首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article is a summary of the bioinformatics issues and challenges of data-intensive science as discussed in the NSF-funded Data-Intensive Science (DIS) workshop in Seattle, September 19-20, 2010.  相似文献   

2.
The life sciences are poised at the beginning of a paradigm-changing evolution in the way scientific questions are answered. Data-Intensive Science (DIS) promise to provide new ways of approaching scientific challenges and answering questions. This article is a summary of the life sciences issues and challenges as discussed in the DIS workshop in Seattle, September 19-20, 2010.  相似文献   

3.
Most space-related life science programs are expensive and time-consuming, requiring international cooperation and resources with trans-disciplinary expertise. A comprehensive future program in "life sciences in space" needs, therefore, well-defined research goals and strategies as well as a sound ground-based program. The first half of this review will describe four key aspects such as the environment in space, previous accomplishments in space (primarily focusing on amphibian embryogenesis), available resources, and recent advances in bioinformatics and biotechnology, whose clear understanding is imperative for defining future directions. The second half of this review will focus on a broad range of interdisciplinary research opportunities currently supported by the National Aeronautics and Space Administration (NASA), National Institute of Health (NIH), and National Science Foundation (NSF). By listing numerous research topics such as alterations in a diffusion-limited metabolic process, bone loss and skeletal muscle weakness of astronauts, behavioral and cognitive ability in space, life in extreme environment, etc., we will attempt to suggest future opportunities.  相似文献   

4.
Sharing of research data has begun to gain traction in many areas of the sciences in the past few years because of changing expectations from the scientific community, funding agencies, and academic journals. National Science Foundation (NSF) requirements for a data management plan (DMP) went into effect in 2011, with the intent of facilitating the dissemination and sharing of research results. Many projects that were funded during 2011 and 2012 should now have implemented the elements of the data management plans required for their grant proposals. In this paper we define ‘data sharing’ and present a protocol for assessing whether data have been shared and how effective the sharing was. We then evaluate the data sharing practices of researchers funded by the NSF at Oregon State University in two ways: by attempting to discover project-level research data using the associated DMP as a starting point, and by examining data sharing associated with journal articles that acknowledge NSF support. Sharing at both the project level and the journal article level was not carried out in the majority of cases, and when sharing was accomplished, the shared data were often of questionable usability due to access, documentation, and formatting issues. We close the article by offering recommendations for how data producers, journal publishers, data repositories, and funding agencies can facilitate the process of sharing data in a meaningful way.  相似文献   

5.
A renaissance in organismal biology has been sparked by recent conceptual, theoretical, methodological, and computational advances in the life sciences, along with an unprecedented interdisciplinary integration with Mathematics, Engineering, and the physical sciences. Despite a decades-long trend toward reductionist approaches to biological problems, it is increasingly recognized that whole organisms play a central role in organizing and interpreting information from across the biological spectrum. Organisms represent the nexus where sub- and supra-organismal processes meet, and it is the performance of organisms within the environment that provides the material for natural selection. Here, we identify five "grand challenges" for future research in organismal biology. It is intended that these challenges will spark further discussion in the broader community and identify future research priorities, opportunities, and directions, which will ultimately help to guide the allocation of support for and training in organismal biology.  相似文献   

6.
Quantitative genetic analyses of complex behaviours in Drosophila   总被引:2,自引:0,他引:2  
Behaviours are exceptionally complex quantitative traits. Sensitivity to environmental variation and genetic background, the presence of sexual dimorphism, and the widespread functional pleiotropy that is inherent in behavioural phenotypes pose daunting challenges for unravelling their underlying genetics. Drosophila melanogaster provides an attractive system for elucidating the unifying principles of the genetic architectures that drive behaviours, as genetically identical individuals can be reared rapidly in controlled environments and extensive publicly accessible genetic resources are available. Recent advances in quantitative genetic and functional genomic approaches now enable the extensive characterization of complex genetic networks that mediate behaviours in this important model organism.  相似文献   

7.
It has become evident that the mystery of life will not be deciphered just by decoding its blueprint, the genetic code. In the life and biomedical sciences, research efforts are now shifting from pure gene analysis to the analysis of all biomolecules involved in the machinery of life. One area of these postgenomic research fields is proteomics. Although proteomics, which basically encompasses the analysis of proteins, is not a new concept, it is far from being a research field that can rely on routine and large-scale analyses. At the time the term proteomics was coined, a gold-rush mentality was created, promising vast and quick riches (i.e., solutions to the immensely complex questions of life and disease). Predictably, the reality has been quite different. The complexity of proteomes and the wide variations in the abundances and chemical properties of their constituents has rendered the use of systematic analytical approaches only partially successful, and biologically meaningful results have been slow to arrive. However, to learn more about how cells and, hence, life works, it is essential to understand the proteins and their complex interactions in their native environment. This is why proteomics will be an important part of the biomedical sciences for the foreseeable future. Therefore, any advances in providing the tools that make protein analysis a more routine and large-scale business, ideally using automated and rapid analytical procedures, are highly sought after. This review will provide some basics, thoughts and ideas on the exploitation of matrix-assisted laser desorption/ ionization in biological mass spectrometry - one of the most commonly used analytical tools in proteomics - for high-throughput analyses.  相似文献   

