首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drought, fire, and windstorms can interact to degrade tropical forests and the ecosystem services they provide, but how these forests recover after catastrophic disturbance events remains relatively unknown. Here, we analyze multi‐year measurements of vegetation dynamics and function (fluxes of CO2 and H2O) in forests recovering from 7 years of controlled burns, followed by wind disturbance. Located in southeast Amazonia, the experimental forest consists of three 50‐ha plots burned annually, triennially, or not at all from 2004 to 2010. During the subsequent 6‐year recovery period, postfire tree survivorship and biomass sharply declined, with aboveground C stocks decreasing by 70%–94% along forest edges (0–200 m into the forest) and 36%–40% in the forest interior. Vegetation regrowth in the forest understory triggered partial canopy closure (70%–80%) from 2010 to 2015. The composition and spatial distribution of grasses invading degraded forest evolved rapidly, likely because of the delayed mortality. Four years after the experimental fires ended (2014), the burned plots assimilated 36% less carbon than the Control, but net CO2 exchange and evapotranspiration (ET) had fully recovered 7 years after the experimental fires ended (2017). Carbon uptake recovery occurred largely in response to increased light‐use efficiency and reduced postfire respiration, whereas increased water use associated with postfire growth of new recruits and remaining trees explained the recovery in ET. Although the effects of interacting disturbances (e.g., fires, forest fragmentation, and blowdown events) on mortality and biomass persist over many years, the rapid recovery of carbon and water fluxes can help stabilize local climate.  相似文献   

2.
Anthropogenic understory fires affect large areas of tropical forest, particularly during severe droughts. Yet, the mechanisms that control tropical forests' susceptibility to fire remain ambiguous. We tested the widely accepted hypothesis that Amazon forest fires increase susceptibility to further burning by conducting a 150 ha fire experiment in a closed-canopy forest near the southeastern Amazon forest–savanna boundary. Forest flammability and its possible determinants were measured in adjacent 50 ha forest plots that were burned annually for 3 consecutive years (B3), once (B1), and not at all (B0). Contrary to expectation, an annual burning regime led to a decline in forest flammability during the third burn. Microclimate conditions were more favorable compared with the first burn (i.e. vapor pressure deficit increased and litter moisture decreased), yet flame heights declined and burned area halved. A slight decline in fine fuels after the second burn appears to have limited fire spread and intensity. Supporting this conclusion, fire spread rates doubled and burned area increased fivefold in B3 subplots that received fine fuel additions. Slow replacement of surface fine fuels in this forest may be explained by (i) low leaf litter production (4.3 Mg ha−1 yr−1), half that of other Amazon forests; and (ii) low fire-induced tree and liana mortality (5.5±0.5% yr−1, SE, in B3), the lowest measured in closed-canopy Amazonian forests. In this transitional forest, where severe seasonal drought removed moisture constraints on fire propagation, a lack of fine fuels inhibited the intensity and spread of recurrent fire in a negative feedback. This reduction in flammability, however, may be short-lived if delayed tree mortality or treefall increases surface fuels in future years. This study highlights that understanding fuel input rate and timing relative to fire frequency is fundamental to predicting transitional forest flammability – which has important implications for carbon emissions and potential replacement by scrub vegetation.  相似文献   

3.
Fire has become an increasingly important disturbance event in south-western Amazonia. We conducted the first assessment of the ecological impacts of these wildfires in 2008, sampling forest structure and biodiversity along twelve 500 m transects in the Chico Mendes Extractive Reserve, Acre, Brazil. Six transects were placed in unburned forests and six were in forests that burned during a series of forest fires that occurred from August to October 2005. Normalized Burn Ratio (NBR) calculations, based on Landsat reflectance data, indicate that all transects were similar prior to the fires. We sampled understorey and canopy vegetation, birds using both mist nets and point counts, coprophagous dung beetles and the leaf-litter ant fauna. Fire had limited influence upon either faunal or floral species richness or community structure responses, and stems <10 cm DBH were the only group to show highly significant (p = 0.001) community turnover in burned forests. Mean aboveground live biomass was statistically indistinguishable in the unburned and burned plots, although there was a significant increase in the total abundance of dead stems in burned plots. Comparisons with previous studies suggest that wildfires had much less effect upon forest structure and biodiversity in these south-western Amazonian forests than in central and eastern Amazonia, where most fire research has been undertaken to date. We discuss potential reasons for the apparent greater resilience of our study plots to wildfire, examining the role of fire intensity, bamboo dominance, background rates of disturbance, landscape and soil conditions.  相似文献   

