首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In the present study, solid-state fermentation for the production of raw starch degrading enzyme was investigated by thermotolerant Rhizopus microsporus TISTR 3531 using a combination of agro-industrial wastes as substrates. The obtained crude enzyme was applied for hydrolysis of raw cassava starch and chips at low temperature and subjected to nonsterile ethanol production using raw cassava chips. The agro-industrial waste ratio was optimized using a simplex axial mixture design. The results showed that the substrate mixture consisting of rice bran:corncob:cassava bagasse at 8?g:10?g:2?g yielded the highest enzyme production of 201.6?U/g dry solid. The optimized condition for solid-state fermentation was found as 65% initial moisture content, 35°C, initial pH of 6.0, and 5?×?106 spores/mL inoculum, which gave the highest enzyme activity of 389.5?U/g dry solid. The enzyme showed high efficiency on saccharification of raw cassava starch and chips with synergistic activities of commercial α-amylase at 50°C, which promotes low-temperature bioethanol production. A high ethanol concentration of 102.2?g/L with 78% fermentation efficiency was achieved from modified simultaneous saccharification and fermentation using cofermentation of the enzymatic hydrolysate of 300?g raw cassava chips/L with cane molasses.  相似文献   

2.
固态混合发酵提高木聚糖酶和纤维素酶活力的研究   总被引:9,自引:0,他引:9  
研究了接种比例、接种时间、碳源、氮源等因素对木霉和黑曲霉混合发酵产木聚糖酶和纤维素酶的影响。试验结果表明,当木霉和黑曲霉按4:6同时接种,以玉米芯3.75g、麸皮3.75g、葡萄糖37.5mg为混合碳源,Mandels营养盐11.5mL、添加NH_4NO_37.5mg为氮源,在84h产纤维素酶活力达到230IU/g干物质,木聚糖酶活力达到1308IU/g干物质,与两菌纯培养相比,纤维素酶活力提高163%,木聚糖酶活力提高79.5%。  相似文献   

3.
Studies have been carried out into the production of microbial protein from cassava using Trichoderma reesei and yeast. In monoculture studies, T. reesei was grown on whole cassava medium to give 0.74g dry cell/g cassava. The dry material contained 42% protein. The culture filtrate contained 5.8 g/l glucose, which supported the growth of yeast. Mixed culture fermentation was also carried out with the two microorganisms. Besides accelerating the rate of degradation and conversion of cassava to cells (0.85g cell/g cassava) the yeast boosted the protein content of the growth product to 51%.  相似文献   

4.
This study examined the feasibility of producing hydrogen by direct fermentation of fodder maize, chicory fructooligosaccharides and perennial ryegrass (Lolium perenne) in batch culture (pH 5.2-5.3, 35 degrees C, heat-treated anaerobically digested sludge inoculum). Gas was produced from each substrate and contained up to 50-80% hydrogen during the peak periods of gas production with the remainder carbon dioxide. Hydrogen yields obtained were 62.4+/-6.1mL/g dry matter added for fodder maize, 218+/-28mL/g chicory fructooligosaccharides added, 75.6+/-8.8mL H(2)/g dry matter added for wilted perennial ryegrass and 21.8+/-8mL H(2)/g dry matter added for fresh perennial ryegrass. Butyrate, acetate and ethanol were the main soluble fermentation products. Hydrogen yields of 392-501m(3)/hectare of perennial ryegrass per year and 1060-1309m(3)/hectare of fodder maize per year can be obtained based on the UK annual yield per hectare of these crops. These results significantly extend the range of substrates that can be used for hydrogen production without pre-treatment.  相似文献   

