首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The lowermost portion of the resting (telogen) follicle consists of the bulge and secondary hair germ. We previously showed that the progeny of stem cells in the bulge form the lower follicle and hair, but the relationship of the bulge cells with the secondary hair germ cells, which are also involved in the generation of the new hair at the onset of the hair growth cycle (anagen), remains unclear. Here we address whether secondary hair germ cells are derived directly from epithelial stem cells in the adjacent bulge or whether they arise from cells within the lower follicle that survive the degenerative phase of the hair cycle (catagen). We use 5-bromo-2'-deoxyuridine to label bulge cells at anagen onset, and demonstrate that the lowermost portion of the bulge collapses around the hair and forms the secondary hair germ during late catagen. During the first six days of anagen onset bulge cells proliferate and self-renew. Bulge cell proliferation at this time also generates cells that form the future secondary germ. As bulge cells form the secondary germ cells at the end of catagen, they lose expression of a biochemical marker, S100A6. Remarkably, however, following injury of bulge cells by hair depilation, progenitor cells in the secondary hair germ repopulate the bulge and re-express bulge cell markers. These findings support the notion that keratinocytes can "dedifferentiate" to a stem cell state in response to wounding, perhaps related to signals from the stem cell niche. Finally, we also present evidence that quiescent bulge cells undergo apoptosis during follicle remodeling in catagen, indicating that a subpopulation of bulge cells is not permanent.  相似文献   

3.
Epithelial stem cells: stepping out of their niche   总被引:4,自引:0,他引:4  
Christiano AM 《Cell》2004,118(5):530-532
In this issue of Cell, have shown that two subpopulations of cells exist within the hair follicle stem cell niche. Despite being partially differentiated, clonal populations of suprabasal bulge region cells can regenerate skin and hair follicles as well as a new stem cell niche. The findings suggest that early lineage commitments of epithelial cells in the hair follicle may be reversible.  相似文献   

4.
G Cotsarelis  T T Sun  R M Lavker 《Cell》1990,61(7):1329-1337
Inconsistent with the view that hair follicle stem cells reside in the matrix area of the hair bulb, we found that label-retaining cells exist exclusively in the bulge area of the mouse hair follicle. The bulge consists of a subpopulation of outer root sheath cells located in the midportion of the follicle at the arrector pili muscle attachment site. Keratinocytes in the bulge area are relatively undifferentiated ultrastructurally. They are normally slow cycling, but can be stimulated to proliferate transiently by TPA. Located in a well-protected and nourished environment, these cells mark the lower end of the "permanent" portion of the follicle. Our findings, plus a reevaluation of the literature, suggest that follicular stem cells reside in the bulge region, instead of the lower bulb. This new view provides insights into hair cycle control and the possible involvement of hair follicle stem cells in skin carcinogenesis.  相似文献   

5.
In adult skin, stem cells in the hair follicle bulge cyclically regenerate the follicle, whereas a distinct stem cell population maintains the epidermis. The degree to which all bulge cells have equal regenerative potential is not known. We found that Sonic hedgehog (Shh) from neurons signals to a population of cells in the telogen bulge marked by the Hedgehog response gene Gli1. Gli1-expressing bulge cells function as multipotent stem cells in their native environment and repeatedly regenerate the anagen follicle. Shh-responding perineural bulge cells incorporate into healing skin wounds where, notably, they can change their lineage into epidermal stem cells. The perineural niche (including Shh) is dispensable for follicle contributions to acute wound healing and skin homeostasis, but is necessary to maintain bulge cells capable of becoming epidermal stem cells. Thus, nerves cultivate a microenvironment where Shh creates a molecularly and phenotypically distinct population of hair follicle stem cells.  相似文献   

6.
The discovery of long-lived epithelial stem cells in the bulge region of the hair follicle led to the hypothesis that epidermal renewal and epidermal repair after wounding both depend on these cells. To determine whether bulge cells are necessary for epidermal renewal, here we have ablated these cells by targeting them with a suicide gene encoding herpes simplex virus thymidine kinase (HSV-TK) using a Keratin 1-15 (Krt1-15) promoter. We show that ablation leads to complete loss of hair follicles but survival of the epidermis. Through fate-mapping experiments, we find that stem cells in the hair follicle bulge do not normally contribute cells to the epidermis which is organized into epidermal proliferative units, as previously predicted. After epidermal injury, however, cells from the bulge are recruited into the epidermis and migrate in a linear manner toward the center of the wound, ultimately forming a marked radial pattern. Notably, although the bulge-derived cells acquire an epidermal phenotype, most are eliminated from the epidermis over several weeks, indicating that bulge stem cells respond rapidly to epidermal wounding by generating short-lived 'transient amplifying' cells responsible for acute wound repair. Our findings have implications for both gene therapy and developing treatments for wounds because it will be necessary to consider epidermal and hair follicle stem cells as distinct populations.  相似文献   

