首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 379 毫秒
1.
Summary We have established an efficient Agrobacterium-mediated transformation procedure for Arabidopsis thaliana genotype C24 using the chimeric bialaphos resistance gene (bar) coding for phosphinothricin acetyltransferase (PAT). Hypocotyl explants from young seedlings cocultivated with agrobacteria carrying a bar gene were selected on shoot-inducing media containing different concentrations of phosphinothricin (PPT) which is an active component of bialaphos. We found that 20 mg/l of PPT completely inhibited the control explants from growing whereas the explants transformed with the bar gene gave rise to multiple shoots resistant to PPT after 3 weeks under the same selection conditions. The transformation system could also be applied to root explants. Resulting plantlets could produce viable seeds in vitro within 3 months after preparation of the explants. The stable inheritance of the resistance trait, the integration and expression of the bar gene in the progeny were confirmed by genetic tests, Southern analysis and PAT enzyme assay, respectively. In addition, the mature plants in soil showed tolerance to the herbicide Basta.Abbreviations bar bialaphos resistance gene - CIM callus-inducing medium - DTNB 5,5-dithiobis(2-nitrobenzoic acid) - GM germination medium - HPT hygromycin phosphotransferase - MS Murashige and Skoog salts - NPTII neomycin phosphotransferase II - PAT phosphinothricin acetyltransferase - PPT phosphinothricin - SIM shoot-inducing medium  相似文献   

2.
We have used the bar gene in combination with the herbicide Basta to select transformed rice (Oryza sativa L. cv. Radon) protoplasts for the production of herbicide-resistant rice plants. Protoplasts, obtained from regenerable suspension cultures established from immature embryo callus, were transformed using PEG-mediated DNA uptake. Transformed calli could be selected 2–4 weeks after placing the protoplast-derived calli on medium containing the selective agent, phosphinothricin (PPT), the active component of Basta. Calli resistant to PPT were capable of regenerating plants. Phosphinothricin acetyltransferase (PAT) assays confirmed the expression of the bar gene in plants obtained from PPT-resistant calli. The only exceptions were two plants obtained from the same callus that had multiple copies of the bar gene integrated into their genomes. The transgenic status of the plants was varified by Southern blot analysis. In our system, where the transformation was done via the protoplast method, there were very few escapes. The efficiency of co-transformation with a reporter gene gusA, was 30%. The To plants of Radon were self-fertile. Both the bar and gusA genes were transmitted to progeny as confirmed by Southern analysis. Both genes were expressed in T1 and T2 progenies. Enzyme analyses on T1 progeny plants also showed a gene dose response reflecting their homozygous and heterozygous status. The leaves of To plants and that of the progeny having the bar gene were resistant to application of Basta. Thus, the bar gene has proven to be a useful selectable and screenable marker for the transformation of rice plants and for the production of herbicide-resistant plants.  相似文献   

3.
A system for enhanced induction of somatic embryo-genesis and regeneration of plants from isolated scutellar tissue of wheat has been developed. This system has been successfully used in the development of a simple and reproducible protocol for the production of self-fertile transgenic wheat plants. The procedure is rapid resulting in the production of transgenic plantlets within 12 weeks from initiation of cultures and it avoids the need for establishing long-term callus, cell suspension or protoplast cultures. Somatic embryos regenerated from scutella bombarded with plasmid pBARGUS were selected on L-phosphinothricin (L-PPT) to obtain herbicide-resistant self-fertile transgenic plants. Phosphinothricin acetyltransferase (PAT) activity was observed at varying levels in 50% of the plants selected on L-PPT whereas none of the plants showed β-glucuronidase (GUS) activity. Molecular analysis of PAT-positive plants confirmed stable integration of both bar and gus genes in R0 and R1 progeny plants. Segregation of the PAT activity and herbicide resistance in R1 progeny plants confirmed the Mendelian inheritance of the bar gene. Additionally, isolated scutella bombarded with plasmid DNA containing a gus::nptII fusion gene driven by a rice actin promoter and its first intron were selected in the presence of geneticin to obtain fully fertile transgenic plants. Functional expression of the fusion gene was demonstrated in transgenic plants by GUS and neomycin phospho-transferase (NPTII) enzyme assays. Southern blot analysis confirmed the integration of transgenes into the wheat genome. Histochemical GUS staining showed transmission of the fusion gene to floral organs of primary transformants and confirmed Mendelian segregation of the transgene in R1 progeny.  相似文献   

