首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Abstract. We studied the distribution of litter in a shrubland of the Negev with a semi‐arid Mediterranean climate of less than 200 mm of rainfall per year. Our focus was on the effects of litter on properties of landscape patches relevant to ecosystem processes (water runoff and soil erosion), annual plant community responses (seedling density, biomass production and species richness), and animal activity (soil disturbance by termites). Three 60‐m transects, extending across a pair of opposing north‐ and south‐facing slopes and their drainage channel, showed that litter accumulates not only under shrubs, but to a lesser extent also on the crusted inter‐shrub open areas. We used 35 experimental units (‘cells’, 0.5m × 1 m), each containing a crust and a shrub patch. Because runoff flows from crusted patches and is intercepted by shrub patches, the latter were in the lower third of the cells. Leaf litter was added in single and double amounts providing ca. 0.5 and 1.0 cm litter depth, to either, both, or none of the patches. Litter addition significantly decreased the amount of runoff, regardless of the location and amount of litter applied. Litter on the crust increased species number and seedling density of species with low abundance. Adding a double litter layer increased annual plant biomass production, while a single amount had no effect. Litter addition to the shrub patch affected neither biomass nor species richness. Litter addition to both patches at both quantities caused a large increase in termite activity. Termites caused disturbance by disrupting the crust, which may contribute to the reduction in runoff amounts. In the open, flat crust patches, annual plant communities are limited in their productivity and species richness, as there are few structures stopping the outflow of water, soil and seeds. Litter adds such structures, but affects the plant communities only when added to litter‐free crust. Litter accumulation and its patchy distribution have large impacts on landscape patch properties affecting resource distribution, plant productivity and diversity, and animal activity. Therefore, understanding litter distribution in relation to the patchy structure of the landscape of semi‐arid shrubland should be viewed as an important component of shrubland management.  相似文献   

2.
Restored grasslands and shrublands are integral parts of the semi-natural landscape and are of major importance for biodiversity in the northern Loess Plateau. Determining the underlying factors that control the richness and composition of herbaceous species in restored grasslands and shrublands is urgently needed. Thus, the specific objective of this study was to evaluate the relative importance of soil, plant, and topographic explanatory variables affecting the richness and composition of herbaceous species in restored shrubland and grassland ecosystems in a typical watershed within the northern Loess Plateau. In this study, 27 restored grassland sites and 16 restored shrubland sites were sampled during September 2009. Using variation partitioning (partial canonical correspondence analysis), we determined the individual and shared effects of these three sets of explanatory variables on herbaceous biodiversity in the two restored habitats. Most of the explained variation in plant diversity was related to the pure effect of soil, plant, and topographic variables. Restored shrublands had significantly more species than grasslands, and abandoned dam farmlands had significantly more species than other grassland sites. Moreover, botanical diversity responded differently to the explanatory variables in different plant communities. The pure effects of soil properties, soil moisture in particular, accounted for the largest fractions of explained variation in species diversity in restored grasslands. Both plant and topographic variables had balancing pure effects on species diversity in restored shrublands, in particular the shrub density and slope angle. We conclude that the maintenance of a moderate density of shrubs (less than 3600 shrubs per ha), construction of check-dams, and grazing at a low stocking rate, taking conditions of soil and topographic site into account, may help to conserve biodiversity in the northern Loess Plateau.  相似文献   

3.
Vegetation, active-layer soils, and snow cover regulate energy exchange between the atmosphere and permafrost. Therefore, interactions between changes to tundra vegetation and soil thermal regime will fundamentally affect permafrost in a warmer world. We recorded soil temperatures for approximately 1 year in a Siberian Low Arctic landscape with a known history of alder (Alnus) shrub expansion on disturbed microsites in patterned ground. We recorded near-surface soil temperatures and measured physical properties of soils and vegetation on sorted-circle microsites in four stages of shrubland development: (1) tundra lacking tall shrubs; (2) shrub colonization zones; (3) mature shrublands; and (4) paludified, long-established shrublands with thick soil organic layers. Summer soil temperatures declined with increasing shrub cover and soil organic thickness; shrub colonization suppressed cryoturbation, facilitating the development of continuous vegetation and a surface organic mat on circles. Compared to open tundra, mature shrubs cooled soils by up to 9 °C during summer, but warmed soils by greater than 10 °C in winter presumably because they developed highly insulative snowpacks. Paludified shrublands had the coldest summer active layers, but winter soil temperatures were much colder than mature shrublands and were similar to earlier stages. Our results indicate that although tall shrub establishment dramatically warms winter soils within decades, much of this warming is transient at paludification-prone sites because the buildup of wet peat favors cooling in winter and the stature and snow-trapping capacity of shrubs diminish over time. In the ecosystem we studied, shrub expansion has contrasting effects on active-layer temperatures both seasonally and over longer timescales due to successional processes.  相似文献   

4.