8.
Although initial interest in science, technology, engineering and mathematics (STEM) is high, recruitment and retention remains a challenge, and some populations are disproportionately underrepresented in STEM fields. To address these challenges, the Microbiology and Cell Science Department in the College of Agricultural and Life Sciences at the University of Florida has developed an innovative 2+2 degree program. Typical 2+2 programs begin with a student earning an associate’s degree at a local community college and then transferring to a 4-year institution to complete a bachelor’s degree. However, many universities in the United States, particularly land-grant universities, are located in rural regions that are distantly located from their respective states’ highly populated urban centers. This geographical and cultural distance could be an impediment to recruiting otherwise highly qualified and diverse students. Here, a new model of a 2+2 program is described that uses distance education as the vehicle to bring a research-intensive university’s life sciences curriculum to students rather than the oft-tried model of a university attempting to recruit underrepresented minority students to its location. In this paradigm, community college graduates transfer into the Microbiology and Cell Science program as distance education students to complete their Bachelor of Science degree. The distance education students’ experiences are similar to the on-campus students’ experiences in that both groups of students take the same department courses taught by the same instructors, take required laboratory courses in a face-to-face format, take only proctored exams, and have the same availability to instructors. Data suggests that a hybrid online transfer program may be a viable approach to increasing STEM participation (as defined by enrollment) and diversity. This approach is particularly compelling as the distance education cohort has comparable grade point averages and retention rates compared to the corresponding on-campus transfer cohort.  相似文献   

9.
The growing health disparities between the developing and the developed world call for urgent action from the scientific community. Science and technology have in the past played a vital role in improving public health. Today, with the tremendous potential of genomics and other advances in the life sciences, the contribution of science to improve public health and reduce global health disparities is more pertinent than ever before. Yet the benefits of modern medicine still have not reached millions of people in developing countries. It is crucial to recognize that science and technology can be used very effectively in partnership with public health practices in developing countries and can enhance their efficacy. The fight to improve global health needs, in addition to effective public health measures, requires rapid and efficient diagnostic tools; new vaccines and drugs, efficient delivery methods and novel approaches to therapeutics; and low-cost restoration of water, soil and other natural resources. In 2002, the University of Toronto published a report on the "Top 10 Biotechnologies for Improving Health in Developing Countries". Here we review these new and emerging biotechnologies and explore how they can be used to support the goals of developing countries in improving health.  相似文献   

10.
The Bernard Distinguished Lecturers are individuals who have a history of experience and expertise in teaching that impacts multiple levels of health science education. Dr. Joel Michael more than meets these criteria. Joel earned a BS in biology from CalTech and a PhD in physiology from MIT following which he vigorously pursued his fascination with the mammalian central nervous system under continuous National Institutes of Health funding for a 15-yr period. At the same time, he became increasingly involved in teaching physiology, with the computer being his bridge between laboratory science and classroom teaching. Soon after incorporating computers into his laboratory, he began developing computer-based learning resources for his students. Observing students using these resources to solve problems led to an interest in the learning process itself. This in turn led to a research and development program, funded by the Office of Naval Research (ONR), that applied artificial intelligence to develop smart computer tutors. The impact of problem solving on student learning became the defining theme of National Science Foundation (NSF)-supported research in health science education that gradually moved all of Dr. Michael's academic efforts from neurophysiology to physiology education by the early 1980's. More recently, Joel has been instrumental in developing and maintaining the Physiology Education Research Consortium, a group of physiology teachers from around the nation who collaborate on diverse projects designed to enhance learning of the life sciences. In addition to research in education and learning science, Dr. Michael has devoted much of his time to helping physiology teachers adopt modern approaches to helping students learn. He has organized and presented faculty development workshops at many national and international venues. The topics for these workshops have included computer-based education, active learning, problem-based learning, and the use of general models in teaching physiology.  相似文献   

