Whereas the glucose effect was delayed and observed in 60% and 93% of the cells, in a poorly and a highly glucose-responsive INS-1 cell clone, respectively, tolbutamide and forskolin increased [Ca(2+)](i) in all cells tested. In the latter clone, glucose induced [Ca(2+)](i) oscillations in 77% of the cells. In 16% of the cells a sustained rise of [Ca(2+)](i) was observed. The increase in [Ca(2+)](i) was reversed by verapamil, an L-type Ca(2+) channel inhibitor. Adrenaline decreased [Ca(2+)](i) in oscillating cells in the presence of low glucose and in cells stimulated by glucose alone or in combination with tolbutamide and forskolin. Adrenaline did not lower [Ca(2+)](i) in the presence of 30mM extracellular K(+), indicating that adrenaline does not exert a direct effect on Ca(2+) channels but increases K(+) channel activity. As for primary b-cells, [Ca(2+)](i) oscillations persisted in the presence of closed K(ATP) channels; these also persisted in the presence of thapsigargin, which blocks Ca(2+) uptake into Ca(2+) stores. In contrast, in voltage-clamped cells and in the presence of diazoxide (50mM), which hyperpolarizes the cells by opening K(ATP) channels, [Ca(2+)](i) oscillations were abolished. These results support the hypothesis that [Ca(2+)](i) oscillations depend on functional voltage-dependent Ca(2+) and K(+) channels and are interrupted by a hyperpolarization in insulin-secreting cells.  相似文献   

9.
The pneumococcal surface protein C (PspC) is a major adhesin of Streptococcus pneumoniae (pneumococci) that interacts in a human-specific manner with the ectodomain of the human polymeric immunoglobulin receptor (pIgR) produced by respiratory epithelial cells. This interaction promotes bacterial colonization and bacterial internalization by initiating host signal transduction cascades. Here, we examined alterations of intracellular calcium ([Ca(2+)](i)) levels in epithelial cells during host cell infections with pneumococci via the PspC-hpIgR mechanism. The release of [Ca(2+)](i) from intracellular stores in host cells was significantly increased by wild-type pneumococci but not by PspC-deficient pneumococci. The increase in [Ca(2+)](i) was dependent on phospholipase C as pretreatment of cells with a phospholipase C-specific inhibitor U73122 abolished the increase in [Ca(2+)](i). In addition, we demonstrated the effect of [Ca(2+)](i) on pneumococcal internalization by epithelial cells. Uptake of pneumococci was significantly increased after pretreatment of epithelial cells with the cell-permeable calcium chelator 1,2-bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid-tetraacetoxymethyl ester or use of EGTA as an extracellular Ca(2+)-chelating agent. In contrast, thapsigargin, an inhibitor of endoplasmic reticulum Ca(2+)ATPase, which increases [Ca(2+)](i) in a sustained fashion, significantly reduced pIgR-mediated pneumococcal invasion. Importantly, pneumococcal adherence to pIgR-expressing cells was not altered in the presence of inhibitors as demonstrated by immunofluorescence microscopy. In conclusion, these results demonstrate that pneumococcal infections induce mobilization of [Ca(2+)](i) from intracellular stores. This may constitute a defense response of host cells as the experimental reduction of intracellular calcium levels facilitates pneumococcal internalization by pIgR-expressing cells, whereas elevated calcium levels diminished bacterial internalization by host epithelial cells.  相似文献   

10.
We have shown previously that partial inhibition of the cardiac myocyte Na(+)/K(+)-ATPase activates signal pathways that regulate myocyte growth and growth-related genes and that increases in intracellular Ca(2+) concentration ([Ca(2+)](i)) and reactive oxygen species (ROS) are two essential second messengers within these pathways. The aim of this work was to explore the relation between [Ca(2+)](i) and ROS. When myocytes were in a Ca(2+)-free medium, ouabain caused no change in [Ca(2+)](i), but it increased ROS as it did when the cells were in a Ca(2+)-containing medium. Ouabain-induced increase in ROS also occurred under conditions where there was little or no change in [Na(+)](i). Exposure of myocytes in Ca(2+)-free medium to monensin did not increase ROS. Increase in protein tyrosine phosphorylation, an early event induced by ouabain, was also independent of changes in [Ca(2+)](i) and [Na(+)](i). Ouabain-induced generation of ROS in myocytes was antagonized by genistein, a dominant negative Ras, and myxothiazol/diphenyleneiodonium, indicating a mitochondrial origin for the Ras-dependent ROS generation. These findings, along with our previous data, indicate that increases in [Ca(2+)](i) and ROS in cardiac myocytes are induced by two parallel pathways initiated at the plasma membrane: One being the ouabain-altered transient interactions of a fraction of the Na(+)/K(+)-ATPase with neighboring proteins (Src, growth factor receptors, adaptor proteins, and Ras) leading to ROS generation, and the other, inhibition of the transport function of another fraction of the Na(+)/K(+)-ATPase leading to rise in [Ca(2+)](i). Evidently, the gene regulatory effects of ouabain in cardiac myocytes require the downstream collaborations of ROS and [Ca(2+)](i).  相似文献   