Questions

The exceptional occurrence of tall rain forest patches on foggy coastal mountaintops, surrounded by extensive xerophytic shrublands, suggests an important role of plant–plant interactions in the origin and persistence of these patches in semi‐arid Chile. We asked whether facilitation by shrubs can explain the growth and survival of rain forest tree species, and whether shrub effects depend on the identity of the shrub species itself, the drought tolerance of the tree species and the position of shrubs in regard to wind direction.

Location

Open area–shrubland–forest matrix, Fray Jorge Forest National Park, Chile.

Methods

We recorded survival after 12 years of a ~3600 tree saplings plantation (originally ~30‐cm tall individuals) of Aextoxicon punctatum, Myrceugenia correifolia and Drimys winteri placed outside forests, beneath the shrub Baccharis vernalis, and in open (shrub‐free) areas. We assessed the effects of neighbouring shrubs and soil humidity on survival and growth along a gradient related to the direction of fog movement.

Results

B. vernalis had a clear facilitative effect on tree establishment and survival since, after ~12 years, saplings only survived beneath the shrub canopy. Long‐term survival strongly depended on tree species identity, drought tolerance and position along the soil moisture gradient, with higher survival of A. punctatum (>35%) and M. correifolia (>14%) at sites on wind‐ and fog‐exposed shrubland areas. Sites occupied by the shrub Aristeguietia salvia were unsuitable for trees, presumably due to drier conditions than under B. vernalis.

Conclusions

Interactions between shrubs and fog‐dependent tree species in dry areas revealed a strong, long‐lasting facilitation effect on planted tree's survival and growth. Shrubs acted as benefactors, providing sites suitable for tree growth. Sapling mortality in the shrubland interior was caused by lower soil moisture, the consequence of lower fog loads in the air and thus insufficient facilitation. While B. vernalis was a key ecosystem engineer (nurse) and intercepted fog water that dripped to trees planted underneath, drier sites with A. salvia were unsuitable for trees. Consequently, nurse effects related to water input are strongly site and species specific, with facilitation by shrubs providing a plausible explanation for the initiation of forest patches in this semi‐arid landscape.  相似文献   

5.
Question: We studied the interactive effects of grazing and dwarf shrub cover on the structure of a highly diverse annual plant community. Location: Mediterranean, semi‐arid shrubland in the Northern Negev desert, Israel. Methods: Variation in the biomass and plant density of annual species in the shrub and open patches was monitored during four years, inside and outside exclosures protected from sheep grazing, in two contrasting topographic sites: north and south‐facing slopes that differed in their dominant dwarf shrubs species: Sarcopoterium spinosus and Corydothymus capitatus, respectively. Results: Above‐ground biomass, density and richness of annual species were lower under the canopy of both shrub species compared to the adjacent open patches in the absence of grazing. Grazing reduced the biomass of annuals in open patches of both topographic sites, but not in the shrub patches. On the north‐facing slope, grazing also reduced plant density and richness in the open patches, but increased plant density in the shrub patches. At the species level, various response patterns to the combined effects of grazing and patch type were exhibited by different annuals. Protection against the direct impacts of grazing by shrub cover as well as species‐specific interactions between shrubs and annuals were observed. A conceptual mechanistic model explaining these interactions is proposed. Conclusion: In semi‐arid Mediterranean shrublands grazing and dwarf shrub cover interact in shaping the structure of the annual plant community through (1) direct impacts of grazing restricted to the open patches, (2) species‐specific facilitation/ interference occurring in the shrub patches and (3) subsequent further processes occurring among the interconnected shrub and open patches mediated through variation in seed flows between patches.  相似文献   