5.
Li P  Zhu M 《Bioresource technology》2011,102(22):10471-10479
A biphasic fermentation approach was undertaken for the production of ethanol and hydrogen from cassava pulp. The glucose generated by co-culture of Clostridium thermocellum and Thermoanaerobacterium aotearoense was 13.65±0.45 g L(-1), which was 1.75 and 1.17-fold greater than that produced by mono-cultures of C. thermocellum and T. aotearoense, respectively. The accumulated glucose could be utilised rapidly by subsequently inoculated Saccharomyces cerevisiae. An inoculum ratio of 1:1, a thermophilic fermentation of 84 h, and a pulp concentration of 4% proved optimal for ethanol production, fermentation efficiency, and productivity. With these conditions, the ethanol level reached 8.83±0.31 g L(-1) with a fermentation efficiency of 64.95±2.71%. Hydrogen production of 4.06 mmol by the co-culture system was 1.54 and 2.09-fold greater than that produced by mono-cultures of C. thermocellum and T. aotearoense, respectively. This sequential co-culture approach provided a consolidated bio-processing means to produce ethanol and hydrogen from cassava pulp.  相似文献   

6.
Summary Candida utilis strain BKT4 and Saccharomyces cerevisiae strain BKT7 isolated from burukutu (a local wine brewed from sorghum) were used to enrich fufu. During the fermentation process, there were changes in the microbiological and biochemical characteristics of the cassava. The total viable counts increased with increasing fermentation time while the counts of the lactics and fungi increased at the later stages of the fermentation due to the acidity of the medium. Various bacteria (Bacillus, Staphylococcus, Klebsiella, Escherichia, Streptococcus, Lactobacillus, Leuconostoc, Corynebacterium), moulds (Penicillium, Aspergillus, Fusarium, Mucor, Rhizopus) and yeasts (Candida, Saccharomyces, Hansenula, Rhodotorula) were found to be associated with the fermentation process. The pH of the fermenting cassava increased from 4.2 to 5.7 after 72 h while the cyanide level decreased from 2.2 mg/kg to 0.7 mg/kg over the same period of fermentation. Fufu (prepared by crushing and sieving fermenting cassava roots) enriched with 0.5 g of C. utilis strain BKT4, S. cerevisiae BKT7 and a mixed culture of the two organisms revealed a crude protein of 7.90, 6.34 and 10.0% respectively as compared to 2% protein content of the enriched fufu. There was a corresponding increase in protein content of the product as the quantity of the enrichment yeast was increased from 0.5 to 3.0 g. The aroma of the enriched fufu was preferred to that of the commercial fufu. Generally, good acceptability and organoleptic qualities (colour, taste, texture and aroma) of the protein enriched fufu was best achieved within 48 h of enrichment. The results of this study suggest that fufu can be made more nutritious with yeasts particularly Candida utilis strain BKT4 and Saccharomyces cerevisiae strain BKT7.  相似文献   

7.
We investigated xylanase production by Thermoascus aurantiacus using semisolid fermentation. Multivariant statistical approaches were employed to evaluate the effects of several variables (initial moisture in the medium, cultivation time, inoculum level, and bagasse mass) on xylanase production. The initial moisture content and bagasse mass were the most important factors affecting xylanase activity. The xylanase activity produced by the fungus under the optimized conditions (81% moisture content and 17 g bagasse) was found to be 2700 U per gram of initial dry matter, whereas its value predicted by a polynomial model was 2400 U per gram of initial dry matter. Received: 4 December 1998 / Received revision: 15 March 1999 / Accepted: 16 May 1999  相似文献   

8.
Direct saccharification of 2.64% cassava starch by Rhizopus oligosporus 145F was attempted under various cultural conditions. Maximum glucose yield of 18.0 g/L culture filtrate was obtained with an initial pH 3.8, 2% (v/v) inoculum of R. oligosporus spores, and an incubation temperature of 45 degrees C in shake flask cultures for 48 h. This concomitantly produced 2.7 g mycelia/100g cassava starch containing 20.2% true protein. The production of glucose and mycelia was accomplished with 92.8% starch saccharification having 67.9% starch to glucose conversion efficiency.  相似文献   

