首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
1 制定"十一五"生命科学发展战略和优先发展领域的目的 把握生命科学的发展趋势,分析我国的特点、优势和需求,支持基础研究,促进源头创新,遴选未来5年我国生命科学的重点发展领域,引领我国生命科学的发展,力争使更多的研究进入世界科学研究的主流并在某些重要方面有所突破,造就一批具有国际竞争力的科研队伍.  相似文献   

2.
加强生命科学人才培养迎接二十一世纪中国科学院生物学部编者按“加强生命科学人才培养迎接21世纪”是中国科学院生物学部组织院士及有关教授对我国高等学校生物学教育现状进行了2年多调查研究后所写的报告,文章高瞻远瞩地从生命科学在21世纪将发挥的作用,国际范围...  相似文献   

3.
<正>中科院上海生命科学信息中心是中科院上海生命科学研究院成员单位之一,统一管理10多种中英文生命科学期刊,其中,《Cell Research》是我国生物学一流的旗舰期刊,2008年该刊SCI影响因子为4.535,在我国科技期刊走向国际前沿中具有示范作用。为了进一步打造高水平的生命科学学术期刊集群,为我国学术期刊跨越发展起到引领作用,中科院决定在上海生命  相似文献   

4.
致全国生命科学青年学者的一封信国家自然科学基金委员会第二届生命科学青年学者交流研讨会已于1996年9月7日见利闭幕了。我们来自全国各地从事生物学、医学、农学研究的青年学者,欢聚北京,聆听了老一辈科学家的谆谆教诲,了解了我国生命科学与生物技术今后研究发...  相似文献   

5.
西北师范大学生命科学学院的前身是原西北师范大学生物系 ,由我国已故著名植物分类学家、中国植物分类学的奠基人之一孔宪武教授致力创建。 2 0 0 0年西北师范大学生物系和植物研究所合并组建成西北师范大学生命科学学院。西北师范大学生命科学学院是西北师范大学批准成立较早的学院之一。1 西北师范大学生命科学学院的机构设置西北师范大学生命科学学院下设生物科学系、生物技术系 2个教学单位及植物研究所、干旱区生物多样性研究所、生物技术及应用研究所等科研机构。此外 ,该学院还设有实验中心和资料中心。2 西北师范大学生命科学学院…  相似文献   

6.
<正>清华大学生命科学学院(原生物系)始建于1926年,由著名植物学家钱崇澍先生任首届系主任.1952年全国院系调整后,清华大学生物系并入其他院校.直到1984年清华大学才正式恢复生物科学与技术系,神经生物学家蒲慕明教授担任复系后的首届系主任、赵南明教授任常务副系主任.2009年正式更名为清华大学生命科学学院.在清华大学生命科学学院的发展历史上,曾有一大批优秀的生物学家云集于此,其中有40多位院士曾经在这里学习或工作,为我国生命科学的发展做出了巨大贡献.  相似文献   

7.
美国国家教育进步评价( NAEP)的生命科学例证型试题,根据其对学生能力要求的侧重点不同,各有特色,这对我国的生命科学试题的编制提供一些启示.  相似文献   

8.
《生命科学》杂志自1988年创刊以来,经历了从《生物科学信息》到《生命科学》的过程,为生命科学工作者提供了一块学术交流的园地,并及时提供生命科学领域的各种信息。指导生命科学工作者的选题、研究、教学等工作,对推动生命科学的发展起了极其重要的作用,并被评为第二届上海市优秀科技期刊一等奖。这些成绩的取得是与编辑部及编委全体同仁的辛勤工作分不开的,值此《生命科学》创刊十周年之际;我对你们表示感谢。十年来,我阅读过《生命科学》杂志的大部分文章,总的印象是办出了自己的特色,但还不很完善,报出几点改进的建议,供参…  相似文献   

9.
《生命世界》2008,(10):52-53
北京师范大学生命科学学院始创于1904年的京师大学堂博物系,历经百余年的发展与壮大,拥有雄厚的科教实力与师资力量,建立了科学研院和高层次人才培养的卓越地位,已成为我国生命科学科技创新和高层次人才培养的重要基地之一。  相似文献   

10.
产业动向     
我国生命科学领域最大单体项目在北京启动我国生命科学领域最大的单体项目———国家蛋白质科学基础设施北京基地(凤凰工程),近日在北京中关村生命科学园开工建设。该项目投资12.22亿元,由军事医学科学院与清华大学、北京大学、中国科学院生物物理  相似文献   

11.
In recent years material sciences have been interpreted right across the physical and the life sciences. Essentially this discipline broadly addresses the materials, processing, and/or fabrication right up to the structure. The materials and structures areas can range from the micro- to the nanometre scale and, in a materials sense, span from the structural, functional to the most complex, namely biological (living cells). It is generally recognised that the processing or fabrication is fundamental in bridging the materials with their structures. In a global perspective, processing has not only contributed to the materials sciences but its very nature has bridged the physical with the life sciences. In this review we discuss one such swiftly emerging fabrication approach having a plethora of applications spanning the physical and life sciences.  相似文献   