7.
成体的皮肤一生都在不断的自我更新,其中的毛囊还是保证毛发进行生长-脱落周期循环的细胞组织学基础。存在于表皮内的干细胞维持了成体皮肤的自我平衡及毛发再生。表皮是由构体分子组成。每个构体分子包含毛皮脂单位(毛囊和皮脂腺)及其周围的毛囊间表皮。毛囊间表皮具有祖细胞,损伤时能自我更新;毛囊具有多能干细胞,在新毛发周期开始或者损伤时能够启动干细胞功能,为毛囊的生长或表皮的修复提供细胞来源。本文概述了当前对表皮干细胞的认识,着重阐明毛囊间表皮内有祖细胞的证据,毛囊间表皮干细胞在体外的自我更新能力,毛囊膨突部内干细胞的特征和一些相关基因的表达等。  相似文献   

8.
Activation of epithelial stem cells and efficient recruitment of their proliferating progeny plays a critical role in cutaneous wound healing. The reepithelialized wound epidermis has a mosaic composition consisting of progeny that can be traced back both to epidermal and several types of hair follicle stem cells. The contribution of hair follicle stem cells to wound epidermis is particularly intriguing as it involves lineage identity change from follicular to epidermal. Studies from our laboratory show that hair follicle-fated bulge stem cells commit only transient amplifying epidermal progeny that participate in the initial wound re-epithelialization, but eventually are outcompeted by other epidermal clones and largely disappear after a few months. Conversely, recently described stem cell populations residing in the isthmus portion of hair follicle contribute long-lasting progeny toward wound epidermis and, arguably, give rise to new interfollicular epidermal stem cells. The role of epithelial stem cells during wound healing is not limited to regenerating stratified epidermis. By studying regenerative response in large cutaneous wounds, our laboratory uncovered that epithelial cells in the center of the wound can acquire greater morphogenetic plasticity and, together with the underlying wound dermis, can engage in an embryonic-like process of hair follicle neogenesis. Future studies should uncover the cellular and signaling basis of this remarkable adult wound regeneration phenomenon.  相似文献   

9.
Taylor G  Lehrer MS  Jensen PJ  Sun TT  Lavker RM 《Cell》2000,102(4):451-461
The location of follicular and epidermal stem cells in mammalian skin is a crucial issue in cutaneous biology. We demonstrate that hair follicular stem cells, located in the bulge region, can give rise to several cell types of the hair follicle as well as upper follicular cells. Moreover, we devised a double-label technique to show that upper follicular keratinocytes emigrate into the epidermis in normal newborn mouse skin, and in adult mouse skin in response to a penetrating wound. These findings indicate that the hair follicle represents a major repository of keratinocyte stem cells in mouse skin, and that follicular bulge stem cells are potentially bipotent as they can give rise to not only the hair follicle, but also the epidermis.  相似文献   

10.
The adult hair follicle: cradle for pluripotent neural crest stem cells   总被引:6,自引:0,他引:6  
This review focuses on the recent identification of two novel neural crest-derived cells in the adult mammalian hair follicle, pluripotent stem cells, and Merkel cells. Wnt1-cre/R26R compound transgenic mice, which in the periphery express beta-galactosidase in a neural crest-specific manner, were used to trace neural crest cells. Neural crest cells invade the facial epidermis as early as embryonic day 9.5. Neural crest-derived cells are present along the entire extent of the whisker follicle. This includes the bulge area, an epidermal niche for keratinocyte stem cells, as well as the matrix at the base of the hair follicle. We have determined by in vitro clonal analysis that the bulge area of the adult whisker follicle contains pluripotent neural crest stem cells. In culture, beta-galactosidase-positive cells emigrate from bulge explants, identifying them as neural crest-derived cells. When these cells are resuspended and grown in clonal culture, they give rise to colonies that contain multiple differentiated cell types, including neurons, Schwann cells, smooth muscle cells, pigment cells, chondrocytes, and possibly other types of cells. This result provides evidence for the pluripotentiality of the clone-forming cell. Serial cloning showed that bulge-derived neural crest cells undergo self-renewal, which identifies them as stem cells. Pluripotent neural crest cells are also localized in the back skin hair of adult mice. The bulge area of the whisker follicle is surrounded by numerous Merkel cells, which together with innervating nerve endings form slowly adapting mechanoreceptors that transduce steady skin indentation. Merkel cells express beta-galactosidase in double transgenic mice, which confirms their neural crest origin. Taken together, our data indicate that the epidermis of the adult hair follicle contains pluripotent neural crest stem cells, termed epidermal neural crest stem cells (eNCSCs), and one newly identified neural crest derivative, the Merkel cell. The intrinsic high degree of plasticity of eNCSCs and the fact that they are easily accessible in the skin make them attractive candidates for diverse autologous cell therapy strategies.  相似文献   