6.
以荒漠草原区6、15、24、36年生柠条灌丛为研究对象,调查了不同林龄灌丛内外土壤性质和地面节肢动物群落特征,分析了干旱区灌丛斑块生境中地面节肢动物群落随灌木林发育的变化特征.结果表明: 1)6年生林地只对土壤物理性质(土壤质地、含水量、pH和电导率)产生显著影响,从15年开始林地土壤有机质和养分(N、P)显著增加.2)在研究样地共捕获27个节肢动物类群,步甲科、拟步甲科和蚁科是优势类群.从6到15年生林地,地面节肢动物优势类群数减少,常见类群数增加.从15年生经24年生到36年生林地,灌丛内外类群组成差异先缩小后变大.36年生林地某些特殊的动物类群开始大量出现,如蜣螂在36年生林地灌丛中成为优势类群.3)6和24年生林地灌丛内外地面节肢动物群落结构差别较小,15和36年生林地灌丛内外地面节肢动物群落结构差异显著.4)林龄对灌丛内地面节肢动物的分布影响较大,而对灌丛外地面节肢动物的分布影响较小.灌丛发育过程通过对灌丛下微生境的改变如土壤质地、电导率、pH等来显著影响地面节肢动物的分布,并对灌丛外样地产生一定的辐射作用.干旱区灌丛发育过程对地面节肢动物聚集效应产生显著影响,在不同林龄阶段这种聚集效应表现不一,直接影响沙化草地生态系统的恢复过程.  相似文献   

7.
Aims Shrubland is one of the most widely distributed vegetation types in northern China. Previous studies on pattern and dynamics of plant biomass have been focused on forest and grassland ecosystems, while relevant knowledge on shrubland ecosystems is lacking. It is important to include shrublands in northern China to improve the accuracy in estimating the terrestrial ecosystem biomass in China.
Methods Based on investigations and samplings from 433 shrubland sites, we explored the distribution and allocation patterns of biomass in relation to climatic and soil nutrient factors of shrublands of temperate China.
Important findings The average shrubland biomass density in northern China is 12.5 t·hm-2. It decreases significantly from temperate deciduous shrubland in northeast to desert shrubland in northwest. The average biomass density of temperate deciduous shrubland, alpine shrubland, and desert shrubland is 14.4, 28.8, and 5.0 t·hm-2, respectively. Within temperate deciduous shrublands, plant biomass is lower in North China than in Northeast China. The average aboveground and belowground biomass density of shrub layer is 4.5 and 5.4 t·hm-2, respectively; while that of grass layer is 0.8 and 1.8 t·hm-2, respectively. Environmental factors affect biomass allocation across different plant organs. The belowground-aboveground biomass ratio of shrub exhibits no significant changes with environmental variables. The leaf-stem ratio increases with annual precipitation, and leaf biomass is low in arid region.  相似文献   

8.
Aims Recent studies have shown that alpine meadows on the Qinghai-Tibetan plateau act as significant CO2 sinks. On the plateau, alpine shrub meadow is one of typical grassland ecosystems. The major alpine shrub on the plateau is Potentilla fruticosa L. (Rosaceae), which is distributed widely from 3 200 to 4 000 m. Shrub species play an important role on carbon sequestration in grassland ecosystems. In addition, alpine shrubs are sensitive to climate change such as global warming. Considering global warming, the biomass and productivity of P. fruticosa will increase on Qinghai-Tibetan Plateau. Thus, understanding the carbon dynamics in alpine shrub meadow and the role of shrubs around the upper distribution limit at present is essential to predict the change in carbon sequestration on the plateau. However, the role of shrubs on the carbon dynamics in alpine shrub meadow remains unclear. The objectives of the present study were to evaluate the magnitude of CO2 exchange of P. fruticosa shrub patches around the upper distribution limit and to elucidate the role of P. fruticosa on ecosystem CO2 fluxes in an alpine meadow.Methods We used the static acrylic chamber technique to measure and estimate the net ecosystem productivity (NEP), ecosystem respiration (R e), and gross primary productivity (GPP) of P. fruticosa shrub patches at three elevations around the species' upper distribution limit. Ecosystem CO2 fluxes and environmental factors were measured from 17 to 20 July 2008 at 3 400, 3 600, and 3 800 m a.s.l. We examined the maximum GPP at infinite light (GPP max) and maximum R e (R emax) during the experimental time at each elevation in relation to aboveground biomass and environmental factors, including air and soil temperature, and soil water content.Important findings Patches of P. fruticosa around the species' upper distribution limit absorbed CO2, at least during the daytime. Maximum NEP at infinite light (NEP max) and GPP max of shrub patches in the alpine meadow varied among the three elevations, with the highest values at 3 400 m and the lowest at 3 800 m. GPP max was positively correlated with the green biomass of P. fruticosa more strongly than with total green biomass, suggesting that P. fruticosa is the major contributor to CO2 uptake in the alpine shrub meadow. Air temperature influenced the potential GPP at the shrub-patch scale. R emax was correlated with aboveground biomass and R emax normalized by aboveground biomass was influenced by soil water content. Potentilla fruticosa height (biomass) and frequency increased clearly as elevation decreased, which promotes the large-scale spatial variation of carbon uptake and the strength of the carbon sink at lower elevations.  相似文献   