4.
《Flora》2014,209(5-6):260-270
Fire disturbance alters the structural complexity of forests, above-ground biomass stocks and patterns of growth, recruitment and mortality that determine temporal dynamics of communities. These changes may also alter forest species composition, richness, and diversity. We compared changes in plant recruitment, mortality, and turnover time over three years between burned and unburned sites of two seasonally flooded natural forest patches in a predominantly savanna landscape (regionally called ‘impucas’) in order to determine how fire alters forest dynamics and species composition. Within each impuca, 50 permanent plots (20 m × 10 m) were established and all individuals ≥5 cm diameter at breast height (DBH) identified and measured in two censuses, the first in 2007 and the second in 2010. Unplanned fires burned 30 plots in impuca 1 and 35 in impuca 2 after the first census, which enabled thereafter the comparison between burned and unburned sites. The highest mortality (8.0 and 24.3% year−1 for impuca 1 and 2) and turnover time (69 and 121.5 years) were observed in the burned sites, compared to 3.7 and 5.2% year−1 (mortality), and 28.4 and 40.9 years (turnover), respectively, for the unburned sites. Although these seasonally flooded impuca forests are embedded in a fire-adapted savanna landscape, the impucas vegetation appears to be sensitive to fire, with burned areas having higher mortality and turnover than unburned areas. This indicates that these forest islands are potentially at risk if regional fire frequency increases.  相似文献   

5.
This paper presents the results of 20-year studies into the impact made by an experimental high-intensity fire on ecosystem components and postfire succession in a middle-taiga pine forest. About 44% of forest fuel loads burned down during the fire, and the emission of carbon was more than 18 t C/ha. As a result of the fire impact, trees died within 3 years after the fire, and this resulted in a significant accumulation of fuel loads. Twenty years after the fire, the biomass of forest fuel loads surpassed the prefire values 4 times, which led to the possibility of the origin of a repeated high-intensity fire. The initial stage of postfire succession in the pine forest is determined by forest vegetation conditions and takes place with the replacement of dominant grass and shrubs. The agrochemical and hydrothermal soil indicators were revealed to be changed after the fire, and this promoted improved conditions for the origin and development of natural regeneration sufficient for the formation of forest stand.  相似文献   

6.
大兴安岭小尺度草甸火燃烧效率研究   总被引:2,自引:0,他引:2  
王明玉 《生态学报》2011,31(6):1678-1686
燃烧效率是进行生物质燃烧温室气体释放量计算的关键因子,以大兴安岭典型草甸区为研究区域,通过样地调查和采样,应用GIS和地统计学的方法对燃烧格局和燃烧效率进行计算。结果表明:研究区域内草甸可燃物的平均载量为37.3t/hm2,草本层、枯落物层和腐殖层载量平均所占比例分别为18.50%,28.95%和52.55%。样地的块金系数分别在80.84%-97.88%之间变化,过火迹地的燃烧深度具有弱的空间相关性。研究区域内平均燃烧效率为64.51%,根据不同的火烧强度,研究区域的燃烧效率在44.35%-90.6%之间变化。  相似文献   

7.
We examined long‐term responses of an Amazonian bird assemblage to wildfire disturbance, investigating how understory birds reacted to forest regeneration 1, 3, and 10 years after a widespread fire event. The bird community was sampled along the Arapiuns and Maró river catchments in central Brazilian Amazonia. Sampling took place in 1998, 2000, and 2008 using mist‐nets in eight plots (four burned, four unburned sites). Species richness did not change significantly in unburned sites. In burned sites, however, we found significantly lower richness in 1998, higher richness in 2000, and similar richness in 2008. Multi‐dimensional scaling ordination showed consistent differences in bird communities both within burned sites sampled in different sampling years, and between burned and unburned sites in all years. Of the 30 most abundant species, 12 had not recovered 10 years after the fires, including habitat specialists such as mixed flocks specialists and ant‐followers. Fire‐disturbance favored three species (two hummingbirds and a manakin) in the short term only. All other species were either favored throughout the study (seven species of omnivores and small insectivores) or did not show a clear response (eight species). In burned sites, we also found significantly lower abundance of species sensitive to disturbances and habitat specialists over the entire study period. Although the bird community seems to be recovering in terms of richness, the overall community composition and abundance of some species in post‐burned and unburned sites remain very different, and have not recovered after 10 years of forest regeneration.  相似文献   