11.
Using K14deltaNbeta-cateninER transgenic mice, we show that short-term, low-level beta-catenin activation stimulates de novo hair follicle formation from sebaceous glands and interfollicular epidermis, while only sustained, high-level activation induces new follicles from preexisting follicles. The Hedgehog pathway is upregulated by beta-catenin activation, and inhibition of Hedgehog signaling converts the low beta-catenin phenotype to wild-type epidermis and the high phenotype to low. beta-catenin-induced follicles contain clonogenic keratinocytes that express bulge markers; the follicles induce dermal papillae and provide a niche for melanocytes, and they undergo 4OHT-dependent cycles of growth and regression. New follicles induced in interfollicular epidermis are derived from that cellular compartment and not through bulge stem cell migration or division. These results demonstrate the remarkable capacity of adult epidermis to be reprogrammed by titrating beta-catenin and Hedgehog signal strength and establish that cells from interfollicular epidermis can acquire certain characteristics of bulge stem cells.  相似文献   

12.
The regeneration of the skin and its appendages is thought to occur by the regulated activation of a dedicated stem cell population. A population of cells in the bulge region of the hair follicle has been identified as the putative stem cell of both the follicle and the interfollicular epidermis. While this assertion is supported by a variety of surrogate assays, there has been no direct confirmation of the normal contribution of these cells to the regeneration of structures other than the cycling portion of the hair follicle. Here, we report lineage analysis revealing that the follicular epithelium is derived from cells in the epidermal placode that express Sonic hedgehog. This analysis also demonstrates that the stem cells resident in the follicular bulge that regenerate the follicle are neither the stem cells of the epidermis nor the source of the stem cells of the epidermis in the absence of trauma.  相似文献   

13.
Dynamics between stem cells, niche, and progeny in the hair follicle   总被引:1,自引:0,他引:1  
Hsu YC  Pasolli HA  Fuchs E 《Cell》2011,144(1):92-105
Here, we exploit the hair follicle to define the point at which stem cells (SCs) become irreversibly committed along a differentiation lineage. Employing histone and nucleotide double-pulse-chase and lineage tracing, we show that the early SC descendents en route to becoming transit-amplifying cells retain stemness and slow-cycling properties and home back to the bulge niche when hair growth stops. These become the primary SCs for the next hair cycle, whereas initial bulge SCs become reserves for injury. Proliferating descendents further en route irreversibly lose their stemness, although they retain many SC markers and survive, unlike their transit-amplifying progeny. Remarkably, these progeny also home back to the bulge. Combining purification and gene expression analysis with differential ablation and functional experiments, we define critical functions for these non-SC niche residents and unveil the intriguing concept that an irreversibly committed cell in an SC lineage can become an essential contributor to the niche microenvironment.  相似文献   

14.
Integrin-linked kinase (ILK) is key for normal epidermal morphogenesis, but little is known about its role in hair follicle stem cells and epidermal regeneration. Hair follicle stem cells are important contributors to newly formed epidermis following injury. We inactivated the Ilk gene in the keratin 15--expressing stem cell population of the mouse hair follicle bulge. Loss of ILK expression in these cells resulted in impaired cutaneous wound healing, with substantially decreased wound closure rates. ILK-deficient stem cells produced very few descendants that moved toward the epidermal surface and into the advancing epithelium that covers the wound. Furthermore, those few mutant cells that homed in the regenerated epidermis exhibited a reduced residence time. Paradoxically, ILK-deficient bulge stem cells responded to anagen growth signals and contributed to newly regenerated hair follicles during this phase of hair follicle growth. Thus ILK plays an important modulatory role in the normal contribution of hair follicle stem cell progeny to the regenerating epidermis following injury.  相似文献   

15.
目的研究角蛋白15(K15)在大鼠皮肤发育中的表达状况,定位表皮干细胞.方法以不同年龄大鼠背部皮肤为标本,用组织学方法,观察出生后大鼠皮肤的形态发育变化;以K15单克隆抗体为一抗,进行免疫组织化学染色,观察K15在大鼠皮肤中的表达状况.结果(1)组织学方法显示,随着年龄的增长,大鼠背部表皮细胞层数逐渐变少;在毛囊的生长周期中,以隆突区为界,毛囊上段为恒定区,下段呈周期性变化(2)免疫组化染色显示,毛囊隆突区细胞胞浆表达K15,随年龄的增长,K15阳性细胞出现在毛母质细胞区、毛囊外根鞘和表皮基底层.结论表皮干细胞位于毛囊隆突区,与表皮的更新和毛囊的周期性变化有关.  相似文献   