11.
Quantitative estimations of zoosporic fungi in the environment have historically received little attention, primarily due to methodological challenges and their complex life cycles. Conventional methods for quantitative analysis of zoosporic fungi to date have mainly relied on direct observation and baiting techniques, with subsequent fungal identification in the laboratory using morphological characteristics. Although these methods are still fundamentally useful, there has been an increasing preference for quantitative microscopic methods based on staining with fluorescent dyes, as well as the use of hybridization probes. More recently however PCR based methods for profiling and quantification (semi- and absolute) have proven to be rapid and accurate diagnostic tools for assessing zoosporic fungal assemblages in environmental samples. Further application of next generation sequencing technologies will however not only advance our quantitative understanding of zoosporic fungal ecology, but also their function through the analysis of their genomes and gene expression as resources and databases expand in the future. Nevertheless, it is still necessary to complement these molecular-based approaches with cultivation-based methods in order to gain a fuller quantitative understanding of the ecological and physiological roles of zoosporic fungi.  相似文献   

12.
Ecosystem ecologists are being challenged to address the increasingly complex problems that comprise Big Science. These problems include multiple levels of biological organization that cross multiple interacting temporal and spatial scales, from individual plants, animals, and microbes to landscapes, continents, and the globe. As technology improves, the availability of data, derived data products, and information to address these complex problems are increasing at finer and coarser scales of resolution, and legacy, dark data are brought to light. Data analytics are improving as big data increase in importance in other fields that are improving access to these data. New data sources (crowdsourcing, social media) and ease of communication and collaboration among ecosystem ecologists and other disciplines are increasingly possible via the internet. It is increasingly important that ecosystem ecologists be able to communicate their findings, and to translate their concepts and findings into concrete bits of information that a general public can understand. Traditional approaches that portray ecosystem sciences as a dichotomy between empirical research and theoretical research will keep the field from fully contributing to the complexity of global change questions, and will keep ecosystem ecologists from taking full advantage of the data and technology available. Building on previous research, we describe a more forward-looking, integrated empirical–theoretical modeling approach that is iterative with learning to take advantage of the elements of Big Science. We suggest that training ecosystem ecologists in this integrated approach will be critical to addressing complex Earth system science questions, now and in the future.  相似文献   

13.
The combination of incessant advances in sequencing technology producing large amounts of data and innovative bioinformatics approaches, designed to cope with this data flood, has led to new interesting results in the life sciences. Given the magnitude of sequence data to be processed, many bioinformatics tools rely on efficient solutions to a variety of complex string problems. These solutions include fast heuristic algorithms and advanced data structures, generally referred to as index structures. Although the importance of index structures is generally known to the bioinformatics community, the design and potency of these data structures, as well as their properties and limitations, are less understood. Moreover, the last decade has seen a boom in the number of variant index structures featuring complex and diverse memory-time trade-offs. This article brings a comprehensive state-of-the-art overview of the most popular index structures and their recently developed variants. Their features, interrelationships, the trade-offs they impose, but also their practical limitations, are explained and compared.  相似文献   

14.
The integration of the social sciences into long-term ecological research is an urgent priority. To address this need, a group of social, earth, and life scientists associated with the National Science Foundations (NSF) Long-Term Ecological Research (LTER) Network have articulated a conceptual framework for understanding the human dimensions of ecological change for the LTER Network. This framework explicitly advocates that what is often divided into natural and human systems be considered a single, complex social-ecological system (SES). In this paper, we propose a list of core social science research areas, concepts, and questions; identify the need for multiscale investigatory frameworks crucial for implementing integrated research; and suggest practical approaches for integration. In sum, this paper is a general outline for empirical and cross-site research projects where investigators agree that bringing together social, biological, and earth scientists can lead to synthetic approaches and a unified understanding of the mechanisms regulating SES. Although the motivation for this goal is specific to the LTER Network and similar projects, we believe that the issues and ideas presented here are widely applicable to other interdisciplinary SES studies.  相似文献   

15.
The National Science Foundation’s EarthCube End User Workshop was held at USC Wrigley Marine Science Center on Catalina Island, California in August 2013. The workshop was designed to explore and characterize the needs and tools available to the community that is focusing on microbial and physical oceanography research with a particular emphasis on ‘omic research. The assembled researchers outlined the existing concerns regarding the vast data resources that are being generated, and how we will deal with these resources as their volume and diversity increases. Particular attention was focused on the tools for handling and analyzing the existing data, on the need for the construction and curation of diverse federated databases, as well as development of shared, interoperable, “big-data capable” analytical tools. The key outputs from this workshop include (i) critical scientific challenges and cyber infrastructure constraints, (ii) the current and future ocean ‘omics science grand challenges and questions, and (iii) data management, analytical and associated and cyber-infrastructure capabilities required to meet critical current and future scientific challenges. The main thrust of the meeting and the outcome of this report is a definition of the ‘omics tools, technologies and infrastructures that facilitate continued advance in ocean science biology, marine biogeochemistry, and biological oceanography.  相似文献   

