首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
以帽儿山地区蒙古栎凋落叶的含水率、载量和床层高度为控制变量,模拟野外凋落叶床层状态,进行了100次平地无风条件下的室内点烧试验,分析含水率、载量和床层高度对火焰长度和驻留时间的影响,并建立了多元线性预测模型.结果表明: 含水率与火焰长度呈极显著线性负相关(P<0.01),与驻留时间的线性关系并不显著(P>0.05);载量、床层高度与火焰长度和驻留时间均呈极显著线性正相关(P<0.01).床层高度与含水率、载量的交互作用对火焰长度有显著影响;含水率与载量、床层高度的交互作用对驻留时间有显著影响.火焰长度预测模型的预测效果较好,能解释火焰长度83.3%的变异,平均绝对误差为7.8 cm,平均相对误差为16.2%;驻留时间预测模型的效果略差,仅能解释驻留时间54%的变异,平均绝对误差为9.2 s,平均相对误差为18.6%.  相似文献   

2.
森林可燃物及其管理的研究进展与展望   总被引:15,自引:1,他引:14       下载免费PDF全文
森林可燃物是森林生态系统的基本组成部分, 是影响林火发生及火烧强度的重要因素之一, 因此, 受到国内外学者的广泛关注。该文从以下4个方面综述了国内外可燃物研究的最新进展: 森林可燃物特性, 森林可燃物类型与火行为, 森林可燃物类型、载量的调查与制图, 森林可燃物管理。同时提出了我国森林可燃物今后的研究方向: 开展多尺度可燃物研究; 可燃物类型与火行为的研究; 把以试验观测为基础的静态研究与以空间技术和生态模型为基础的动态预测相结合, 研究可燃物处理效果; 全球气候变化背景下可燃物处理与碳收支。  相似文献   

3.
Understanding the fire prediction capabilities of fuel models is vital to forest fire management. Various fuel models have been developed in the Great Xing''an Mountains in Northeast China. However, the performances of these fuel models have not been tested for historical occurrences of wildfires. Consequently, the applicability of these models requires further investigation. Thus, this paper aims to develop standard fuel models. Seven vegetation types were combined into three fuel models according to potential fire behaviors which were clustered using Euclidean distance algorithms. Fuel model parameter sensitivity was analyzed by the Morris screening method. Results showed that the fuel model parameters 1-hour time-lag loading, dead heat content, live heat content, 1-hour time-lag SAV(Surface Area-to-Volume), live shrub SAV, and fuel bed depth have high sensitivity. Two main sensitive fuel parameters: 1-hour time-lag loading and fuel bed depth, were determined as adjustment parameters because of their high spatio-temporal variability. The FARSITE model was then used to test the fire prediction capabilities of the combined fuel models (uncalibrated fuel models). FARSITE was shown to yield an unrealistic prediction of the historical fire. However, the calibrated fuel models significantly improved the capabilities of the fuel models to predict the actual fire with an accuracy of 89%. Validation results also showed that the model can estimate the actual fires with an accuracy exceeding 56% by using the calibrated fuel models. Therefore, these fuel models can be efficiently used to calculate fire behaviors, which can be helpful in forest fire management.  相似文献   

4.
Microorganisms frequently contaminate jet fuel and cause corrosion of fuel tank metals. In the past, jet fuel contaminants included a diverse group of bacteria and fungi. The most common contaminant was the fungus Hormoconis resinae. However, the jet fuel community has been altered by changes in the composition of the fuel and is now dominated by bacterial contaminants. The purpose of this research was to determine the composition of the microbial community found in fuel tanks containing jet propellant-8 (JP-8) and to determine the potential of this community to cause corrosion of aluminum alloy 2024 (AA2024). Isolates cultured from fuel tanks containing JP-8 were closely related to the genus Bacillus and the fungi Aureobasidium and Penicillium. Biocidal activity of the fuel system icing inhibitor diethylene glycol monomethyl ether is the most likely cause of the prevalence of endospore forming bacteria. Electrochemical impedance spectroscopy and metallographic analysis of AA2024 exposed to the fuel tank environment indicated that the isolates caused corrosion of AA2024. Despite the limited taxonomic diversity of microorganisms recovered from jet fuel, the community has the potential to corrode fuel tanks.  相似文献   