4.
 Our long-term goal is to control wheat diseases through the enhancement of host plant resistance. The constitutive expression of plant defense genes to control fungal diseases can be engineered by genetic transformation. Our experimental strategy was to biolistically transform wheat with a vector DNA containing a rice chitinase gene under the control of the CaMV 35 S promoter and the bar gene under control of the ubiquitin promoter as a selectable marker. Immature embryos of wheat cv ‘Bobwhite’ were bombarded with plasmid pAHG11 containing the rice chitinase gene chi11 and the bar gene. The embryos were subcultured on MS2 medium containing the herbicide bialaphos. Calli were then transferred to a regeneration medium, also containing bialaphos. Seventeen herbicide-resistant putative transformants (T0) were selected after spraying with 0.2% Liberty, of which 16 showed bar gene expression as determined by the phosphinothricin acetyltransferase (PAT) assay. Of the 17 plants, 12 showed the expected 35-kDa rice chitinase as revealed by Western blot analysis. The majority of transgenic plants were morphologically normal and self-fertile. The integration, inheritance and expression of the chi11 and bar genes were confirmed by Southern hybridization, PAT and Western blot analysis of T0 and T1 transgenic plants. Mendelian segregation of herbicide resistance was observed in some T1 progenies. Interestingly, a majority of the T1 progeny had very little or no chitinase expression even though the chitinase transgene was intact. Because PAT gene expression under control of the ubiquitin promoter was unaffected, we conclude that the CaMV 35 S promoter is selectively inactivated in T1 transgenic wheat plants. Received: 12 May 1998 / Accepted: 15 May 1998  相似文献   

5.
Bialaphos selection of stable transformants from maize cell culture   总被引:15,自引:0,他引:15  
Summary Stable transformed Black Mexican Sweet (BMS) maize callus was recovered from suspension culture cells bombarded with plasmid DNA that conferred resistance to the herbicide bialaphos. Suspension culture cells were bombarded with a mixture of two plasmids. One plasmid contained a selectable marker gene, bar, which encoded phosphinothricin acetyl transferase (PAT), and the other plasmid encoded a screenable marker for -glucuronidase (GUS). Bombarded cells were selected on medium containing the herbicide bialaphos, which is cleaved in plant cells to yield phosphinothricin (PPT), an inhibitor of glutamine synthetase. The bialaphos-resistant callus contained the bar gene and expressed PAT as assayed by PPT inactivation. Transformants that expressed high levels of PAT grew more rapidly on increasing concentrations of bialaphos than transformants expressing low levels of PAT. Fifty percent of the bialaphos-resistant transformants tested (8 of 16) expressed the nonselected gene encoding GUS.  相似文献   

6.
Four different pearl millet breeding lines were transformed and led to the regeneration of fertile transgenic plants. Scutellar tissue was bombarded with two plasmids containing the bar selectable marker and the -glucuronidase reporter gene (gus or uidA) under control of the constitutive CaMV 35S promoter or the maize Ubiquitin1 promoter (the CaMV 35S is not a maize promoter). For the delivery of the DNA-coated microprojectiles, either the particle gun PDS 1000/He or the particle inflow gun was used. The calli and regenerants were selected for their resistance to the herbicide Basta (glufosinate ammonium) mediated by the bar gene. Putative transformants were screened for enzyme activity by painting selected leaves or spraying whole plants with an aqueous solution of the herbicide Basta and by the histochemical GUS assay using cut leaf segments. PCR and Southern blot analysis of genomic DNA indicated the presence of introduced foreign genes in the genomic DNA of the transformants. Five regenerated plants represent independent transformation events and have been grown to maturity and set seed. The integration of the bar selectable and the gus reporter gene was confirmed by genomic Southern blot analysis in all five plants. All five plants had multiple integrations of both marker genes. To date, the T1 progeny of three out of four lines generated by the PDS particle gun shows co-segregating marker genes, indicating an integration of the bar and the gus gene at the same locus in the genome.  相似文献   