8.
Athrotaxis cupressoides is a slow‐growing and long‐lived conifer that occurs in the subalpine temperate forests of Tasmania, a continental island to the south of Australia. In 1960–1961, human‐ignited wildfires occurred during an extremely dry summer that killed many A. cupressoides stands on the high plateau in the center of Tasmania. That fire year, coupled with subsequent regeneration failure, caused a loss of ca. 10% of the geographic extent of this endemic Tasmanian forest type. To provide historical context for these large‐scale fire events, we (i) collected dendroecological, floristic, and structural data, (ii) documented the postfire survival and regeneration of A. cupressoides and co‐occurring understory species, and (iii) assessed postfire understory plant community composition and flammability. We found that fire frequency did not vary following the arrival of European settlers, and that A. cupressoides populations were able to persist under a regime of low‐to‐mid severity fires prior to the 1960 fires. Our data indicate that the 1960 fires were (i) of greater severity than previous fires, (ii) herbivory by native marsupials may limit seedling survival in both burned and unburned A. cupressoides stands, and (iii) the loss of A. cupressoides populations is largely irreversible given the relatively high fuel loads of postfire vegetation communities that are dominated by resprouting shrubs. We suggest that the feedback between regeneration failure and increased flammability will be further exacerbated by a warmer and drier climate causing A. cupressoides to contract to the most fire‐proof landscape settings.  相似文献   

9.
We examined differences in bird communities in relation to characteristics of habitat structure in a pine forest, Samcheok, South Korea. An unburned stand, a stand burned 7 years earlier and then naturally restored, and a stand where Japanese red pine Pinus densiflora seedlings were planted after the fire were used for the survey. Habitat structure was dramatically changed by postfire silvicultural practices. Number of stand trees, shrubs, seedlings, snags, and vegetation coverage were significantly different among study stands. We made 1,421 detections of 46 bird species during 23 separate line transect surveys per stand between February 2007 and December 2008. The mean number of observed bird species and individuals, bird species diversity index (H′), and Simpson’s diversity index (D s) were highest in the unburned stand and lowest in the pine seedling stand. There were more species and individuals of forest-dwelling birds in the unburned stand than both burned stands. Canopy and cavity nesters, foliage searchers, bark gleaners, and timber drillers were significantly higher in the unburned stand. In the pine seedling stand, densities of birds that prefer open field and shrub cover were higher. Stand structure was simplified in the pine seedling stand by postfire practices. Because of differences in habitat structure and bird communities, postfire practices in the burned stand should be re-evaluated. Also, management strategies for pine forest after forest fires are needed based on results of long-term experiments.  相似文献   

10.
Forest fire dramatically affects the carbon storage and underlying mechanisms that control the carbon balance of recovering ecosystems. In western North America where fire extent has increased in recent years, we measured carbon pools and fluxes in moderately and severely burned forest stands 2 years after a fire to determine the controls on net ecosystem productivity (NEP) and make comparisons with unburned stands in the same region. Total ecosystem carbon in soil and live and dead pools in the burned stands was on average 66% that of unburned stands (11.0 and 16.5 kg C m−2, respectively, P<0.01). Soil carbon accounted for 56% and 43% of the carbon pools in burned and unburned stands. NEP was significantly lower in severely burned compared with unburned stands (P<0.01) with an increasing trend from −125±44 g C m−2 yr−1 (±1 SD) in severely burned stands (stand replacing fire), to −38±96 and +50±47 g C m−2 yr−1 in moderately burned and unburned stands, respectively. Fire of moderate severity killed 82% of trees <20 cm in diameter (diameter at 1.3 m height, DBH); however, this size class only contributed 22% of prefire estimates of bole wood production. Larger trees (> 20 cm DBH) suffered only 34% mortality under moderate severity fire and contributed to 91% of postfire bole wood production. Growth rates of trees that survived the fire were comparable with their prefire rates. Net primary production NPP (g C m−2 yr−1, ±1 SD) of severely burned stands was 47% of unburned stands (167±76, 346±148, respectively, P<0.05), with forb and grass aboveground NPP accounting for 74% and 4% of total aboveground NPP, respectively. Based on continuous seasonal measurements of soil respiration in a severely burned stand, in areas kept free of ground vegetation, soil heterotrophic respiration accounted for 56% of total soil CO2 efflux, comparable with the values of 54% and 49% previously reported for two of the unburned forest stands. Estimates of total ecosystem heterotrophic respiration (Rh) were not significantly different between stand types 2 years after fire. The ratio NPP/Rh averaged 0.55, 0.85 and 1.21 in the severely burned, moderately burned and unburned stands, respectively. Annual soil CO2 efflux was linearly related to aboveground net primary productivity (ANPP) with an increase in soil CO2 efflux of 1.48 g C yr−1 for every 1 g increase in ANPP (P<0.01, r2= 0.76). There was no significant difference in this relationship between the recently burned and unburned stands. Contrary to expectations that the magnitude of NEP 2 years postfire would be principally driven by the sudden increase in detrital pools and increased rates of Rh, the data suggest NPP was more important in determining postfire NEP.  相似文献   