5.
Dataset on departure fuel loads, stopover length and fuel deposition rate of the European robins Erithacus rubecula during their migration in the Baltic area is presented. We test these empirical data against the predictions of an optimal migration model assuming that robins minimize time spent on migration, and that fuel deposition rate varies stochastically. The latter assumption sets this model apart from the alternative ones and makes it more realistic. In particular, it is applicable in frequently observed situations when fuel deposition rate is negative. Our model assumes stochastic variation of the fuel deposition rate at sites along the migratory rout and thus is applicable when negative values of fuel deposition rate are recorded. The model predicts the relationship between fuel deposition rate and departure fuel load rather well. The agreement between the observed and the predicted values of optimal stopover duration is much poorer. Predictions of optimal migration theory are known to be dependent on the form of flight equation chosen. Our model fits the data best when the costs of transport are low. This supports the idea that transport costs of fuel stores may be low, especially when fuel stores are modest.  相似文献   

6.
Understanding spatial variation in wildland fuel is central to predicting wildfire behaviour as well as current and future fire regimes. Vegetation (plant material) – both live (biomass) and dead (necromass) – constitutes most aspects of wildland fuel (hereafter ‘fuel’). It therefore is likely that factors influencing vegetation structure and composition – climate, soils, disturbance – also will influence fuel structure and associated hazard. Nonetheless, these relationships are poorly understood in temperate environments. In this study, we used an extensive database of fuel hazard assessments to determine the extent to which environmental variables (climatic conditions and soil type) and disturbance (fire) can predict fuel hazard in native vegetation across south-eastern Australia. Fuel hazard ratings are based on the horizontal and vertical continuity of fine fuels (dead plant material < 6 mm thick, and live plant material < 3 mm thick) that burn in the flaming front of a fire. These scores are used widely by fire managers in Australia. We used environmental and disturbance variables to develop models to predict spatial patterns of hazard for each fuel stratum (surface, near-surface, elevated and bark) and the height of two fuel strata (near-surface, elevated). Soil, climate and time since fire were strong predictors of fuel hazard for at least one stratum, and soil predictors were the strongest predictors of fuel hazard across all strata. We used models to predict fuel hazard by stratum at a fixed time since fire in two regions with contrasting environments in south-eastern Australia to better understand the spatial arrangement of fuel hazard. Fuel hazard varied within and between regions, emphasising the complexity and heterogeneity of fuel patterns that affect fuel hazard from local to landscape extents. The models improve the basis for analysing fuel hazard patterns and therefore increase the capacity to predict fire regimes under future climates.  相似文献   

7.
Abstract

Microorganisms frequently contaminate jet fuel and cause corrosion of fuel tank metals. In the past, jet fuel contaminants included a diverse group of bacteria and fungi. The most common contaminant was the fungus Hormoconis resinae. However, the jet fuel community has been altered by changes in the composition of the fuel and is now dominated by bacterial contaminants. The purpose of this research was to determine the composition of the microbial community found in fuel tanks containing jet propellant-8 (JP-8) and to determine the potential of this community to cause corrosion of aluminum alloy 2024 (AA2024). Isolates cultured from fuel tanks containing JP-8 were closely related to the genus Bacillus and the fungi Aureobasidium and Penicillium. Biocidal activity of the fuel system icing inhibitor diethylene glycol monomethyl ether is the most likely cause of the prevalence of endospore forming bacteria. Electrochemical impedance spectroscopy and metallographic analysis of AA2024 exposed to the fuel tank environment indicated that the isolates caused corrosion of AA2024. Despite the limited taxonomic diversity of microorganisms recovered from jet fuel, the community has the potential to corrode fuel tanks.  相似文献   