7.
Fertile transgenic barley by particle bombardment of immature embryos   总被引:5,自引:0,他引:5  
Transgenic, fertile barley (Hordeum vulgare L.) from the Finnish elite cultivar Kymppi was obtained by particle bombardment of immature embryos. Immature embryos were bombarded to the embryonic axis side and grown to plants without selection. Neomycin phosphotransferase II (NPTII) activity was screened in small plantlets. One out of a total of 227 plants expressed the transferred nptII gene. This plant has until now produced 98 fertile spikes (T0), and four of the 90 T0 spikes analyzed to date contained the nptII gene. These shoots were further analyzed and they expressed the transferred gene. From green grains, embryos were isolated and grown to plantlets (T1). The four transgenic shoots of Toivo (the T0 plant) produced 25 plantlets as T1 progeny. Altogether fifteen of these T1 plants carried the transferred nptII gene as detected with the PCR technique, fourteen of which expressed the nptII gene. The integration and inheritance of the transferred nptII gene was confirmed by Southern blot hybridization. Although present as several copies, the transferred gene was inherited as a single Mendelian locus into the T2 progeny.  相似文献   

8.
Summary A binary vector, pPTN133, was assembled that harbored two separate T-DNAs. T-DNA one contained a bar cassette, while T-DNA two carried a GUS cassette. The plasmid was mobilized into the Agrobacterium tumefaciens strain EHA101. Mature soybean cotyledonary node explants were inoculated and regenerated on medium amended with glufosinate. Transgenic soybeans were grown to maturity in the greenhouse. Fifteen primary transformants (T0) representing 10 independent events were characterized. Seven of the 10 independent T0 events co-expressed GUS. Progeny analysis was conducted by sowing the T1 seeds and monitoring the expression of the GUS gene after 21 d. Individual T1 plants were subsequently scored for herbicide tolerance by leaf painting a unifoliate leaf with a 100 mgl−1 solution of glufosinate and scoring the leaf 5 d post application. Herbicide-sensitive and GUS-positive individuals were observed in four of the 10 independent events. Southern blot analysis confirmed the absence of the bar gene in the GUS positive/herbicide-sensitive individuals. These results demonstrate that simultaneous integration of two T-DNAs followed by their independent segregation in progeny is a viable means to obtain soybeans that lack a selectable marker.  相似文献   

9.
Fertile transgenicTriticale ( ×Triticosecale Wittmack) plants expressing the-glucuronidase (uidA) and phosphinothricin acetyltransferase (bar) genes were obtained after microprojectile bombardment of scutellar tissue with the plasmid pDB1 containing theuidA gene under the control of the actin-1 promoter (Act1) from rice and the selectable marker genebar under the control of the CaMV 35S promoter. From 465 bombarded scutella about 4000 plantlets were regenerated; 300 plants survived the selection. These regenerants were screened for enzyme activity by the histological GUS assay and by spraying the plants with a herbicide (Basta). Twenty-five regenerants showed GUS activity and survived repeated Basta spraying. Southern blot analysis showed the presence of both marker genes introduced into the genome of analysed plants.All transgenic plants were fertile. They were grown to maturity and set seed. Pollen and progeny analyses provided evidence for inheritance of the introduced genes to the next generation.  相似文献   

