首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The freshwater zebra mussel, Dreissena polymorpha, is an invasive, biofouling species that adheres to a variety of substrates underwater, using a proteinaceous anchor called the byssus. The byssus consists of a number of threads with adhesive plaques at the tips. It contains the unusual amino acid 3, 4-dihydroxyphenylalanine (DOPA), which is believed to play an important role in adhesion, in addition to providing structural integrity to the byssus through cross-linking. Extensive DOPA cross-linking, however, renders the zebra mussel byssus highly resistant to protein extraction, and therefore limits byssal protein identification. We report here on the identification of seven novel byssal proteins in the insoluble byssal matrix following protein extraction from induced, freshly secreted byssal threads with minimal cross-linking. These proteins were identified by LC-MS/MS analysis of tryptic digests of the matrix proteins by spectrum matching against a zebra mussel cDNA library of genes unique to the mussel foot, the organ that secretes the byssus. All seven proteins were present in both the plaque and thread. Comparisons of the protein sequences revealed common features of zebra mussel byssal proteins, and several recurring sequence motifs. Although their sequences are unique, many of the proteins display similarities to marine mussel byssal proteins, as well as to adhesive and structural proteins from other species. The large expansion of the byssal proteome reported here represents an important step towards understanding zebra mussel adhesion.  相似文献   

2.
The freshwater zebra mussel (Dreissena polymorpha) is a notorious biofouling organism. It adheres to a variety of substrata underwater by means of a proteinaceous structure called the byssus, which consists of a number of threads with adhesive plaques at the tips. The byssal proteins are difficult to characterize due to extensive cross-linking of 3,4-dihydroxyphenylalanine (DOPA), which renders the mature structure largely resistant to protein extraction and immunolocalization. By inducing secretion of fresh threads and plaques in which cross-linking is minimized, three novel zebra mussel byssal proteins were identified following extraction and separation by gel electrophoresis. Peptide fragment fingerprinting was used to match tryptic digests of several gel bands against a cDNA library of genes expressed uniquely in the mussel foot, the organ which secretes the byssus. This allowed identification of a more complete sequence of Dpfp2 (D. polymorpha foot protein 2), a known DOPA-containing byssal protein, and a partial sequence of Dpfp5, a novel protein with several typical characteristics of mussel adhesive proteins.  相似文献   

3.
The freshwater zebra mussel (Dreissena polymorpha) owes a large part of its success as an invasive species to its ability to attach to a wide variety of substrates. As in marine mussels, this attachment is achieved by a proteinaceous byssus, a series of threads joined at a stem that connect the mussel to adhesive plaques secreted onto the substrate. Although the zebra mussel byssus is superficially similar to marine mussels, significant structural and compositional differences suggest that further investigation of the adhesion mechanisms in this freshwater species is warranted. Here we present an ultrastructural examination of the zebra mussel byssus, with emphasis on interfaces that are critical to its adhesive function. By examining the attached plaques, we show that adhesion is mediated by a uniform electron dense layer on the underside of the plaque. This layer is only 10-20 nm thick and makes direct and continuous contact with the substrate. The plaque itself is fibrous, and curiously can exhibit either a dense or porous morphology. In zebra mussels, a graded interface between the animal and the substrate mussels is achieved by interdigitation of uniform threads with the stem, in contrast to marine mussels, where the threads themselves are non-uniform. Our observations of several novel aspects of zebra mussel byssal ultrastructure may have important implications not only for preventing biofouling by the zebra mussel, but for the development of new bioadhesives as well.  相似文献   

4.
The notorious biofouling organism Dreissena polymorpha (the zebra mussel) attaches to a variety of surfaces using a byssus, a series of protein threads that connect the animal to adhesive plaques secreted onto hard substrata. Here, the use of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) to characterize the composition of different regions of the byssus is reported. All parts of the byssus show mass peaks corresponding to small proteins in the range of 3.7–7 kDa, with distinctive differences between different regions. Indeed, spectra from thread and plaques are almost completely non-overlapping. In addition, several peaks were identified that are unique to the interfacial region of the plaque, and therefore likely represent specialized adhesive proteins. These results indicate a high level of control over the distribution of proteins, presumably with different functions, in the byssus of this freshwater species.  相似文献   