8.
Early arrival at the breeding site positively affects the breeding success of migratory birds. During migration, birds spend most of their time at stopovers. Therefore, determining which factors shape stopover duration is essential to our understanding of avian migration. Because the main purpose of stopover is to accumulate fat as fuel for the next flight bout, fuel reserves at arrival and the accumulation of fuel are both expected to affect stopover departure decisions. Here, we determined whether fuel reserves and fuel accumulation predict a bird''s motivation to depart, as quantified by nocturnal migratory restlessness (Zugunruhe), using northern wheatears (Oenanthe oenanthe) that were captured and temporarily contained at spring stopover. We found that fuel reserves at capture were positively correlated with Zugunruhe, and negatively correlated with fuel accumulation. This indicates that fat birds were motivated to depart, whereas lean birds were set on staying and accumulating fuel. Moreover, the change in fuel reserves was positively correlated with the concurrent change in Zugunruhe, providing the first empirical evidence for a direct link between fuel accumulation and Zugunruhe during stopover. Our study indicates that, together with innate rhythms and weather, the size and accumulation of fuel reserves shape stopover duration, and hence overall migration time.  相似文献   

9.
以地表死可燃物评估八达岭林场森林燃烧性   总被引:2,自引:0,他引:2  
王晓丽  牛树奎  马钦彦  阚振国 《生态学报》2009,29(10):5313-5319
森林燃烧性是森林火险评估的基础,也是制定营林防火措施的依据.以北京市八达岭林场18种主要森林类型的地表死可燃物为研究对象,分别以死可燃物负荷量、含水率及综合属性为分析依据,结合国内外最新研究成果、林场实际情况和样地调查,分别讨论并对比不同森林类型的燃烧性,并划分等级.研究得出,以地表死可燃物综合属性为分析依据,研究不同森林类型的燃烧性更符合林场实际情况,并以综合属性为依据绘制林场燃烧性等级图,同时,死可燃物负荷量和含水率的分析,可以为营林防火措施的制定提供理论依据.  相似文献   

10.
This paper describes results obtained from CI engine performance running on dual fuel mode at fixed engine speed and four loads, varying the mixing system and pilot fuel quality, associated with fuel composition and cetane number. The experiments were carried out on a power generation diesel engine at 1500 m above sea level, with simulated biogas (60% CH4–40% CO2) as primary fuel, and diesel and palm oil biodiesel as pilot fuels. Dual fuel engine performance using a naturally aspirated mixing system and diesel as pilot fuel was compared with engine performance attained with a supercharged mixing system and biodiesel as pilot fuel. For all loads evaluated, was possible to achieve full diesel substitution using biogas and biodiesel as power sources. Using the supercharged mixing system combined with biodiesel as pilot fuel, thermal efficiency and substitution of pilot fuel were increased, whereas methane and carbon monoxide emissions were reduced.  相似文献   

11.
Microbial degradation of jet fuel leads to the accumulation of sludge in fuel distribution systems and storage tanks. To prevent this phenomenon, the biocidal anti-icing inhibitor diethylene glycol monomethyl ether (DiEGME) is routinely added to the fuel. The fate of DiEGME in soil and its consequent effect on the biodegradation of jet fuel by indigenous soil microflora have not been investigated. The aim of this work was to study the kinetics of biodegradation of jet fuel in dark rendzina soil, as affected by the presence of DiEGME. Our data show that the degradability in soil of jet fuel amended with DiEGME was tenfold higher than that of non-amended fuel. Consequently, there was an increase in the jet-fuel-utilizing soil microbial populations during the 100 days of incubation of soil samples amended with jet fuel containing DiEGME. Gas chromatograms of distilled fractions of jet fuel extracted from the soil demonstrated that most of the light fractions' extracts could not be detected at the end of the 100-day incubation. The relative concentration of aromatic compounds in the soil contaminated with DiEGME-amended jet fuel increased during incubation, demonstrating the lower biodegradation rate of these components compared with other fuel components. DiEGME was partially degraded by the general microbial population of the soil. Maximal DiEGME degradation was obtained with specific jet-fuel-utilizing microbial strains – Pseudomonas aeruginosa and Cladosporium resinae – that were added to a carbon-free mineral medium. The degradation rate of DiEGME by specific strains or by soil mixed populations bore an inverse relationship to the DiEGME concentration. The finding that DiEGME can be degraded by indigenous soil microorganisms may have facilitated its utilization also by jet-fuel-degrading microorganisms.  相似文献   