9.
Large-scale afforestation programs have had some beneficial effects on reducing severity of dust storms and controlling desertification in arid and semi-arid regions. However, the influences of selective afforestation on soil arthropod community are largely unknown in desertified ecosystems. Soil macrofaunal communities, soil physico-chemical properties, and herb vegetation were investigated in afforested shrublands and woodlands (both approximately 30 years old post-afforestation), which were compared to shifting sand lands in Horqin, northern China. In the shrublands, environmental parameters (soil and vegetation properties) indicated a significant improvement of soil organic carbon, total nitrogen, and herbaceous density and cover, in comparison to the woodlands and shifting sand lands. The improved shrubland habitat maintained significantly higher soil macrofaunal abundance and group richness together with higher diversity compared with the woodlands and shifting sand lands. There were no significant differences in soil macrofaunal diversity between the woodlands and shifting sand lands. The results suggest that shrubs can facilitate macrofaunal assemblies and improve soil and vegetation properties when planted in shifting sand lands. Shrub afforestation is beneficial for the restoration of shifting sand lands, and is recommended for management of artificial plantations in these sandy ecosystems.  相似文献   

10.
甘肃临泽绿洲景观的空间结构与生产特性   总被引:4,自引:1,他引:3  
绿洲景观生态系统包括居民点,耕地,林地,草地,水域,岩漠,砾漠,沙漠,道路,水系10种景观组分;基质为耕地,成因类型为引入型;斑块包括居民点,林地,草地,水域,岩漠,砾漠,沙漠7种类型,成因类型可以分为3类;居民点,林地,耕地为引入型,岩漠,砾漠,沙漠为残留型,草地为环境淘汰型及残留型;廓道包括水系和道路2种类型,道路的廓道密度为水系的1.03倍,耕地以植物生产为主,在利用上应增加生产层次,发展动物生产,避免扩大面积,以维持景观生态系统的景观异质性和景观多样性,对于具有环境资源型和残留型成因特征的景观要素,适当减少生产层次,开发前植物生产,发挥水土涵养,旅游休闲,防风固沙的生态功能,有利于景观异质性与多样性的维持与稳定,对于以残留型为主的成因类型,利用上应发掘前植物生产的潜力,适当发展植物生产,可以避免景观结构的恶化。  相似文献   

11.
The influence of temporal and spatial heterogeneity in seed availability on the foraging behaviour of the harvester ant Messor arenarius was studied in an arid shrubland in the Negev Desert, Israel. The study investigated the implications of behavioural responses to heterogeneity in seed availability for the seed predation process and the potential for feedback effects on vegetation. Vegetation and seed rain were monitored across two landscape patch types (shrub patches and inter-shrub patches) in 1997. Shrub patches were shown to have higher plant and seed-rain density than inter-shrub patches. Patch use and seed selection by M. arenarius foragers were monitored through the spring, summer and autumn of 1997. After a pulse of seed production in the spring, the ants exhibited very narrow diet breadth, specialising on a single annual grass species, Stipa capensis. At this time, ants were foraging and collecting seeds mainly from inter-shrub patches. In the summer, diet breadth broadened and use of shrub patches increased, although the rate of seed collection per unit area was approximately equal in the two patch types. The increase in the use of shrub patches was due to colony-level selection of foraging areas with relatively high shrub cover and an increase in the use of shrub patches by individual foragers. In the autumn, a pulse of seed production by the shrub species Atractylis serratuloides and Noaea mucronata led to a reduction in diet breadth as foragers specialised on these species. During this period, foragers exhibited a large increase in the proportion of time spent in shrub patches and in the proportion of food items collected from shrub patches. The seasonal patterns in foraging behaviour showed linked changes in seed selection and patch use resulting in important differences in the seed predation process between the two landscape patch types. For much of the study period, there was higher seed predation pressure on the inter-shrub patches, which were of relatively low productivity compared with the shrub patches. This suggests that the seed predation process may help maintain the spatial heterogeneity in the density of ephemeral plants in the landscape.  相似文献   