11.
Intracellular NAD(+) levels ([NAD(+)](i)) are important in regulating human T lymphocyte survival, cytokine secretion, and the capacity to respond to antigenic stimuli. NAD(+)-derived Ca(2+)-mobilizing second messengers, produced by CD38, play a pivotal role in T cell activation. Here we demonstrate that [NAD(+)](i) modifications in T lymphocytes affect intracellular Ca(2+) homeostasis both in terms of mitogen-induced [Ca(2+)](i) increase and of endoplasmic reticulum Ca(2+) store replenishment. Lowering [NAD(+)](i) by FK866-mediated nicotinamide phosphoribosyltransferase inhibition decreased the mitogen-induced [Ca(2+)](i) rise in Jurkat cells and in activated T lymphocytes. Accordingly, the Ca(2+) content of thapsigargin-sensitive Ca(2+) stores was greatly reduced in these cells in the presence of FK866. When NAD(+) levels were increased by supplementing peripheral blood lymphocytes with the NAD(+) precursors nicotinamide, nicotinic acid, or nicotinamide mononucleotide, the Ca(2+) content of thapsigargin-sensitive Ca(2+) stores as well as cell responsiveness to mitogens in terms of [Ca(2+)](i) elevation were up-regulated. The use of specific siRNA showed that the changes of Ca(2+) homeostasis induced by NAD(+) precursors are mediated by CD38 and the consequent ADPR-mediated TRPM2 gating. Finally, the presence of NAD(+) precursors up-regulated important T cell functions, such as proliferation and IL-2 release in response to mitogens.  相似文献   

12.
Wen L  Chen SJ  Zhang W  Ma HW  Zhang SQ  Chen L 《Cytokine》2011,53(2):215-222
B cell activating factor belonging to the TNF family (BAFF, also called BLyS, TALL-1, THANK, or zTNF4) is an important survival factor for B cells, and is able to regulate T-cell activation. Recently, we have demonstrated that treatment of mice with human soluble BAFF (hsBAFF) causes a significant increase of percentages of splenic CD4(+) T lymphocytes dose-dependently, but the CD8(+) T lymphocyte percentages maintained unchanged. Here, we show that hsBAFF significantly enhanced CD4(+) T lymphocyte response of cultured mouse splenic cells, and hsBAFF induced the proliferation and IL-2/IFN-γ secretion of purified CD4(+) T lymphocytes suboptimally stimulated through anti-CD3. Of importance, we observed that IL-2 or IFN-γ cytokine has additive effect on the proliferation and activity of hsBAFF-stimulated CD4(+) T lymphocytes. Using Flow cytometry with fluorescent probe, Fluo-3/AM, we found that hsBAFF elicited [Ca(2+)](i) elevation contributing to CD4(+) T cell proliferation. This is evidenced by our finding that pretreatment with BAPTA/AM, an intracellular Ca(2+) chelator, significantly attenuated the proliferation of hsBAFF-stimulated CD4(+) T lymphocytes. Subsequently, we revealed that hsBAFF-stimulated CD4(+) T cell proliferation was markedly suppressed after pretreatment with EGTA, an extracellular Ca(2+) chelator, or with 2-APB, an inhibitor of Ca(2+) influx through CRAC channels, respectively, suggesting that extracellular Ca(2+) influx due to hsBAFF is closely associated with [Ca(2+)](i) elevation contributing to CD4(+) T cell proliferation. In addition, we noticed that hsBAFF-treated cells conferred partial resistance to decrease of cellular viability induced by thapsigargin (Tg), an endoplasmic reticulum (ER) Ca(2+)-ATPase inhibitor. Taken together, our data indicate that hsBAFF may promote CD4(+) T cell proliferation and response by upregulation of [Ca(2+)](i) homeostasis.  相似文献   