12.
A stabilized diesel/methanol blend was described and the basic combustion behaviors based on the cylinder pressure analysis was conducted in a compression-ignition engine. The study showed that increasing methanol mass fraction of the diesel/methanol blends would increase the heat release rate in the premixed burning phase and shorten the combustion duration of the diffusive burning phase. The ignition delay increased with the advancing of the fuel delivery advance angle for both the diesel fuel and the diesel/methanol blends. For a specific fuel delivery advance angle, the ignition delay increased with the increase of the methanol mass fraction (oxygen mass fraction) in the fuel blends and the behaviors were more obvious at low engine load and/or high engine speed. The rapid burn duration and the total combustion duration increased with the advancing of the fuel delivery advance angle. The centre of the heat release curve was close to the top-dead-centre with the advancing of the fuel delivery advance angle. Maximum cylinder gas pressure increased with the advancing of the fuel delivery advance angle, and the maximum cylinder gas pressure of the diesel/methanol blends gave a higher value than that of the diesel fuel. The maximum mean gas temperature remained almost unchanged or had a slight increase with the advancing of the fuel delivery advance angle, and it only slightly increased for the diesel/methanol blends compared to that of the diesel fuel. The maximum rate of pressure rise and the maximum rate of heat release increased with the advancing of the fuel delivery advance angle of the diesel/methanol blends and the value was highest for the diesel/methanol blends.  相似文献   

13.
Optimal avian migration: A dynamic model of fuel stores and site use   总被引:8,自引:0,他引:8  
Birds migrating between widely separated wintering and breeding grounds may choose among a number of potential stopover sites by using different itineraries. Our aim is to predict the optimal migration schedule in terms of (1) rates of fuel deposition, (2) departure fuel loads and (3) stopover site use, when only a handful of such sites are available. We assume that reproductive success depends on the date and fuel load at arrival on the breeding grounds. On migration, the birds face a trade-off between gaining fuel and avoiding predation. To allow the optimal decision at any given moment to depend on the fuel load and the location of the bird, as well as on unpredictability in conditions, we employed stochastic dynamic programming. This technique assumes that the birds know the probability distribution of conditions in all sites, but not the particular realization they will encounter. We examined the consequences of varying aspects of the model, like (1) the shape of the relationship between arrival date and fitness, (2) the presence of stochasticity in fuel deposition rates and wind conditions, and (3) the nature of predation (i.e. whether predation risk depends on the fuel load of the birds or their feeding intensity). Optimal fuel deposition rates are predicted to be constant if there are either only predation risks of maintaining stores or only risks of acquiring fuel stores. If only fuel acquisition is risky, fuel deposition rates can be below maximum, especially if there also is an intermediate best arrival time at the breeding ground. The fuel deposition rate at a site then depends not just on the site's quality but on the qualities of all visited sites. In contrast, rates of fuel deposition are not constant if both the acquisition and the maintenance of fuel stores carry risk. Optimal departure fuel loads are just enough to reach the next site if the environment is deterministic and are simply set by the energetic cost of covering the distance. As with time-minimizing models, more fuel than necessary to reach a site is only deposited under very restricted circumstances. Such overloads are more likely to be deposited if either fuel gains or expenditure are stochastic. The size of overloads is then determined by the variance in fuel gain at the target site and the worst possible conditions during flight. Site use is modified by differences in predation risk between sites and differences in fuel deposition rates. An expression derived to predict site use under time minimization provides a good approximation in state-dependent models. In some cases, the possibility of starvation may influence optimal decisions, even when the probability of starvation under the optimal policy is low. This effect of starvation has also been found in other contexts. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
黄土高原子午岭大披针苔草能量与养分特征   总被引:3,自引:0,他引:3  
森林地表死可燃物是引起森林火灾的重要原因,掌握森林地表死可燃物载量的分布,对预防火灾和可燃物管理有重要意义.依据1 h、10 h和100 h分类标准,对呼中林区的不同林型内的地表死可燃物载量进行了对比分析.结果表明:樟子松林内死可燃物总载量最高,偃松林内的最低;对不同类型兴安落叶松林群落的地表死可燃物进行比较,发现笃斯越桔-兴安落叶松林内死可燃物总载量最高,而泥炭藓-杜香-兴安落叶松林的最低;此外,相关分析表明,兴安落叶松死可燃物总载量与平均胸径、平均树高、草本盖度、凋落物厚度呈显著的正相关,与坡向、腐殖质厚度等因子呈显著负相关;多元线性回归分析表明,用兴安落叶松林的凋落物厚度、草本盖度、平均树高因子可较好地估算地表死可燃物总载量,进而为森林可燃物的管理和指导森林防火提供科学的依据.  相似文献   