5.
6.
Gilbert TW  Sone ED 《Biofouling》2010,26(7):829-836
The notorious biofouling organism Dreissena polymorpha (the zebra mussel) attaches to a variety of surfaces using a byssus, a series of protein threads that connect the animal to adhesive plaques secreted onto hard substrata. Here, the use of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) to characterize the composition of different regions of the byssus is reported. All parts of the byssus show mass peaks corresponding to small proteins in the range of 3.7-7 kDa, with distinctive differences between different regions. Indeed, spectra from thread and plaques are almost completely non-overlapping. In addition, several peaks were identified that are unique to the interfacial region of the plaque, and therefore likely represent specialized adhesive proteins. These results indicate a high level of control over the distribution of proteins, presumably with different functions, in the byssus of this freshwater species.  相似文献   

7.
The elemental composition of byssal threads from two freshwater mussels Dreissena polymorpha (zebra) and Dreissena bugensis (quagga) has been determined by proton-induced X-ray emission spectroscopy. Sulphur and manganese are present at 30–100-fold higher concentrations in the threads than in ambient waters of Lake Erie. Calcium, phosphorus and copper levels are also somewhat enhanced in byssus. Since dreissenid byssus is not mineralized, Mn may be organometallically complexed to the functional side chains of byssal proteins.  相似文献   

8.
贻贝利用足丝粘附于水下各种基质表面.作为一种具有优异粘附性能的生物材料,贻贝足丝蛋白在新型水下粘附剂及表面保护涂层的研制与开发中具有重要的仿生学意义.目前,已报道的贻贝足丝蛋白分子达11种,但是仍然有更多的足丝蛋白分子不为人知.为进一步探讨贻贝足丝蛋白的分子多样性,并从中筛选具有特殊生物学功能的足丝蛋白分子,本文采用鸟枪法-液相色谱-质谱/质谱技术(shotgun-LC-MS/MS)对厚壳贻贝足丝蛋白进行了蛋白质组学分析.将厚壳贻贝足丝分为足丝纤维和足丝盘两部分,每一部分均采用醋酸-尿素溶液,以及醋酸-盐酸胍溶液进行蛋白质抽提;抽提后的足丝蛋白经胰蛋白酶酶解,利用线性离子阱四级杆质谱(LTQ)进行鸟枪法质谱分析.二级质谱图(MS/MS)用以搜索公共数据库中的贻贝表达序列标签(expressed sequence tag,EST)数据库.采用上述方法,获得14种贻贝新型足丝蛋白的高可信度结果及其所匹配的部分或全长cDNA序列;经结构域分析,发现上述新型贻贝足丝蛋白分子的序列中多数包含各种类型的结构域,包括胶原蛋白结构域、C1Q结构域、C1Q结合结构域、微管蛋白辅助折叠结构域、蛋白酶拮抗结构域、VWA结构域、几丁质酶结构域等.在此基础上,对上述新型足丝蛋白在贻贝足丝形成以及粘附方面的功能进行了推测.上述结果对进一步了解贻贝足丝的分子组成以及粘附机理奠定了基础.  相似文献   

9.
ADHESION IN BYSSALLY ATTACHED BIVALVES   总被引:2,自引:0,他引:2  
The byssus is a structure produced by marine bivalve molluscs to adhere, usually permanently, to substrata under water. As the adhesion of synthetic polymers to surfaces is predictably compromised by the presence of water, particularly bulk water, it is of particular interest to discover the mechanism of byssal adhesion. In most species, the byssus consists of at least four essential components: acid mucopolysaccharides, adhesive protein, fibrous proteins, and an oxidative enzyme, polyphenoloxidase. The function of the mucopolysaccharide component is still uncertain, but it can conceivably be used by the animal as a temporary adhesive, a surface modifying agent, and/or a stabilizing filler for the permanent adhesive. The adhesive protein known as the polyphenolic protein in Mytilus is but a thin plaque applied to the substrate surface by the foot of the animal. The molecular and physical properties of this adhesive protein conform remarkably well to what one expects of an ideal synthetic polymer, i.e. high molecular weight, abundance of large and polar side chains, near-zero surface contact angle, and total water-insolubility after setting. The fibrous proteins constitute the major portion of the thread or ribbon-like material connecting the animal to the adhesive plaque on the substrate surface. These proteins are packed in ordered crystalline arrays, e.g. β-pleated sheet and collagen helix (in mytilids) as is to be expected from structural tensile elements of Nature. The enzyme polyphenoloxidase is presumed to induce intermolecular cross-linking of proteins in the fibrous and adhesive portions of the byssus. In Mytilus the natural substrates of the enzymc may be the dopa-containing polyphenolic protein and accessory gland protein.  相似文献   