13.
Li J  Lee S  Choi SY  Lee SJ  Oh SB  Lee JH  Chung SC  Kim JS  Lee JH  Park K 《Life sciences》2006,79(26):2441-2447
Pilocarpine has been used as a choice of drugs for treatment of impaired salivary flow. Although considerable data are available as to the stimulatory effect of pilocarpine on the salivary secretion in human, its underlying mechanism, at the cellular level, has not been rigorously studied. In this experiment, we studied the effect of pilocarpine on the ion channel activity, cytoplasmic free Ca(2+) concentration ([Ca(2+)](i)) and aquaporin (AQP)-5 expression, which play key roles in the secretary process and determine the capacity of fluid secretion. In human submandibular gland (SMG) acinar cells, 10(-5) M pilocarpine activated the outward rectifying-current, which was predominantly K(+) selective in the whole cell patch clamp study. The pilocarpine increased [Ca(2+)](i) in a concentration-dependent manner in the range of 10(-6) M to 10(-4) M. We found that both increases of [Ca(2+)](i) and outward rectifying- K(+) current were inhibited by 10(-5) M U-73122, a specific phospholipase C inhibitor. The magnitudes of pilocarpine-induced [Ca(2+)](i) transients were approximately 55% lower than those with the same concentration of carbachol (CCh). Pilocarpine also increased the amount of AQP-5 protein in the apical membrane (APM) in human SMG acinar cells. Our results suggest that pilocarpine induce salivary secretions in human by activating K(+) channels, increasing [Ca(2+)](i) via phospholipase C dependent pathway, and increasing AQP-5 protein expression in the APM of SMG acinar cells.  相似文献   

14.
15.
T cell activation by APC requires cytosolic Ca(2+) ([Ca(2+)](i)) elevation. Using two-photon microscopy, we visualized Ca(2+) signaling and motility of murine CD4(+) T cells within lymph node (LN) explants under control, inflammatory, and immunizing conditions. Without Ag under basal noninflammatory conditions, T cells showed infrequent Ca(2+) spikes associated with sustained slowing. Inflammation reduced velocities and Ca(2+) spiking in the absence of specific Ag. During early Ag encounter, most T cells engaged Ag-presenting dendritic cells in clusters, and showed increased Ca(2+) spike frequency and elevated basal [Ca(2+)](i). These Ca(2+) signals persisted for hours, irrespective of whether T cells were in contact with visualized dendritic cells. We propose that sustained increases in basal [Ca(2+)](i) and spiking frequency constitute a Ca(2+) signaling modality that, integrated over hours, distinguishes immunogenic from basal state in the native lymphoid environment.  相似文献   

16.
CD38 is a bifunctional ectoenzyme synthesizing from NAD(+) (ADP-ribosyl cyclase) and degrading (hydrolase) cyclic ADP-ribose (cADPR), a powerful universal calcium mobilizer from intracellular stores. Recently, hexameric connexin 43 (Cx43) hemichannels have been shown to release cytosolic NAD(+) from isolated murine fibroblasts (Bruzzone, S., Guida, L., Zocchi, E., Franco, L. and De Flora, A. (2001) FASEB J. 15, 10-12), making this dinucleotide available to the ectocellular active site of CD38. Here we investigated transwell co-cultures of CD38(+) (transfected) and CD38(-) 3T3 cells in order to establish the role of extracellular NAD(+) and cADPR on [Ca(2+)](i) levels and on proliferation of the CD38(-) target cells. CD38(+), but not CD38(-), feeder cells induced a [Ca(2+)](i) increase in the CD38(-) target cells which was comparable to that observed with extracellular cADPR alone and inhibitable by NAD(+)-glycohydrolase or by the cADPR antagonist 8-NH(2)-cADPR. Addition of recombinant ADP-ribosyl cyclase to the medium of CD38(-) feeders induced sustained [Ca(2+)](i) increases in CD38(-) target cells. Co-culture on CD38(+) feeders enhanced the proliferation of CD38(-) target cells over control values and significantly shortened the S phase of cell cycle. These results demonstrate a paracrine process based on Cx43-mediated release of NAD(+), its CD38-catalyzed conversion to extracellular cADPR, and influx of this nucleotide into responsive cells to increase [Ca(2+)](i) and stimulate cell proliferation.  相似文献   