15.
朱敏  刘晓东  李璇皓  韩骁  任云卯  王奇峰 《生态学报》2015,35(13):4483-4491
森林可燃物调控及其影响评价研究是可燃物管理的基础,对减少火灾的发生具有重要的意义。在北京西山实验林场,选取华北地区典型针叶林-油松林(Pinus tabulaeformis),设立4块20m×20m样地,通过对林分可燃物分布特征的调查和分析,制定以修枝、割灌为主的调控措施,对比研究调控与未调控林分林下植被多样性和优势灌木的光合生理特性。研究结果表明:(1)不同油松林可燃物垂直分布特征表现为0—3m层可燃物负荷量最大(平均为1053.94 g/m2),且可燃物种类最多,随着高度的增加可燃物的负荷量均呈现减少的趋势。(2)调控林分林下优势灌木(主要为孩儿拳头和黑枣)最大净光合速率、光饱和点、光补偿点、暗呼吸速率均比对照增加;而表观量子效率则减小。(3)不同的可燃物调控措施改变了林下植被多样性;不同调控措施的草本层物种丰富度、物种多样性、物种优势度以及物种均匀度均高于对照林分。由此可见,森林可燃物调控措施对林下植被多样性和优势物种的光合生理特性均有影响。研究结果可为森林可燃物管理提供科学依据。  相似文献   

16.
The biodegradation of No. 2 diesel fuel under anaerobic conditions was investigated using sediments collected from wetlands of Barataria-Terrebonne estuary in Louisiana. The results indicated enhanced biodegradation of diesel fuel under sulfate-reducing, nitrate-reducing, methanogenic, and mixed electron acceptor conditions. However, the rate of diesel degradation was the highest under mixed electron acceptor conditions followed in order by sulfate-reducing, methanogenic, and nitrate-reducing conditions. Under mixed electron acceptor condition, 99% removal of diesel fuel was achieved within 510 days, while under sulfate-reducing condition 62% degradation of diesel fuel was observed for the same period. Diesel fuel was also degraded to a smaller extent in the culture condition where electron acceptors were not supplemented (natural attenuation condition). This study showed evidence for enhanced diesel fuel metabolism in a mixed microbial population system similar to any contaminated field site, where a heterogeneous microbial population exists.  相似文献   

17.
The removal of nitrilotriacetic acid (NTA) was studied under anaerobic conditions using oligotrophic and copiotrophic microbial fuel cells (MFCs) as a novel wastewater treatment process. Over 85% of NTA was removed from oligotrophic MFCs enriched and maintained with fuel containing NTA, whilst the value was around 20% in oligotrophic MFCs fed with NTA-free fuel, and in copiotrophic MFCs enriched with NTA containing fuel. The oligotrophic MFCs generated current with concomitant utilization of NTA when served as the sole organic compound, suggesting that NTA is oxidized its suitability as fuel in the MFCs.  相似文献   