10.
Blue mussels (Mytilus edulis) can alter the strength of byssal attachment and move between and within mussel aggregations on wave‐swept shores, but this movement ability may be limited by epibiont fouling. We quantified the effects of artificial epibiont fouling on the production of byssal threads, attachment strength, and movement in two size classes of blue mussels. In a factorial experiment, large epibiont‐covered mussels produced more functional byssal threads (i.e., those continuous from animal to substrate) after 24 h than large unfouled and small fouled mussels, but not more than small unfouled mussels. Small unfouled mussels formed and released more byssus bundles compared to any other treatment group, which indicates increased movement. Conversely, epibiont fouling resulted in decreased numbers of byssus bundles shed, and therefore reduced movement in small mussels. Epibiont‐covered mussels started producing byssal threads sooner than unfouled mussels, while small mussels began producing byssal threads earlier compared to large mussels. Mean attachment strength from both size classes increased by 9.5% when mussels were artificially fouled, and large mussels had a 34% stronger attachment compared to small mussels. On the other hand, a 2.3% decrease in attachment strength was found with increasing byssus bundles shed. Our results suggest that fouling by artificial epibionts influences byssal thread production and attachment strength in large mussels, whereas epibionts on small mussels impact their ability to move. Mussels are able to respond rapidly to fouling, which carries implications for the dynamics of mussel beds in their intertidal and subtidal habitats, especially in relation to movement of mussels within and among aggregations.  相似文献   

11.
Byssus production of Ruditapes philippinarum clams becomes reduced with growth. This tendency is well recognized but has not been analysed in detail. Additionally, it remains uninvestigated whether the lack of competence to produce byssus threads in the adult stage is caused by atrophy of the byssal glands or not. The objective of this study was to evaluate the byssus production ability of clams through the juvenile to adult stages and to examine the importance of two endogenous factors (i.e. shell size, somatic condition) in determining the byssus production probability (proportion of clams with byssus production in a population). This study also histologically confirmed the presence of byssal glands in juvenile to adult clams. For these purposes, field surveys to investigate the relationship among byssus production, shell size and somatic condition of clams collected from four intertidal sites and a histological study for byssal glands of the clams was conducted. This study revealed that byssus production probability decreases with increasing shell size and declining somatic condition and that the lack of byssus production is not caused by the loss of the byssal glands.  相似文献   

12.
The morphology of the shell and byssus threads was studied in two closely related mussel species Crenomytilus grayanus and Mytilus coruscus. The two species differ significantly from each other in the shell shape and in the degrees of development and deformation of byssus threads. These differences, in turn, determine (either directly or indirectly) the differences in strength of the byssal attachment and are discussed in terms of their functional morphology with respect to the spatial distribution of the mussels in marine coastal zones.  相似文献   

13.
The North American pink heelsplitter (Potamilus alatus) differs from most freshwater mussels in China by the ability to secrete an ephemeral byssus during its juvenile stage. In the present study, light microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to investigate this ephemeral byssal structure, and amino acid composition was analyzed and compared with that of other species. The results revealed that the byssus consists of a long byssal thread and a few adhesive plaques which are randomly set up along the thread and assembled by petioles. There is a thin but distinctive cuticle with a continuous homogeneous matrix surrounding the byssal thread. Structural variation occurred when the byssal thread was differentially stretched. Four‐stranded helical primary fasciculi, which form a stable rope‐like structure, become evident after removal of the cuticle. The primary fasciculi consist of bundles of hundreds of parallel secondary fasciculi, each measuring about 5 μm in diameter. All evidence indicates that the byssus of the pink heelsplitter has a significantly different macrostructure and microstructure than the permanent byssus of the marine mussel Mytilus. Byssogenesis ceases when juveniles exceed 30 mm in length, although it varies greatly even among juveniles of similar size. Byssus formation is influenced by substrate type. The unique characteristics of the byssus have important advantages for survival, transition, and aggregation during the early life history. This study not only provides first insight into the structure of the ephemeral byssus and its relationship to freshwater mussel development and growth, but also suggests possibilities for the synthesis of novel biopolymer materials particularly useful in freshwater ecosystems. J. Morphol. 276:1273–1282, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