12.
Our objective was to determine if long‐term increases in precipitation can maintain grasslands susceptible to desertification, and initiate a reversal of historic regime shifts on desertified shrublands. Perennial grass production and species richness in a multi‐year wet period were hypothesized to be greater than expected based on precipitation in a sequence of dry years. These responses were expected to differ for grasslands and shrublands with different dominant species and topo‐edaphic properties. Long‐term trends in desertification were documented using vegetation maps beginning in 1858, 1915, 1928, and 1998). These trends were compared with herbaceous and woody species responses to a sequence of dry (1994–2003) and wet years (2004–2008) for two grassland (uplands, playas) and three desertified shrubland types (honey mesquite, creosotebush, tarbush) in the Chihuahuan Desert. Analyses showed that both types of grasslands decreased in spatial extent since 1858 whereas areas dominated by mesquite or creosotebush increased. Production of upland grasslands in the wet period was greater than expected based on responses during the dry period whereas the relationships between species richness and precipitation was the same for both periods. Precipitation was not important to responses in playa grasslands in either period. For all ecosystem types, the production response in wet years primarily was an increase in herbaceous plants, and the most pronounced responses occurred on sandy sites (upland grasslands, mesquite shrubland). Results suggest that multiple wet years are needed to initiate a sequence of grass establishment and survival processes that can maintain upland grasslands without management inputs and lead to a state change reversal in desertified shrublands. Restoration strategies need to take advantage of opportunities provided by future climates while recognizing the importance of ecosystem type.  相似文献   

13.
The objective of this study was to evaluate the effect of some plant ecophysiological adaptations on soil microbial functional diversity in a Negev Desert ecosystem.Soil samples from the upper 0-10cm layer were collected at the study site under three species of halophyte shrubs,Zygophyllum dumosum,Hammada scoparia,and Reaumuria negevensis.These halophytes represent the most typical cover of the Negev Desert and each of them develops complex strategies that enable greater adaptation and hence,survival.The microhabitat of the shrubs showed differences in trends and magnitude of organic matter content,electrical conductivity,total soluble nitrogen,microbial functional diversity,and C compound utilization.The trends are assumed to be driven by various mechanisms of shrub adaptation in order to be able to survive the harsh desert environment.This study provides evidence that ecophysiological strategies developed by halophytes force microbial communities (from the point of view of activity,composition,and substrate utilization) to adapt to a beneficial plant-microorganism relationship.  相似文献   

14.
Carbon flux in arid and semiarid area shrublands, especially in old‐growth shrub ecosystems, has been rarely studied using eddy covariance techniques. In this study, eddy covariance measurements over a 100‐year old‐growth chamise‐dominated chaparral shrub ecosystem were conducted for 7 years from 1996 to 2003. A carbon sink, from −96 to −155 g C m−2 yr−1, was determined under normal weather conditions, while a weak sink of −18 g C m−2 yr−1 and a strong source of 207 g C m−2 yr−1 were observed as a consequence of a severe drought. The annual sink strength of carbon in the 7‐year measurement period was −52 g C m−2 yr−1. The results from our study indicate that, in contrast to previous thought, the old‐growth chaparral shrub ecosystem can be a significant sink of carbon under normal weather conditions and, therefore, be an important component of the global carbon budget.  相似文献   