9.
AIM: Production of L-lactic acid in solid-state fermentation (SSF) using polyurethane foam (PUF) as inert support moistened with cassava bagasse starch hydrolysate. METHODS AND RESULTS: PUF impregnated with cassava bagasse starch hydrolysate as major carbon source was used for the production of L-lactic acid using Lactobacillus casei in solid-state condition. The key parameters such as reducing sugar, inoculum size and nutrient mixture were optimized by statistical approach using response surface methodology. More than 95% conversion of sugars to lactic acid from 4 g reducing sugar per gram dry support was attained after 72 h when the inert substrate was moistened with 6.5 ml of nutrient solution and inoculated with 1.5 x 10(9) CFU of L. casei. While considering the lactate yield based on the solid support used, a very high yield of 3.88 g lactic acid per gram PUF was achieved. CONCLUSION: PUF acted as an excellent inert support for L. casei and provided a platform for the utilization of starchy waste hydrolysate in a lower reactor volume. SIGNIFICANCE AND IMPACT OF THE STUDY: This is a cost effective cultivation of lactic acid bacteria for producing lactic acid from agro based waste products such as cassava bagasse. This is the first report on the exploitation of PUF as an inert support for lactate production under SSF.  相似文献   

10.
11.
The processes of separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) were employed using Saccharomyces cerevisiae for the production of ethanol from cassava pulp without any pretreatment. A combination of amylase, cellulase, cellobiase, and glucoamylase produced the highest levels of ethanol production in both the SHF and the SSF method. A temperature of 37 °C, a pH of 5.0, and an inoculum size of 6% were the optimum conditions for SSF. For the batch process at a pulp concentration of 20%, ethanol production levels from SHF and SSF were the highest, at 23.51 and 34.67 g L(-1) respectively, but in the fed-batch process, the levels of ethanol production from SHF and SSF rose to 29.39 and 43.25 g L(-1) respectively, which were 25% and 24.7% higher than those of the batch process. Thus SSF using the fed-batch provided a more efficient method for the utilization of cassava pulp.  相似文献   

12.
Rapeseed meal was evaluated for succinic acid production by simultaneous saccharification and fermentation using Actinobacillus succinogenes ATCC 55618. Diluted sulfuric acid pretreatment and subsequent hydrolysis with pectinase was used to release sugars from rapeseed meal. The effects of culture pH, pectinase loading and yeast extract concentration on succinic acid production were investigated. When simultaneous saccharification and fermentation of diluted acid pretreated rapeseed meal with a dry matter content of 12.5% (w/v) was performed at pH 6.4 and a pectinase loading of 2% (w/w, on dry matter) without supplementation of yeast extract, a succinic acid concentration of 15.5 g/L was obtained at a yield of 12.4 g/100g dry matter. Fed-batch simultaneous saccharification and fermentation was carried out with supplementation of concentrated pretreated rapeseed meal and pectinase at 18 and 28 h to yield a final dry matter content of 20.5% and pectinase loading of 2%, with the succinic acid concentration enhanced to 23.4 g/L at a yield of 11.5 g/100g dry matter and a productivity of 0.33 g/(Lh). This study suggests that rapeseed meal may be an alternative substrate for the efficient production of succinic acid by A. succinogenes without requiring nitrogen source supplementation.  相似文献   

13.
A simple, nonaseptic, low-cast process for the conversion of cassava, a starchy tropical root crop, into microbial protein for use as animal feed was sought. Screening tests culminated in the isolation of a thermotolerant, amylase-producing mold, designated I-21, which was identified as Aspergillus fumigatus. The optimum pH for protein synthesis was 3-5, but the optimum temperature was less than the desired temperature (larger than or equal to 45 C) required for a nonaseptic fermentation. A. fumigatus I-21 and its asporogenous mutant I-21A grew equally well in a medium prepared from whole cassava roots with a mean protein doubling time at 45 C and pH 3.5 of 3.5 h. In batch culture, approximately 4% carbohydrate, supplied as whole cassava, could be feremented in 20 h, giving a final yield of 24 g of dry product, containing 36.9% crude protein, per liter. The conversion of carbohydrate used to crude protein was 22.1%. When determined as amino acids, the protein content of the product, which contained cassava bark and other unfermented residues, was 27.1%. With urea as the nitrogen source, no pH control was necessary. Preliminary data indicated that medium prepared from whole cassava roots was inhibitory to the mold unless the cassava pulp was heated to 70 C immediately after being ground. Heating to 70 C was required to gelatinize the starch and permit its complete utilization.  相似文献   