14.
贻贝通过足腺分泌特有的足丝并以此粘附于水下各种基质表面.贻贝足丝中富含各种粘附蛋白,其优异的水下粘附性能使其成为开发新型生物粘合剂的候选分子.厚壳贻贝足丝粘附能力强,本文采用尿素及盐酸胍抽提结合二维双向电泳技术(two-dimensional electrophoresis, 2-DE),分别对厚壳贻贝足丝纤维和足丝盘的蛋白质进行分离及染色;采用串联质谱技术结合常规搜库和表达序列标签(EST) 数据库搜索,对分离获得的蛋白质点进行鉴定,从中获得了mfp-3、mfp-6、胶原蛋白以及3种未曾报道过的新型贻贝足丝蛋白成分.上述研究为深入了解厚壳贻贝足丝蛋白的分子多样性、探讨其粘附机理以及从中筛选具有应用前景的贻贝足丝蛋白奠定了基础.  相似文献   

15.
Laboratory experiments showed that the mussel Mytilus edulis aggregated more intensely around living organisms (the bivalve Hiatella arctica and the solitary ascidian Styela rustica, which commonly co‐occur with mussels in fouling communities) than around inanimate objects. When exposed to an inanimate object, mussels attached their byssal threads primarily to the substrate, close to the object, but when exposed to a living organism, they attached their byssal threads directly to the organism. The ascidian was more intensely covered with byssal threads than was the bivalve. Mussel attachment to the ascidians was apparently determined by the physical characteristics of the tunic and to a lesser extent by the excretion‐secretion products released by S. rustica. This study indicates that mussels can use byssus threads as a means of entrapment of potential competitors for space. It remains unclear why mussels preferentially attached to ascidians compared to the bivalve. This can be explained either by competitive interactions, or by attractiveness of the ascidian tunic as an attachment substratum.  相似文献   

16.
The acellular attachment organ (byssus) of the marine mussel Mytilus edulis L. is composed of threads that emanate from the body of the mussel to adhesive discs that anchor the threads to rocks, sand and other mussels. Three proteins have been purified by immunohistological methods and located to specific regions of the byssus. A collagenous protein with subunit molecular weights of 53,000, 55,000 and 65,000 is found in the matrix of the elastic thread region. Its 73,000-MW precursor was extracted from foot glands in the area proximal to the animal body and was identified by immune cross-reactivity. A cystine-rich, acidic protein was found in all regions of the byssus associated with a third protein, the polyphenolic protein. The L-dopa-containing polyphenolic protein appears in the cortex of the entire thread and adhesive plaque and at the substrate-plaque interface. Antiserum to this protein stains spherical vesicles in the phenol gland of the foot. Using immuno-electrophoretic methods, the polyphenolic protein and the cystine-rich protein were shown to form high molecular weight aggregates with aging of the byssus.  相似文献   

17.
The adhesive plaques of Mytilus byssus are investigated increasingly to determine the molecular requirements for wet adhesion. Mfp-2 is the most abundant protein in the plaques, but little is known about its function. Analysis of Mfp-2 films using the surface forces apparatus detected no interaction between films or between a film and bare mica; however, addition of Ca2+ and Fe3+ induced significant reversible bridging (work of adhesion Wad ≈ 0.3 mJ/m2 to 2.2 mJ/m2) between two films at 0.35 m salinity. The strongest observed Fe3+-mediated bridging approaches the adhesion of oriented avidin-biotin complexes. Raman microscopy of plaque sections supports the co-localization of Mfp-2 and iron, which interact by forming bis- or tris-DOPA-iron complexes. Mfp-2 adhered strongly to Mfp-5, a DOPA-rich interfacial adhesive protein, but not to another interfacial protein, Mfp-3, which may in fact displace Mfp-2 from mica. In the presence of metal ions or Mfp-5, Mfp-2 adhesion was fully reversible. These results suggest that plaque cohesiveness depends on Mfp-2 complexation of metal ions, particularly Fe3+ and also by Mfp-2 interaction with Mfp-5 at the plaque-substratum interface.  相似文献   