10.
Suspension-cultured cells (A-18 line) of the liverwortMarchanta polymorpha were bombarded by a pneumatic particle gun with plasmid pCH harbouring the hygromycin phosphotransferase (HPT) gene (hpt) under the control of the cauliflower mosaic virus (CaMV) 35 S promoter and the nopaline synthase polyadenylation region. Nine weeks after bombardments, 128 hygromycin-resistant calluses were obtained from an approximate total of 7×106 cells. Ten cell lines chosen randomly were analysed further. Southern blot analysis showed that all of the ten lines contain thehpt gene in the genome, demonstrating that these lines are transformants. An HPT enzyme activity assay confirmed the expression of the gene in all of the transformant lines.  相似文献   

11.
To evaluate and characterize the stability of traits transferred viaAgrobacterium transformation, foreign gene expression must be examined in sexually derived progeny. The objective of this study was to analyze three transgenic peanut plants, 1-10, 12-1, and 17-1, for the inheritance and expression of their foreign genes. Segregation ratios for the introduced genes in T2 plants gave either 100% or 3:1 expression of the -glucuronidase (GUS) gene, demonstrating recovery of both homozygous and heterozygous T1 plants. Fluorometric GUS assay in T1 and T2 generations of all three plants showed that the GUS gene was stably expressed in the progeny. DNA analyses showed 100% concordance between the presence of the foreign gene and enzyme activity. Our results demonstrate that transgenes in peanut introduced byAgrobacterium can be inherited in a Mendelian manner.Abbreviations GUS -Glucuronidase - MS Murashige and Skoog - MU 4-Methylumbelliferone - NPTII Neomycin phosphotransferase II  相似文献   

12.
In this paper we describe the production of transgenic broccoli and cauliflower with normal phenotype using an Agrobacterium rhizogenes-mediated transformation system with efficient selection for transgenic hairy-roots. Hypocotyls were inoculated with Agrobacterium strain A4T harbouring the bacterial plasmid pRiA4 and a binary vector pMaspro::GUS whose T-DNA region carried the gus reporter gene. pRiA4 transfers TL sequences carrying the rol genes that induce hairy root formation. Transgenic hairy-root production was increased in a difficult-to-transform cultivar by inclusion of 2,4-D in the medium used to resuspend the Agrobacterium prior to inoculation. Transgenic hairy roots could be selected from inoculated explants by screening root sections for GUS activity; this method eliminated the use of antibiotic resistance marker genes for selection. Transgenic hairy roots were produced from two cauliflower and four broccoli culivars. Shoots were regenerated from transgenic hairy root cultures of all four cultivars tested and successfully acclimatized to glasshouse conditions, although some plants had higher than diploid ploidy levels. Southern analysis confirmed the transgenic nature of these plants. T0 plants from seven transgenic lines were crossed or selfed to produce viable seed. Genetic analysis of T1 progeny confirmed the transmission of traits and revealed both independent and co-segregation of Ri TL-DNA and vector T-DNA. GUS-positive phenotypically normal progeny free of TL-DNA were identified in three transgenic lines out of the six tested representing all the cultivars regenerated including both cauliflower and broccoli.  相似文献   

13.
Inheritance of gusA and neo genes in transgenic rice   总被引:21,自引:0,他引:21  
Inheritance of foreign genes neo and gusA in rice (Oryza sativa L. cv. IR54 and Radon) has been investigated in three different primary (T0) transformants and their progeny plants. T0 plants were obtained by co-transforming protoplasts from two different rice suspension cultures with the neomycin phosphotransferase II gene [neo or aph (3) II] and the -glucuronidase gene (uidA or gusA) residing on separate chimeric plasmid constructs. The suspension cultures were derived from callus of immature embryos of indica variety IR54 and japonica variety Radon. One transgenic line of Radon (AR2) contained neo driven by the CaMV 35S promoter and gusA driven by the rice actin promoter. A second Radon line (R3) contained neo driven by the CaMV 35S promoter and gusA driven by a promoter of the rice tungro bacilliform virus. The third transgenic line, IR54-1, contained neo driven by the CaMV 35S promoter and gusA driven by the CaMV 35S.Inheritance of the transgenes in progeny of the transgenic rice was investigated by Southern blot analysis and enzyme assays. Southern blot analysis of genomic DNA showed that, regardless of copy numbers of the transgenes in the plant genome and the fact that the two transgenes resided on two different plasmids before transformation, the introduced gusA and neo genes were stably transmitted from one generation to another and co-inherited together in transgenic rice progeny plants derived from self-pollination. Analysis of GUS and NPT II activities in T1 to T2 plants provided evidence that inheritance of the gusA and neo genes was in a Mendelian fashion in one plant line (AR2), and in an irregular fashion in the two other plant lines (R3 and IR54-1). Homozygous progeny plants expressing the gusA and neo genes were obtained in the T2 generation of AR2, but the homozygous state was not found in the other two lines of transgenic rice.  相似文献   