14.
In this work the growth of Gibberella fujikuroi and gibberellic acid (GA3) production were studied using coffee husk and cassava bagasse as substrates in a packed-bed column bioreactor connected to a gas chromatograph for exit gas analysis. With the respirometric data, a logarithmic correlation between accumulated CO2 and biomass production was determined, and the kinetics of the fungal growth was compared for estimated and experimental data. The solid medium consisted of coffee husk (pretreated with alkali solution), mixed with cassava bagasse (7:3 dry weight basis), with a substrate initial pH of 5.2 and moisture of 77%. Cultivation was carried out in glass columns, which were packed with preinoculated substrate and with forced aeration of 0.24 L of air/[h (g of substrate)] for the first 3 days, and 0.72 L of air/[h (g of substrate)] for the remaining period. The maximum specific growth rate (microm) obtained was 0.052 h(-1) (between 24 and 48 h of fermentation). A production of 0.925 g of GA3/kg of substrate was achieved after 6 days of fermentation.  相似文献   

15.
Effect of various fermentation media, carbon sources, nitrogen sources, phosphate concentration and culture requirements includes inoculum levels and age were determined on gentamicin production and biomass dry weight production for Micromonospora echinospora, a gentamicin producing strain. Of the substrates tested, starch as a sole carbon source promoted maximal gentamicin production, while maltose promoted maximal growth. Yeast extract as a sole nitrogen source promoted maximal growth, while soyabean meal for gentamicin production. Increasing phosphate concentration enhanced gentamicin production and observed optimum production at 1.2 g/1 (6% v/v) of phosphate having 72 h old inoculum in the medium. Highest gentamicin production was obtained after cultivation with shaking for 120 h in a medium containing starch 0.75% (w/v), soyabean meal 0.5%, K2HPO4 0.12%, CaCO3 0.4%, FeSO4 0.003% and CoCl2 0.0001%. The gentamicin production was 1.2-fold in this medium as compared to basal medium.  相似文献   

16.
The treatment of a hardwood sawdust with 1% NaOH solution at 121°C dissolved 19.7% of the dry matter, mainly hemicellulose and lignin. Fermentation of the treated solids by Chaetomium cellulolyticum for 48 h gave a product containing 12.5% crude protein (total N × 6.25) on a dry weight basis. The in vitro rumen digestibility of the 48-h fermentation product was 30%, compared to 24% for the alkali-treated but unfermented sawdust. Growth was independent of sawdust particle size in the range 40 to 100 mesh. Fermentation of the pretreatment liquor gave a product containing up to 50% crude protein (dry weight basis) with an in vitro rumen digestibility of 65 to 76%. Approximately 6.7 g of crude protein was obtained from the treated solids and 2.2 g from the pretreatment liquor per 100 g of sawdust treated. The product from the pretreatment liquor fermentation has potential as a high-protein animal feed supplement but could not be produced economically without an outlet for the relatively indigestible product from the solids fermentation. Growth on the pretreatment liquor was strongly pH dependent; there was a considerable increase in the lag phase when the pH was lowered from 7.5 to 5.2. This effect appears to be due to an inhibitor whose toxicity is reduced at high pH.  相似文献   