18.
贻贝足丝及其足丝蛋白相关研究对于开发新型水下生物粘附剂具有重要的仿生学意义。足丝蛋白在其粘附过程中需要维持一定的还原态,而目前已报道的足丝抗氧化蛋白仅有MFP-6。此前在厚壳贻贝足丝中鉴定到一种新型的富含半胱氨酸和甘氨酸的足丝蛋白质,该蛋白质被命名为Cys/Gly-Rich-Protein(CGRP),但是CGRP蛋白在足丝中的作用及机制尚不明确。为此,针对CGRP蛋白,在序列分析基础上,利用原核重组表达手段获得其重组蛋白质,采用2,2-联苯基-1-苦基肼基(2,2-diphenyl-1-picryl hydrazyl radical,DPPH)法检测CGRP重组蛋白经不同条件处理后的抗氧化活性。序列分析结果表明,CGRP蛋白含16.5%的半胱氨酸和10%的甘氨酸,其序列中含有两段半胱氨酸位置保守的重复序列,结构预测表明,其优势构象以无规卷曲为主。同源蛋白质搜索结果表明,CGRP蛋白在数据库中尚无高同源性蛋白质存在。通过密码子优化结合原核重组表达策略成功表达出CGRP重组蛋白,所获得的CGRP重组蛋白具有明显的抗氧化活性,且该活性在其半胱氨酸还原后显著增强(0.91±0.05 vs 0.71±0.11, P<0.01)而在半胱氨酸烷基化之后显著下降(0.08±0.03 vs 0.71±0.11, P<0.01),表明CGRP蛋白的抗氧化活性与其序列中半胱氨酸的自由巯基有关。本研究提示,CGRP蛋白是足丝中一种新的具有抗氧化功能的蛋白质,在足丝粘附过程中推测与MFP-6一起参与了富含多巴的足丝粘附蛋白的还原态维持,对贻贝足丝在固化和粘附过程中防止提前粘附具有重要意义。  相似文献   

19.
13C2H rotational echo double resonance NMR has been used to provide the first evidence for the formation of quinone-derived cross-links in mussel byssal plaques. Labeling of byssus was achieved by allowing mussels to filter feed from seawater containing L-[phenol-4-13C]tyrosine and L-[ring-d4]tyrosine for 2 days. Plaques and threads were harvested from two groups of mussels over a period of 28 days. One group was maintained in stationary water while the other was exposed to turbulent flow at 20 cm/s. The flow-stressed byssal plaques exhibited significantly enhanced levels of 5, 5'-di-dihydroxyphenylalanine cross-links. The average concentration of di-dihydroxyphenylalanine cross-links in byssal plaques is 1 per 1800 total protein amino acid residues.  相似文献   

20.
贻贝足丝是贻贝足组织分泌的足丝蛋白形成的非细胞组织,具有在水环境下的极强粘附性能,是当前生物粘附剂及抗腐蚀材料的研发热点.为进一步了解贻贝足丝蛋白的分子多样性特征,采用新一代Illumina高通量测序平台对厚壳贻贝(Mytilus coruscus)足组织进行转录组测序,首次构建了厚壳贻贝足组织的转录组数据库.共计获得7 199 799 840 nt的碱基数据经过序列拼接和组装,获得88 825条unigene.对上述unigene开展了序列注释,共计37 007条unigene获得注释.在此基础上,经序列检索和比对,从中筛选出与目前已知的11种足丝蛋白同源的56条unigene序列并进行分析.结果表明,厚壳贻贝足丝蛋白具有明显的氨基酸偏好性,部分足丝蛋白具有重复序列,且厚壳贻贝足丝蛋白与其他种类的贻贝足丝蛋白具有较高的序列相似性.上述结果为后续贻贝足丝蛋白的批量鉴定以及在此基础上的贻贝足丝形成、固化以及粘附机制相关研究奠定了基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号