18.
中国小麦燃料乙醇的能量收益   总被引:1,自引:0,他引:1  
李胜  路明  杜凤光 《生态学报》2007,27(9):3794-3800
分析了燃料乙醇能量收益问题提出的背景,国外有关燃料乙醇能量收益研究的最新进展及国内研究现状,采用全生命周期分析方法,计算了小麦燃料乙醇净能量值和能量产投比,对中国小麦燃料乙醇的能量收益进行了评价。主要结论有:如不考虑副产品能量价值,旧工艺和新工艺的NEV分别为-17022MJ/t燃料乙醇和-11778MJ/t燃料乙醇,R值分别是0.64和0.72;如考虑副产品能量价值,旧工艺和新工艺的NEV值分别为2271MJ/t燃料乙醇和11249MJ/t燃料乙醇,R值分别是1.05和1.27,从能源经济性角度看,旧工艺和新工艺的能量收益已是正效益,且新工艺的能量收益显著提高;与美国玉米燃料乙醇生产相比,如考虑副产品能量价值,新工艺和美国玉米燃料乙醇的NEV分别为11249MJ/t燃料乙醇和7457MJ/t燃料乙醇,R值分别是1.27和1.34。由于小麦转化率要低于玉米,因而小麦燃料乙醇的R值会低于玉米燃料乙醇。中国小麦燃料乙醇生产(新工艺)NEV大于美国玉米燃料乙醇的原因在于:中国小麦燃料乙醇副产品综合利用水平(23027MJ/t燃料乙醇)已明显优于美国玉米燃料乙醇(5078MJ/t燃料乙醇)。  相似文献   

19.
Global changes and associated droughts, heat waves, logging activities, and forest fragmentation may intensify fires in Amazonia by altering forest microclimate and fuel dynamics. To isolate the effects of fuel loads on fire behavior and fire‐induced changes in forest carbon cycling, we manipulated fine fuel loads in a fire experiment located in southeast Amazonia. We predicted that a 50% increase in fine fuel loads would disproportionally increase fire intensity and severity (i.e., tree mortality and losses in carbon stocks) due to multiplicative effects of fine fuel loads on the rate of fire spread, fuel consumption, and burned area. The experiment followed a fully replicated randomized block design (N = 6) comprised of unburned control plots and burned plots that were treated with and without fine fuel additions. The fuel addition treatment significantly increased burned area (+22%) and consequently canopy openness (+10%), fine fuel combustion (+5%), and mortality of individuals ≥5 cm in diameter at breast height (dbh; +37%). Surprisingly, we observed nonsignificant effects of the fuel addition treatment on fireline intensity, and no significant differences among the three treatments for (i) mortality of large trees (≥30 cm dbh), (ii) aboveground forest carbon stocks, and (iii) soil respiration. It was also surprising that postfire tree growth and wood increment were higher in the burned plots treated with fuels than in the unburned control. These results suggest that (i) fine fuel load accumulation increases the likelihood of larger understory fires and (ii) single, low‐intensity fires weakly influence carbon cycling of this primary neotropical forest, although delayed postfire mortality of large trees may lower carbon stocks over the long term. Overall, our findings indicate that increased fine fuel loads alone are unlikely to create threshold conditions for high‐intensity, catastrophic fires during nondrought years.  相似文献   

20.
In order to succeed in crossing extensive ecological barriers, migratory birds usually deposit fuel en route. High rates of fuel deposition may enable birds to shorten their total migration time and are therefore advantageous for time-minimizing migrants. Several studies have suggested that water provision may increase food utilization in non-migratory birds. The goal of this study was to test the influence of water availability on the fuel deposition of en route migratory passerines. We studied fuel deposition of blackcaps Sylvia atricapilla and lesser whitethroats S. curruca staging in a plantation of Mount Atlas gum-tree Pistacia atlantica in the northern Negev desert, Israel, during the autumns of 2000 and 2002. We manipulated water availability at the site and measured the effect of water supplementation on fuel deposition of birds of both species. We found that when water was available, blackcaps had higher fuel loads and higher fuel deposition rates than during control trials. However, water availability had no effect on fuel deposition of lesser whitethroats. Species-specific differences in adaptations to arid conditions, reflected in the species' winter habitat preferences, may be responsible for the between-species dissimilarity in responding to water provision. We suggest that water availability may have strong ecological and evolutionary consequences for birds migrating through arid environments, by its possible effect on bird behavior and physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号