14.
Summary Transgenic Atropa belladonna conferred with a herbicide-resistant trait was obtained by transformation with an Ri plasmid binary vector and plant regeneration from hairy roots. We made a chimeric construct, pARK5, containing the bar gene encoding phosphinothricin acetyltransferase flanked with the promoter for cauliflower mosaic virus 35S RNA and the 3 end of the nos gene. Leaf discs of A. belladonna were infected with Agrobacterium rhizogenes harboring an Ri plasmid, pRi15834, and pARK5. Transformed hairy roots resistant to bialaphos (5 mg/l) were selected and plantlets were regenerated. The integration of T-DNAs from pRi15834 and pARK5 were confirmed by DNA-blot hybridization. Expression of the bar gene in transformed R0 tissues and in backcrossed F1 progeny with a nontransformant and self-fertilized progeny was indicated by enzymatic activity of the acetyltransferase. The transgenic plants showed resistance towards bialaphos and phosphinothricin. Tropane alkaloids of normal amounts were produced in the transformed regenerants. These results present a successful application of transformation with an Ri plasmid binary vector for conferring an agronomically useful trait to medicinal plants.Abbreviations CaMV cauliflower mosaic virus - NPT-II neomycin phosphotransferase II - PAT phosphinothricin acetyltransferase - PPT phosphinothricin  相似文献   

15.
Summary Transgenic sorghum plants (Sorghum bicolor L. Moench, cv. SRN39) were obtained by microprojectile-mediated DNA delivery (Bio-Rad PDS 1000/He Biolistic Delivery System) to explants derived from immature inflorescences. Explants were precultured on medium supplemented with 2.5 mg/l (11.31 μM) 2,4-D, 0.5 mg/l (2.32 μM) kinetin, and 60 g/l sucrose for 1 to 2 wk prior to bombardment. Bialaphos selectron pressure was imposed 2 wk after bombardment and maintained throughout all the culture stages leading to plant regeneration. More than 2500 explants from 1.5 to 3.0 cm inflorescences were bombarded and subjected to bialaphos selection. Out of more than 190 regenerated plants, 5 were determined to be Ignite resistant. Southern analyses confirmed the likelihood that the 5 herbicide resistant plants derived from two independent transformation events. The phosphinothricin acetyltransferase gene (bar) was inherited by and functionally expressed in T1 progeny. However, no β-glucuronidase (GUS) activity could be detected in T1 plants that contained uidA restriction fragments. Histological analyses indicated that in the absence of bialaphos morphogenesis was primarily via embryogenesis while organogenesis was more predominant in callus maintained with herbicide selection.  相似文献   

16.
Summary A reproducible system for gene transfer in lentil through particle bombardment is presented. Lentil cotyledonary nodes excised from germinated seedlings were bombarded with a plasmid containing a mutant acetolactate synthase gene (ALS) from tobacco conferring resistance to sulfonylurea herbicides. Putative transgenic shoots regenerated on Murashige and Skoog medium supplemented with 6-benzylaminopurine (BA) and chlorsulfuron (5 nM for first 4 wk followed by 2.5 nM for the remainder of the culture period) were micrografted and successfully transferred to soil. T0 and selfed progeny plants were screened using metsulfuron herbicide leaflet painting. The non-transformed escapes died and transformed plants survived the test. The surviving plants were phenotypically normal and produced viable seeds. The presence and stable transmission of the transgene into genomic DNA of screened T1 transformants was confirmed by PCR and Southern hybridization. This method for producing transformed plants will allow new opportunities for lentil breeding to produce improved cultivars.  相似文献   