16.
The pharmaceutical and agro-biotechnology industries have been confronted by dwindling product pipelines and rapid developments in life sciences, thus demanding a strategic rethink of conventional research and development. Despite offering both industries a solution to the pipeline problem, the life sciences have also brought complex regulatory challenges for firms. In this paper, we comment on the response of these industries to the life science trajectory, in the context of maturing conventional small-molecule product pipelines and routes to market. The challenges of managing transition from maturity to new high-value-added innovation models are addressed. Furthermore, we argue that regulation plays a crucial role in shaping the innovation systems of both industries, and as such, we suggest potentially useful changes to the current regulatory system.  相似文献   

17.
Scientific publications should provide sufficient detail in terms of methodology and presented data to enable the community to reproduce the methodology to generate similar data and arrive at the same conclusion, if an identical sample is provided for analysis. The advent of high-throughput methods in biological experimentation impose some unique challenges both in data presentation in classical print format, as well as in describing methodology and data analysis in sufficient detail to conform to good publication practice. To facilitate this process, Proteome Science is adopting a set of methodology and data presentation guidelines to enable both peer reviewers, as well as the scientific community, to better evaluate high-throughput proteomic studies.  相似文献   

18.
Delimiting species in recent radiations   总被引:4,自引:0,他引:4  
Despite considerable effort from the systematics community, delimiting species boundaries in recent radiations remains a daunting challenge. We argue that genealogical approaches, although sometimes useful, may not solve this important problem, because recently derived species often have not had sufficient time to achieve monophyly. Instead, we suggest that population genetic approaches that rely on large sets of informative markers like single nucleotide polymorphisms (SNPs) provide an alternative framework for delimiting very recently derived species. We address two major challenges in applying such markers to species delimitation: discovering markers in nonmodel systems and using them to delimit recently derived species. Using turtles as a test case, we explore the utility of a single, relatively low-coverage genomic resource as an aid in gene and marker discovery. We exploit an end-sequenced bacterial artificial chromosome (BAC) library from an individual painted turtle (Chrysemys picta) and outline a novel protocol that efficiently identifies primer pairs that amplify homologous sequences across the tree of living turtles. Preliminary data using this library to discover SNPs in Emydura macquarii, a species that diverged from C. picta approximately 210 million years ago, indicate that sequences identified from the Chrysemys BAC library provide useful SNPs even in this very distantly related taxon. Several recent methods in wide use in the population genetics literature allow one to discover potential species, or test existing species hypotheses, with SNP data and may be particularly informative for very recently derived species. As BAC and other genomic resources become increasingly available for scattered taxa across the tree of life, we are optimistic that these resources will provide abundant, inexpensive markers that will help delimit boundaries in problematic, recent species radiations.  相似文献   

19.
生物复杂性研究动态   总被引:10,自引:0,他引:10  
王莉  南蓬  张晓艳  钟扬 《生物多样性》2002,10(2):238-242
生物复杂性(biocomplexity或biological complexity)是近年来由Rita Colwell等人积极倡导的一个新的学科领域,旨在更好地了解生命系统及其环境组分间的相互作用以及系统复杂性的动态特征与演化机制,目前,生物复杂性的定义与内涵尚不明确,意见纷呈,而有关研究在美国国家科学基金会(NSF)的支持下已迅速开展起来,并即将成为国际合作研究的热点之一。本文简要介绍了有关生物复杂性的不同观点、生物复杂性与生物多样性研究之间的关系,并以若干生态系统和基因组为例,说明了现阶段生物复杂性研究的主要特点。  相似文献   

20.
More than 80% of animals have complex life cycles and undergo distinct changes in ecology and morphology during development. The strength and type of factors regulating each life-stage may differ as an organism may occupy different niches during ontogeny. We examined the functional distance at larval and adult life-stages of two non-native anurans (Green Tree Frog [Hyla cinerea] and Bullfrog [Lithobates catesbeianus]) that have established in a Chihuahuan Desert anuran assemblage in Big Bend National Park. Both life stages of both non-native species occupied niche space outside of the native assemblage. At the larval stage, the ability of the tadpoles to utilize permanent aquatic habitats and coexist with predatory fishes differentiated the non-native species from the majority of the native species that are restricted to temporary pools. At the post-metamorphic life stage, each species appears to have established by exploiting unoccupied habitat and trophic niches in the recipient community. The arboreal habits of H. cinerea may enable it to utilize resources in microhabitats that are otherwise not used by native species because arboreal frogs are absent from this native assemblage. The large body size of post-metamorphic L. catesbeianus may enable it to utilize larger food resources that are otherwise unavailable to the smaller-bodied natives. Separate comparison of larval and adult functional traits between non-natives and the native community may help predict their potential establishment or invasion success as well as aid in the development of stage-specific control or eradication efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号