11.
Fire plays a key role in ecosystem dynamics worldwide, altering energy flows and species community structure and composition. However, the functional mechanisms underlying these effects are not well understood. Many ground‐dwelling animal species can shelter themselves from exposure to heat and therefore rarely suffer direct mortality. However, fire‐induced alterations to the environment may change a species' relative trophic level within a food web and its mode of foraging. We assessed how fire could affect ant resource utilization at different scales in a Mediterranean forest. First, we conducted isotopic analyses on entire ant species assemblages and their potential food resources, which included plants and other arthropods, in burned and unburned plots 1 year postfire. Second, we measured the production of males and females by nests of a fire‐resilient species, Aphaenogaster gibbosa, and analyzed the differences in isotopic values among workers, males, and females to test whether fire constrained resource allocation. We found that, in spite of major modifications in biotic and abiotic conditions, fire had little impact on the relative trophic position of ant species. The studied assemblage was composed of species with a wide array of diets. They ranged from being mostly herbivorous to completely omnivorous, and a given species' trophic level was the same in burned and unburned plots. In A. gibbosa nests, sexuals had greater δ15N values than workers in both burned and unburned plots, which suggests that the former had a more protein‐rich diet than the latter. Fire also appeared to have a major effect on A. gibbosa sex allocation: The proportion of nests that produced male brood was greater on burned zones, as was the mean number of males produced per nest with the same reproductive investment . Our results show that generalist ants with relatively broad diets maintained a constant trophic position, even following a major disturbance like fire. However, the dramatically reduced production of females on burned zones compared to unburned zones 1 year postfire may result in considerably reduced recruitment of new colonies in the mid to long term, which could yield genetic bottlenecks and founder effects. Our study paves the way for future functional analyses of fire‐induced modifications in ant populations and communities.  相似文献   

12.
We assessed the impacts of co‐occurring invasive plant species on fire regimes and postfire native communities in the Mojave Desert, western USA. We analyzed the distribution and co‐occurrence patterns of three invasive annual grasses (Bromus rubens, Bromus tectorum, and Schismus spp.) known to alter fuel conditions and community structure, and an invasive forb (Erodium cicutarium) which dominates postfire sites. We developed species distribution models (SDMs) for each of the four taxa and analyzed field plot data to assess the relationship between invasives and fire frequency, years postfire, and the impacts on postfire native herbaceous diversity. Most of the Mojave Desert is highly suitable for at least one of the four invasive species, and 76% of the ecoregion is predicted to have high or very high suitability for the joint occurrence of B. rubens and B. tectorum and 42% high or very high suitability for the joint occurrence of the two Bromus species and E. cicutarium. Analysis of cover from plot data indicated two or more of the species occurred in 77% of the plots, with their cover doubling with each additional species. We found invasive cover in burned plots increased for the first 20 years postfire and recorded two to five times more cover in burned than unburned plots. Analysis also indicated that native species diversity and evenness as negatively associated with higher levels of relative cover of the four invasive taxa. Our findings revealed overlapping distributions of the four invasives; a strong relationship between the invasives and fire frequency; and significant negative impacts of invasives on native herbaceous diversity in the Mojave. This suggests predicting the distributions of co‐occurring invasive species, especially transformer species, will provide a better understanding of where native‐dominated communities are most vulnerable to transformations following fire or other disturbances.  相似文献   