15.
The replacement of native C4‐dominated grassland by C3‐dominated shrubland is considered an ecological state transition where different ecological communities can exist under similar environmental conditions. These state transitions are occurring globally, and may be exacerbated by climate change. One consequence of the global increase in woody vegetation may be enhanced ecosystem carbon sequestration, although the responses of arid and semiarid ecosystems may be highly variable. During a drier than average period from 2007 to 2011 in the northern Chihuahuan Desert, we found established shrubland to sequester 49 g C m?2 yr?1 on average, while nearby native C4 grassland was a net source of 31 g C m?2 yr?1 over this same period. Differences in C exchange between these ecosystems were pronounced – grassland had similar productivity compared to shrubland but experienced higher C efflux via ecosystem respiration, while shrubland was a consistent C sink because of a longer growing season and lower ecosystem respiration. At daily timescales, rates of carbon exchange were more sensitive to soil moisture variation in grassland than shrubland, such that grassland had a net uptake of C when wet but lost C when dry. Thus, even under unfavorable, drier than average climate conditions, the state transition from grassland to shrubland resulted in a substantial increase in terrestrial C sequestration. These results illustrate the inherent tradeoffs in quantifying ecosystem services that result from ecological state transitions, such as shrub encroachment. In this case, the deleterious changes to ecosystem services often linked to grassland to shrubland state transitions may at least be partially offset by increased ecosystem carbon sequestration.  相似文献   

16.
王亚林  丁忆  胡艳  陈静  范文武 《生态学报》2019,39(6):2054-2062
大量研究表明,21世纪全球气温将持续升高,干旱将不断加剧,具有超强抗旱能力的灌木在未来的区域乃至全球生态系统过程中将会发挥越来越重要的作用。灌木在我国有着广泛的分布,其总面积超过了我国陆地面积的20%。本研究旨在通过计算中国灌木生态系统的标准化降水蒸散指数(Standardized Precipitation Evapotranspiration Index, SPEI)来分析其干旱变化趋势及其对灌木生态系统植被生长的影响。结果显示,中国灌木生态系统的SPEI在1961—2013年间总体上呈显著地下降趋势,但其趋势在1992年发生了显著变化,这表明中国灌木生态系统正在持续地干旱化,并且在最近二十几年干旱化加剧。我们还分析了不同灌木生态系统EVI(Enhanced Vegetation Index, EVI)对SPEI变化的响应,结果显示不同的灌木生态系统类型对SPEI变化的响应不同。夏季,高寒荒漠灌木半灌木、温带荒漠灌木半灌木和温带落叶灌木EVI与SPEI变化显著正相关,而亚高山常绿灌木和亚热带常绿灌木EVI则与SPEI的变化显著负相关。温带落叶灌木EVI与春季SPEI变化显著正相关,但却与秋季和冬季的SPEI显著负相关。此外,亚热带常绿灌木EVI还与春季SPEI变化显著正相关。从空间上来看,北方的灌木生态系统比南方的灌木生态系统对干旱的变化更加敏感,同时,南方湿润地区的灌木在生态系统尺度也体现了较强的抗旱能力。在全球持续干旱化的大背景下,研究灌木生态系统EVI对干旱变化的响应将有助于对区域生态系统过程变化的理解。  相似文献   

17.
Abstract The Chihuahuan desert of New Mexico, USA, has changed in historical times from semiarid grassland to desert shrublands dominated by Larrea tridentata and Prosopis glandulosa. Similar displacement of perennial grasslands by shrubs typifies desertification in many regions. Such structural vegetation change could alter average values of net primary productivity, as well as spatial and temporal patterns of production. We investigated patterns of aboveground plant biomass and net primary production in five ecosystem types of the Jornada Basin Long‐Term Ecological Research (LTER) site. Comparisons of shrub‐dominated desertified systems and remnant grass‐dominated systems allowed us to test the prediction that shrublands are more heterogeneous spatially, but less variable over time, than grasslands. We measured aboveground plant biomass and aboveground net primary productivity (ANPP) by species, three times per year for 10 years, in 15 sites of five ecosystem types (three each in Larrea shrubland, Bouteloua eriopoda grassland, Prosopis dune systems, Flourensia cernua alluvial flats, and grass‐dominated dry lakes or playas). Spatial heterogeneity of biomass at the scale of our measurements was significantly greater in shrub‐dominated systems than in grass‐dominated vegetation. ANPP was homogeneous across space in grass‐dominated systems, and in most growing seasons was significantly more patchy in shrub vegetation. Substantial interannual variability in ANPP complicates comparison of mean values across ecosystem types, but grasslands tended to support higher ANPP values than did shrub‐dominated systems. There were significant interactions between ecosystem type and season. Grasslands demonstrated higher interannual variation than did shrub systems. Desertification has apparently altered the seasonality of productivity in these systems; grasslands were dominated by summer growth, while sites dominated by Larrea or Prosopis tended to have higher spring ANPP. Production was frequently uncorrelated across sites of an ecosystem type, suggesting that factors other than season, regional climate, or dominant vegetation may be significant determinants of actual NPP.  相似文献   