17.
18.
We have previously identified a human vascular smooth muscle clone that can reversibly convert between proliferative and contractile phenotypes. Here we compared receptor-channel coupling in these cells using fura-2 to monitor [Ca(2+)](i) and patch-clamp to record currents. Histamine elevated [Ca(2+)](i) in all cells and caused contraction of cells exhibiting the contractile phenotype. The rise of [Ca(2+)](i) persisted in Ca(2+)-free solution and was abolished by thapsigargin, indicating involvement of stores. Whole cell electrophysiological recording revealed that histamine evoked transient outward K(+) current, indicating functional receptor-channel coupling. The time-course and amplitude of the histamine-activated current were similar in cells of the proliferative and contractile phenotypes. Moreover, a large conductance K(+) channel was recorded in cell-attached patches and was activated by histamine as well as the Ca(2+) ionophore A-23187, identifying it as the large conductance Ca(2+)-dependent K(+) channel. This K(+) channel showed similar characteristics and activation in both proliferative and contractile phenotypes, indicating that expression was independent of phenotype. In contrast, histamine also elicited an inward Cl(-) current in some contractile cells, suggesting differential regulation of this current depending on phenotype. These studies demonstrate the usefulness of this human vascular cell clone for studying functional plasticity of smooth muscle, while avoiding complications arising from extended times in culture.  相似文献   

19.
Diabetic cardiomyopathy (DCM) is a diabetic complication, which results in myocardial dysfunction independent of other etiological factors. Abnormal intracellular calcium ([Ca(2+)](i)) homeostasis has been implicated in DCM and may precede clinical manifestation. Studies in cardiomyocytes have shown that diabetes results in impaired [Ca(2+)](i) homeostasis due to altered sarcoplasmic reticulum Ca(2+) ATPase (SERCA) and sodium-calcium exchanger (NCX) activity. Importantly, altered calcium homeostasis may also be involved in diabetes-associated endothelial dysfunction, including impaired endothelium-dependent relaxation and a diminished capacity to generate nitric oxide (NO), elevated cell adhesion molecules, and decreased angiogenic growth factors. However, the effect of diabetes on Ca(2+) regulatory mechanisms in cardiac endothelial cells (CECs) remains unknown. The objective of this study was to determine the effect of diabetes on [Ca(2+)](i) homeostasis in CECs in the rat model (streptozotocin-induced) of DCM. DCM-associated cardiac fibrosis was confirmed using picrosirius red staining of the myocardium. CECs isolated from the myocardium of diabetic and wild-type rats were loaded with Fura-2, and UTP-evoked [Ca(2+)](i) transients were compared under various combinations of SERCA, sarcoplasmic reticulum Ca(2+) ATPase (PMCA) and NCX inhibitors. Diabetes resulted in significant alterations in SERCA and NCX activities in CECs during [Ca(2+)](i) sequestration and efflux, respectively, while no difference in PMCA activity between diabetic and wild-type cells was observed. These results improve our understanding of how diabetes affects calcium regulation in CECs, and may contribute to the development of new therapies for DCM treatment.  相似文献   

20.
Human bone marrow-derived mesenchymal stem cells (hMSCs) have the potential to differentiate into several types of cells. We have demonstrated spontaneous [Ca(2+)](i) oscillations in hMSCs without agonist stimulation, which result primarily from release of Ca(2+) from intracellular stores via InsP(3) receptors. In this study, we further investigated functions and contributions of Ca(2+) transporters on plasma membrane to generate [Ca(2+)](i) oscillations. In confocal Ca(2+) imaging experiments, spontaneous [Ca(2+)](i) oscillations were observed in 193 of 280 hMSCs. The oscillations did not sustain in the Ca(2+) free solution and were completely blocked by the application of 0.1mM La(3+). When plasma membrane Ca(2+) pumps (PMCAs) were blocked with blockers, carboxyeosin or caloxin, [Ca(2+)](i) oscillations were inhibited. Application of Ni(2+) or KBR7943 to block Na(+)-Ca(2+) exchanger (NCX) also inhibited [Ca(2+)](i) oscillations. Using RT-PCR, mRNAs were detected for PMCA type IV and NCX, but not PMCA type II. In the patch clamp experiments, Ca(2+) activated outward K(+) currents (I(KCa)) with a conductance of 170+/-21.6pS could be recorded. The amplitudes of I(KCa) and membrane potential (V(m)) periodically fluctuated liked to [Ca(2+)](i) oscillations. These results suggest that in undifferentiated hMSCs both Ca(2+) entry through plasma membrane and Ca(2+) extrusion via PMCAs and NCXs play important roles for [Ca(2+)](i) oscillations, which modulate the activities of I(KCa) to produce the fluctuation of V(m).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号