17.
Vallisneria americana Michx (wild celery) was studied to determine the biomass and nutritive potential of all morphological structures. A 2.6-ha stand of uniform V. americana was sampled during the summer and autumn of 1980, and the spring and summer of 1981 in the southern portion of Navigation Pool 9 of the Upper Mississippi River.The maximum production rate of 3.2 g m?2 day?1 was coincident with rapid rosette production and flowering, and occurred mid- to late-July 1980. The maximum biomass of 217.3 g dry wt. m?2 was on 1 September 1980, when fruit development was also at a maximum. Leaves composed 60–70% of the summer biomass; winter buds constituted all of the winter biomass.Winter buds and fruits had the greatest nutritive potentials. Both organs contained relatively high dry matter concentrations and were low in ash (less than 10%) and fiber content. The potentially-digestible ash-free non-cell-wall fraction (NCF) was composed of an average of 75.7 and 82.2% of the dry weight of fruits and winter buds, respectively. In contrast, the nutritive potential of leaves, rootstocks, peduncles and stolons was reduced because of high moisture (less than 8% dry matter), ash and fiber concentrations. Staminate inflorescences and pistillate flowers were high in crude protein (averaged 21.8% and 16.1% of the dry-weight, respectively) and ash-free non-cell-wall fractions, but they accounted for only 2.7% of the plant biomass. The maximum calorific content of V. americana was approximately 3200 kJ m?2 at peak biomass on 1 September 1980.  相似文献   

18.
Summary The aim of this research was to develop methods to use low-cost carbon compounds for rhizobial inoculant production. Five raw starch materials; steamed cassava, sticky rice, fresh corn, dry corn and sorghum were tested for sugar production by an amylase-producing fungus. Streamed cassava produced the highest amount of reducing sugar after fermentation. Bradyrhizobium japonicum USDA110, Azorhizobium caulinodans IRBG23, Rhizobium phaseoli TAL1383, Sinorhizobium fredii HH103, and Mesorhizobium ciceri USDA2429 were tested on minimal medium supplemented with reducing sugar obtained from cassava fermentation. All strains, except B. japonicum USDA110, could grow in medium containing cassava sugar derived from 100 g steamed cassava per litre, and the growth rates for these strains were similar to those in medium containing 0.5 (w/v) mannitol. The sugar derived from steamed cassava was further used for production of glycerol using yeast. After 1 day of yeast fermentation, the culture containing glycerol and heat-killed yeast cells, was used to formulate media for culturing bradyrhizobia. A formulation medium, FM4, with a glycerol concentration of 0.6 g/l and yeast cells (OD600 = 0.1) supported growth of B. japonicum USDA110 up to 3.61 × 109 c.f.u./ml in 7 days. These results demonstrate that steamed cassava could be used to provide cheap and effective carbon sources for rhizobial inoculant production.  相似文献   

19.
休哈塔假丝酵母HDYXHT-01利用木糖生产乙醇的发酵工艺优化   总被引:1,自引:1,他引:0  
采用Plackett-Burman (PB) 方法和中心组合设计 (Ccentral composit design,CCD) 对休哈塔假丝酵母Candida shehataeHDYXHT-01利用木糖发酵生产乙醇的工艺进行优化。PB试验设计与分析结果表明:硫酸铵、磷酸二氢钾、酵母粉和接种量是影响木糖乙醇发酵的4个关键因素,以乙醇产量为响应目标,采用CCD和响应面分析法 (Response surface methodology,RSM),确定了木糖乙醇发酵的最佳工艺为:硫酸铵1.73 g/L、磷酸二氢钾3.56 g/L、酵母粉2.62 g/L和接种量5.66%,其他发酵条件为:木糖80 g/L,MgSO4·7H2O 0.1 g/L,pH 5.0,培养温度30 ℃,装液量100 mL/250 mL,摇床转速140 r/min,发酵时间48 h,在该条件下发酵液中乙醇产量可以达到26.18 g/L,比未优化前提高了1.15倍。  相似文献   

20.
The protein synthesis by Cephalosporium eichhorniae on substrates containing starch was evaluated at different pH, moisture content, ammonium sulphate and potassium dihydrogen phosphate supplementation. The optimum pH level was about 4.2 and the moisture content 65%. The optimum level of supplementation of medium containing sweet potato substrate with (NH4)2SO4 was smaller than that for cassava substrate (5.2 g/l < 6.7 g/l in submerged culture, and 4.0% < 5.2% in solid state fermentation). The total crude protein yields were about 7.6 g/l for submerged cultures and 12% DM for solid state fermentations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号