18.
Abstract. In the Wet Chaco region of Argentina, increasing shrub encroachment in savannas over the last few decades has led to important changes in the structure and functioning of the landscape. Some sectors of this territory are characterized by the appearance of circular clusters of woody patches, dispersed throughout the grassland matrix. The increasing size of these patches leads to a gradual change from grassland to dense shrubland. We studied these circular woody patches in the eastern region of the Argentine province of Formosa and characterized the variation in terms of floristic composition, diversity and predominant seed dispersal mode in different size patches. We observed an increase in species richness, diversity and compositional heterogeneity among patches with increasing patch size. Seed dispersal by animals, especially birds, is an important factor in the expansion of these woody vegetation patches within the grassland matrix.  相似文献   

19.
Aim  Evidence is accumulating of a general increase in woody cover of many savanna regions of the world. Little is known about the consequences of this widespread and fundamental ecosystem structural shift on biodiversity.
Location  South Africa.
Methods  We assessed the potential response of bird species to shrub encroachment in a South African savanna by censusing bird species in five habitats along a gradient of increasing shrub cover, from grassland/open woodland to shrubland dominated by various shrub species. We also explored historical bird species population trends across southern Africa during the second half of the 20th century to determine if any quantifiable shifts had occurred that support an ongoing impact of shrub encroachment at the regional scale.
Results  At the local scale, species richness peaked at intermediate levels of shrub cover. Bird species composition showed high turnover along the gradient, suggesting that widespread shrub encroachment is likely to lead to the loss of certain species with a concomitant decline in bird species richness at the landscape scale. Finally, savanna bird species responded to changes in vegetation structure rather than vegetation species composition: bird assemblages were very similar in shrublands dominated by Acacia mellifera and those dominated by Tarchonanthus camphoratus .
Main conclusions  Shrub encroachment might have a bigger impact on bird diversity in grassland than in open woodland, regardless of the shrub species. Species recorded in our study area were associated with historical population changes at the scale of southern Africa suggesting that shrub encroachment could be one of the main drivers of bird population dynamics in southern African savannas. If current trends continue, the persistence of several southern African bird species associated with open savanna might be jeopardized regionally.  相似文献   

20.
中国陆地生态系统碳源/汇整合分析   总被引:4,自引:0,他引:4  
赵宁  周蕾  庄杰  王永琳  周稳  陈集景  宋珺  丁键浠  迟永刚 《生态学报》2021,41(19):7648-7658
国家尺度陆地生态系统碳收支及其循环过程的研究对于提升地球系统科学与全球变化科学的科技创新能力、提高我国参与应对全球气候变化国际行动和维护国家利益的话语权、保障国家生态安全和改进生态系统管理都具有重要意义。近年来,我国已经在气候变化与陆地生态系统碳循环领域开展了大量的研究工作,主要包括国家清查、生态系统模型模拟、大气反演等手段。然而,由于大尺度陆地生态系统碳源/汇的估算存在很大的不确定性,目前尚未形成国家尺度的陆地生态系统碳源/汇的整合分析。通过搜集已发表的关于中国陆地生态系统及其组分碳源/汇的59篇文献,整合国家清查、生态系统模型模拟、大气反演3种研究手段,分析中国陆地生态系统碳源/汇大小以及时间尺度上的动态变化。结果表明,在1960s-2010s期间中国陆地生态系统碳汇整体呈上升趋势,平均为(0.213±0.030)Pg C/a,其中森林、草地、农田和灌木生态系统碳汇分别为(0.101±0.023)Pg C/a、(0.032±0.007)Pg C/a、(0.043±0.010)Pg C/a和(0.028±0.010)Pg C/a。森林生态系统中的植被碳汇远大于土壤碳汇,然而这种格局在草地和农田生态系统却相反,而且1960s-2010s期间中国主要植被类型的生态系统碳汇总体上随时间呈增加趋势。融合多源数据(地面观测、激光雷达、卫星遥感等)、多尺度数据(样地尺度、站点尺度、区域尺度)以及多手段数据(联网观测、森林清查、模型模拟),有助于全面准确地评估中国陆地生态系统碳源/汇及其对气候变化的响应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号