16.
The basement membrane of hair follicle stem cells is a muscle cell niche   总被引:2,自引:0,他引:2  
The hair follicle bulge in the epidermis associates with the arrector pili muscle (APM) that is responsible for piloerection ("goosebumps"). We show that stem cells in the bulge deposit nephronectin into the underlying basement membrane, thus regulating the adhesion of mesenchymal cells expressing the nephronectin receptor, α8β1 integrin, to the bulge. Nephronectin induces α8 integrin-positive mesenchymal cells to upregulate smooth muscle markers. In nephronectin knockout mice, fewer arrector pili muscles form in the skin, and they attach to the follicle above the bulge, where there is compensatory upregulation of the nephronectin family member EGFL6. Deletion of α8 integrin also abolishes selective APM anchorage to the bulge. Nephronectin is a Wnt target; epidermal β-catenin activation upregulates epidermal nephronectin and dermal α8 integrin expression. Thus, bulge stem cells, via nephronectin expression, create a smooth muscle cell niche and act as tendon cells for the APM. Our results reveal a functional role for basement membrane heterogeneity in tissue patterning. PAPERCLIP:  相似文献   

17.
Hair follicle stem cells: walking the maze   总被引:8,自引:1,他引:7  
The discovery of epithelial stem cells (eSCs) in the bulge region of the outer root sheath of hair follicles in mice and man has encouraged research into utilizing the hair follicle as a therapeutic source of stem cells (SCs) for regenerative medicine, and has called attention to the hair follicle as a highly instructive model system for SC biology. Under physiological circumstances, bulge eSCs serve as cell pool for the cyclic regeneration of the anagen hair bulb, while they can also regenerate the sebaceous gland and the epidermis after injury. More recently, melanocyte SCs, nestin+, mesenchymal and additional, as yet ill-defined "stem cell" populations, have also been identified in or immediately adjacent to the hair follicle epithelium, including in the specialized hair follicle mesenchyme (connective tissue sheath), which is crucial to wound healing. Thus the hair follicle and its adjacent tissue environment contain unipotent, multipotent, and possibly even pluripotent SC populations of different developmental origin. It provides an ideal model system for the study of central issues in SC biology such as plasticity and SC niches, and for the identification of reliable, specific SC markers, which distinguish them from their immediate progeny (e.g. transient amplifying cells). The current review attempts to provide some guidance in this growing maze of hair follicle-associated SCs and their progeny, critically reviews potential or claimed hair follicle SC markers, highlights related differences between murine and human hair follicles, and defines major unanswered questions in this rapidly advancing field.  相似文献   

18.
Epidermal stem cells residing in different locations in the skin continuously self-renew and differentiate into distinct cell lineages to maintain skin homeostasis during postnatal life. Murine epidermal stem cells located at the bulge region are responsible for replenishing the hair lineage, while the stem cells at the isthmus regenerate interfollicular epidermis and sebaceous glands. In vitro cell culture and in vivo animal studies have implicated TGF-β signaling in the maintenance of epidermal and hair cycle homeostasis. Here, we employed a triple transgenic animal model that utilizes a combined Cre/loxP and rtTA/TRE system to allow inducible and reversible inhibition of TGF-β signaling in hair follicle lineages and suprabasal layer of the epidermis. Using this animal model, we have analyzed the role of TGF-β signaling in distinct phases of the hair cycle. Transient abrogation of TGF-β signaling does not prevent catagen progression; however, it induces aberrant proliferation and differentiation of isthmus stem cells to epidermis and sebocyte lineages and a blockade in anagen re-entry as well as results in an incomplete hair shaft development. Moreover, ablation of TGF-β signaling during anagen leads to increased apoptosis in the secondary hair germ and bulb matrix cells. Blocking of TGF-β signaling in bulge stem cell cultures abolishes their colony-forming ability, suggesting that TGF-β signaling is required for the maintenance of bulge stem cells. At the molecular level, inhibition of TGF-β signaling results in a decrease in both Lrig1-expressing isthmus stem cells and Lrg5-expressing bulge stem cells, which may account for the phenotypes seen in our animal model. These data strongly suggest that TGF-β signaling plays an important role in regulating the proliferation, differentiation, and apoptosis of distinct epithelial stem cell populations in hair follicles.  相似文献   

19.
Recently in Cell, Hsu et al. (2011) defined the relationship between stem cells and differentiated progeny within a hair follicle lineage. Their work reveals that stem cell descendants that have migrated out of the bulge can return to this niche and actively contribute to its function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号