17.
Split embryonic axes of 21-day old immature sunflower (Helianthus annuus L.) embryos were bombarded by microparticles and then co-cultured with disarmed Agrobacterium tumefaciens strain EHA105 bearing a binary vector carrying nptII and uidA genes. Apical shoot bud development and organogenesis induced on the explants led T0 transgenic plants. Southern blot analysis revealed complex integration patterns in T0 plants. The uidA gene segregated as a dominant trait and single-insertion events were observed in T1 plants. Patterns similar to those of T1 plants were observed in T2 progeny.  相似文献   

18.
A simple and inexpensive system for the generation of fertile, transgenic maize plants has been developed. Cells from embryogenic maize suspension cultures were transformed using silicon carbide whiskers to deliver plasmid DNA carrying the bacterial bar and uidA (gus) genes. Transformed cells were selected on medium containing the herbicide bialaphos. Integration of the bar gene and activity of the enzyme phosphinothricin acetyl transferase (PAT) were confirmed in all bialaphos-resistant callus lines analysed. Fertile transgenic maize plants were regenerated. Herbicide spraying of progeny plants revealed that the bar gene was transmitted in a Mendelian fashion.  相似文献   

19.
Exposed shoot meristems from normal and hyperhydric (vitrified) tobacco, Nicotiana tabacum, were bombarded with gold particles either coated with plasmid DNA containing neomycin phosphotransferase (NPTII), rolC and -glucuronidase (GUS) genes (plasmid pGA-GUSGFrolC) or left uncoated. Meristems bombarded with uncoated particles were co-cultivated with Agrobacterium tumefaciens strain EHA 101 harboring the binary vector pGA-GUSGFrolC. Whole-plant transformants were produced from 4 of 40 hyperhydric meristems bombarded with uncoated particles followed by co-cultivation with A. tumefaciens. One transgenic plant was obtained from 40 normal, non-hyperhydric meristems treated. Transformation was verified by growth on kanamycin-containing medium, GUS assays, PCR, and Southern analysis. The plants tested through Southern analysis appeared to have 2 or more copies of the transgene insert. Seeds obtained from self-pollination of these transgenic plants segregated 3:1 or 15:1 (kanamycin resistant:sensitive) when germinated on medium containing 100 mg/l kanamycin, indicating transfer of foreign genes through the sexual cycle. Whole-plant transformants were not produced from 50 normal tobacco meristems bombarded with plasmid-coated gold particles and not exposed to engineered A. tumefaciens, but 1 plant of 60 bombarded hyperhydric meristems produced transgenic roots, the result of a chimera. We suggest that hyperhydric meristems are more readily transformed.  相似文献   

20.
Transgenic pearl millet lines expressing pin gene—exhibiting high resistance to downy mildew pathogen, Sclerospora graminicola—were produced using particle-inflow-gun (PIG) method. Shoot-tip-derived embryogenic calli were co-bombarded with plasmids containing pin and bar genes driven by CaMV 35S promoter. Bombarded calli were cultured on MS medium with phosphinothricin as a selection agent. Primary transformants 1T0, 2T0, and 3T0 showed the presence of both bar and pin coding sequences as evidenced by PCR and Southern blot analysis, respectively. T1 progenies of three primary transformants, when evaluated for downy mildew resistance, segregated into resistant and susceptible phenotypes. T1 plants resistant to downy mildew invariably exhibited tolerance to Basta suggesting co-segregation of pin and bar genes. Further, the downy mildew resistant 1T1 plants were found positive for pin gene in Southern and Northern analyses thereby confirming stable integration, expression, and transmission of pin gene. 1T2 progenies of 1T0 conformed to dihybrid segregation of 15 resistant:1 susceptible plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号