13.
Human activities are changing patterns of ecological disturbance globally. In North American deserts, wildfire is increasing in size and frequency due to fuel characteristics of invasive annual grasses. Fire reduces the abundance and cover of native vegetation in desert ecosystems. In this study, we sought to characterize stem growth and reproductive output of a dominant native shrub in the Mojave Desert, creosote bush (Larrea tridentata (DC.) Coville) following wildfires that occurred in 2005. We sampled 55 shrubs along burned and unburned transects 12 years after the fires (2017) and quantified age, stem diameter, stem number, radial and vertical growth rates, and fruit production for each shrub. The shrubs on the burn transects were most likely postfire resprouts based on stem age while stems from unburn transects dated from before the fire. Stem and vertical growth rates for shrubs on burned transects were 2.6 and 1.7 times higher than that observed for shrubs on unburned transects. Fruit production of shrubs along burned transects was 4.7‐fold more than shrubs along paired unburned transects. Growth rates and fruit production of shrubs in burned areas did not differ with increasing distance from the burn perimeter. Positive growth and reproduction responses of creosote following wildfires could be critical for soil stabilization and re‐establishment of native plant communities in this desert system. Additional research is needed to assess if repeat fires that are characteristic of invasive grass‐fire cycles may limit these benefits.  相似文献   

14.
Droughts and forest fires, induced by the El Niño/Southern Oscillation (ENSO) event, have increased considerably over the last decades affecting millions of hectares of rainforest. We investigated the effects of the 1997–1998 forest fires and drought, associated with an exceptionally severe ENSO event, on fruit species important in the diet of Malayan sun bears (Helarctos malayanus) in lowland dipterocarp forest, East Kalimantan, Indonesian Borneo. Densities of sun bear fruit trees (≥10 cm DBH) were reduced by ~80%, from 167±41 (SD) fruit trees ha?1 in unburned forest to 37±18 fruit trees ha?1 in burned forest. Densities of hemi-epiphytic figs, one of the main fallback resources for sun bears during periods of food scarcity, declined by 95% in burned forest. Species diversity of sun bear food trees decreased by 44% in burned forest. Drought also affected sun bear fruit trees in unburned primary forest, with elevated mortality rates for the duration of 2 years, returning to levels reported as normal in region in the third year after the ENSO event. Mortality in unburned forest near the burn-edge was higher (25±5% of trees ≥10 cm DBH dead) than in the forest interior (14±5% of trees), indicating possible edge effects. Combined effects of fire and drought in burned primary forest resulted in an overall tree mortality of 78±11% (≥10 cm DBH) 33 months after the fire event. Disturbance due to fires has resulted in a serious decline of fruit resources for sun bears and, due to the scale of fire damage, in a serious decline of prime sun bear habitat. Recovery of sun bear populations in these burned-over forests will depend on regeneration of the forest, its future species composition, and efforts to prevent subsequent fire events.  相似文献   

15.
Fire influences carbon dynamics from local to global scales, but many uncertainties remain regarding the remote detection and simulation of heterogeneous fire effects. This study integrates Landsat-based remote sensing and Biome-BGC process modeling to simulate the effects of high-, moderate-, and low-severity fire on pyrogenic emissions, tree mortality, and net ecosystem production. The simulation area (244,600 ha) encompasses four fires that burned approximately 50,000 ha in 2002–2003 across the Metolius Watershed, Oregon, USA, as well as in situ measurements of postfire carbon pools and fluxes that we use for model evaluation. Simulated total pyrogenic emissions were 0.732 Tg C (2.4% of equivalent statewide anthropogenic carbon emissions over the same 2-year period). The simulated total carbon transfer due to tree mortality was fourfold higher than pyrogenic carbon emissions, but dead wood decomposition will occur over decades. Immediately postfire, burned areas were a simulated carbon source (net C exchange: −0.076 Tg C y−1; mean ± SD: −142 ± 121 g C m−2 y−1). As expected, high-severity, stand-replacement fire had disproportionate carbon impacts. The per-unit area effects of moderate-severity fire were substantial, however, and the extent of low-severity fire merits its inclusion in landscape-scale analyses. These results demonstrate the potential to reduce uncertainties in landscape to regional carbon budgets by leveraging Landsat-based fire products that account for both stand-replacement and partial disturbance.  相似文献   