12.
生命科学尤其是生物信息学中庞大的数据处理和高性能计算大大超出了某一单个机构的计算能力,而网格技术的出现使这些困难应刃而解,并逐渐成为生命科学标准的网络基础.从计算网格、数据网格和知识网格3个方面综述了最新的网格技术.最后展望了网格技术在生命科学领域中广阔的应用前景.  相似文献   

13.
Life sciences are currently most important fields for every person. Each subject of life sciences is deeply correlated to cosmic events, and young generations can be more interested in life sciences if they know this correlation. In this respect, cosmic/space biology can play essential roles in fostering the science-oriented generations. Some approaches to realize the above concepts are presented.  相似文献   

14.
Clustering has a wide range of applications in life sciences and over the years has been used in many areas ranging from the analysis of clinical information, phylogeny, genomics, and proteomics. The primary goal of this article is to provide an overview of the various issues involved in clustering large biological datasets, describe the merits and underlying assumptions of some of the commonly used clustering approaches, and provide insights on how to cluster datasets arising in various areas within life sciences. We also provide a brief introduction to Cluto, a general purpose toolkit for clustering various datasets, with an emphasis on its applications to problems and analysis requirements within life sciences.  相似文献   

15.
《Biotechnology journal》2008,3(9-10):1131-1134
Trends in trade Trends in life sciences education and workforce Increasing numbers of life sciences publications and researchers Manufacturing of medical devices Pharmaceutical & clinical research Mexican Life Sciences Alliance The four main research regions in Mexico  相似文献   

16.
Twenty-first century life sciences have transformed into data-enabled (also called data-intensive, data-driven, or big data) sciences. They principally depend on data-, computation-, and instrumentation-intensive approaches to seek comprehensive understanding of complex biological processes and systems (e.g., ecosystems, complex diseases, environmental, and health challenges). Federal agencies including the National Science Foundation (NSF) have played and continue to play an exceptional leadership role by innovatively addressing the challenges of data-enabled life sciences. Yet even more is required not only to keep up with the current developments, but also to pro-actively enable future research needs. Straightforward access to data, computing, and analysis resources will enable true democratization of research competitions; thus investigators will compete based on the merits and broader impact of their ideas and approaches rather than on the scale of their institutional resources. This is the Final Report for Data-Intensive Science Workshops DISW1 and DISW2. The first NSF-funded Data Intensive Science Workshop (DISW1, Seattle, WA, September 19-20, 2010) overviewed the status of the data-enabled life sciences and identified their challenges and opportunities. This served as a baseline for the second NSF-funded DIS workshop (DISW2, Washington, DC, May 16-17, 2011). Based on the findings of DISW2 the following overarching recommendation to the NSF was proposed: establish a community alliance to be the voice and framework of the data-enabled life sciences. After this Final Report was finished, Data-Enabled Life Sciences Alliance (DELSA, www.delsall.org ) was formed to become a Digital Commons for the life sciences community.  相似文献   

17.
Singapore has embraced the life sciences as an important discipline to be emphasized in schools and universities. This is part of the nation's strategic move towards a knowledge-based economy, with the life sciences poised as a new engine for economic growth. In the life sciences, the area of developmental biology is of prime interest, since it is not just intriguing for students to know how a single cell can give rise to a complex, coordinated, functional life that is multicellular and multifaceted, but more importantly, there is much in developmental biology that can have biomedical implications. At different levels in the Singapore educational system, students are exposed to various aspects of developmental biology. The author has given many guest lectures to secondary (ages 12-16) and high school (ages 17-18) students to enthuse them about topics such as embryo cloning and stem cell biology. At the university level, some selected topics in developmental biology are part of a broader course which caters for students not majoring in the life sciences, so that they will learn to comprehend how development takes place and the significance of the knowledge and impacts of the technologies derived in the field. For students majoring in the life sciences, the subject is taught progressively in years two and three, so that students will gain specialist knowledge in developmental biology. As they learn, students are exposed to concepts, principles and mechanisms that underlie development. Different model organisms are studied to demonstrate the rapid advances in this field and to show the interconnectivity of developmental themes among living things. The course inevitably touches on life and death matters, and the social and ethical implications of recent technologies which enable scientists to manipulate life are discussed accordingly, either in class, in a discussion forum, or through essay writing.  相似文献   

18.
New scientific frontiers and emerging technologies within the life sciences pose many global challenges to society. Big Data is a premier example, especially with respect to individual, national, and international security. Here a Special Agent of the Federal Bureau of Investigation discusses the security implications of Big Data and the need for security in the life sciences.  相似文献   

19.
The life sciences are poised at the beginning of a paradigm-changing evolution in the way scientific questions are answered. Data-Intensive Science (DIS) promise to provide new ways of approaching scientific challenges and answering questions. This article is a summary of the life sciences issues and challenges as discussed in the DIS workshop in Seattle, September 19-20, 2010.  相似文献   

20.
同步辐射方法在生命科学研究中有着十分重要的应用。上海光源是我国建造的第一个第三代同步辐射装置,本文结合上海光源首批建造的光束线站,介绍了几类同步辐射实验方法在生命科学中的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号