16.
Altered fuels and climate change are transforming fire regimes in many of Earth's biomes. Postfire reassembly of vegetation – paramount to C storage and biodiversity conservation – frequently remains unpredictable and complicated by rapid global change. Using a unique data set of pre and long‐term postfire data, combined with long‐term data from nearby unburned areas, we examined 10 years of understory vegetation assembly after the 2002 Hayman Fire. This fire was the largest wildfire in recorded history in Colorado, USA. Resistance (initial postfire deviance from prefire condition) and resilience (return to prefire condition) declined with increasing fire severity. However, via both resistance and resilience, ‘legacy’ species of the prefire community constituted >75% of total plant cover within 3 years even in severely burned areas. Perseverance of legacy species, coupled with new colonizers, created a persistent increase in community species richness and cover over prefire levels. This was driven by a first‐year increase (maintained over time) in forbs with short life spans; a 2–3‐year delayed surge in long‐lived forbs; and a consistent increase in graminoids through the 10th postfire year. Burning increased exotic plant invasion relative to prefire and unburned areas, but burned communities always were >89% native. This study informs debate in the literature regarding whether these increasingly large fires are ‘ecological catastrophes.’ Landscape‐scale severe burning was catastrophic from a tree overstory perspective, but from an understory perspective, burning promoted rich and productive native understories, despite the entire 10‐year postfire period receiving below‐average precipitation.  相似文献   

17.
18.
田晓瑞  殷丽  舒立福  王明玉 《生态学杂志》2009,20(12):2877-2883
根据野外火烧迹地调查,比较过火前后归一化植被指数的差异,计算2005—2007年大兴安岭林区各种可燃物类型的过火面积、火烧消耗的可燃物量,对森林火烧程度进行分级,并利用植物平均含碳率估算林火释放碳量.结果表明:2005—2007年大兴安岭林区总过火面积为436512.5 hm2,其中轻度、中度和重度火烧面积分别为207178.4、150159.2和79159.4 hm2.这些火烧消耗可燃物量为3.9×106 t,释放碳1.76×106 t,其中落叶松林、针阔混交林、阔叶林和草地燃烧释放的碳量分别为0.34×106、0.83×106、0.27×106和0.32×106 t.  相似文献   

19.
Abstract: Fire‐affected forests are becoming an increasingly important component of tropical landscapes. The impact of wildfires on rainforest communities is, however, poorly understood. In this study the density, species richness and community composition of seedlings, saplings, trees and butterflies were assessed in unburned and burned forest following the 1997/98 El Niño Southern Oscillation burn event in East Kalimantan, Indonesia. More than half a year after the fires, sapling and tree densities in the burned forest were only 2.5% and 38.8%, respectively, of those in adjacent unburned forest. Rarefied species richness and Shannon's H’ were higher in unburned forest than burned forest for all groups but only significantly so for seedlings. There were no significant differences in evenness between unburned and burned forest. Matrix regression and Akaike's information criterion (AIC) revealed that the best explanatory models of similarity included both burning and the distance between sample plots indicating that both deterministic processes (related to burning) and dispersal driven stochastic processes structure post‐disturbance rainforest assemblages. Burning though explained substantially more variation in seedling assemblage structure whereas distance was a more important explanatory variable for trees and butterflies. The results indicate that butterfly assemblages in burned forest were primarily derived from adjacent unburned rainforest, exceptions being species of grass‐feeders such as Orsotriaena medus that are normally found in open, disturbed areas, whereas burned forest seedling assemblages were dominated by typical pioneer genera, such as various Macaranga species that were absent or rare in unburned forest. Tree assemblages in the burned forest were represented by a subset of fire‐resistant species, such as Eusideroxylon zwageri and remnant dominant species from the unburned forest.  相似文献   

20.
2005-2007年大兴安岭林火释放碳量   总被引:6,自引:0,他引:6  
根据野外火烧迹地调查,比较过火前后归一化植被指数的差异,计算2005—2007年大兴安岭林区各种可燃物类型的过火面积、火烧消耗的可燃物量,对森林火烧程度进行分级,并利用植物平均含碳率估算林火释放碳量.结果表明:2005—2007年大兴安岭林区总过火面积为436512.5 hm2,其中轻度、中度和重度火烧面积分别为207178.4、150159.2和79159.4 hm2.这些火烧消耗可燃物量为3.9×106 t,释放碳1.76×106 t,其中落叶松林、针阔混交林、阔叶林和草地燃烧释放的碳量分别为0.34×106、0.83×106、0.27×106和0.32×106 t.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号