首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Aims (i) To explore variations in nutrient resorption of woody plants and their relationship with nutrient limitation and (ii) to identify the factors that control these variations in forests of eastern China.Methods We measured nitrogen (N) and phosphorus (P) concentrations in both green and senesced leaves of 172 woody species at 10 forest sites across eastern China. We compared the nutrient resorption proficiency (NuRP) and efficiency (NuRE) of N and P in plant leaves for different functional groups; we further investigated the latitudinal and altitudinal variations in NuRP and NuRE and the impacts of climate, soil and plant types on leaf nutrient resorptions.Important findings On average, the leaf N resorption proficiency (NRP) and P resorption proficiency (PRP) of woody plants in eastern China were 11.1mg g ? 1 and 0.65 mg g ? 1, respectively; and the corresponding N resorption efficiency (NRE) and P resorption efficiency (PRE) were 49.1% and 51.0%, respectively. Angiosperms have higher NRP (are less proficient) values and lower NRE and PRE values than gymnosperms, but there are no significant differences in NRP, PRP and PRE values between species with different leaf habits (evergreen vs. deciduous angiosperms). Trees have higher NRE and PRE than shrubs. Significant geographical patterns of plant nutrient resorption exist in forests of eastern China. In general, NRP and PRE decrease and PRP and NRE increase with increasing latitude/altitude for all woody species and for the different plant groups. Plant functional groups show more controls than environmental factors (climate and soil) on the N resorption traits (NRP and NRE), while site-related variables present more controls than plant types on PRP and PRE. NRP increases and PRP and NRE decrease significantly with increasing temperature and precipitation for the overall plants and for most groups, except that significant PRE–climate relationship holds for only evergreen angiosperms. Leaf nutrient resorption did not show consistent responses in relation to soil total N and P stoichiometry, probably because the resorption process is regulated by the relative costs of drawing nutrients from soil versus from senescing leaves. These results support our hypothesis that plants growing in P-limited habitats (low latitudes/altitudes or areas with high precipitation/temperature) should have lower PRP and higher PRE, compared with their counterparts in relatively N-limited places (high latitudes/altitudes or areas with low precipitation/temperature). Our findings can improve the understanding of variations in N and P resorption and their responses to global change, and thus facilitate to incorporate these nutrient resorption processes into future biogeochemical models.  相似文献   

2.
This study explored patterns of nutrient resorption in wetland macrophytes to test the prediction that plants from regions with a strong nutrient limitation will show higher resorption of the limiting nutrient. Nitrogen and phosphorus resorption was assessed in macrophytes from marshes of different nutrient status in tropical and temperate regions, and expressed as resorption efficiency (NRE, PRE) and proficiency (NRP, PRP). Macrophytes were grouped into three categories: Typha, graminoids and broadleaved plants. Nitrogen was less limiting than P, consequently N availability varied less than P availability, NRP and NRE were lower, and N resorption was mostly incomplete. NRP was determined more by growth form than by local conditions. The large range of soil P concentrations allowed an exploration of relationships between P availability and resorption along a wide gradient. P-limited macrophytes (N : P > 16) had significantly higher PRP and PRE. Resorption proficiency was found to be a more sensitive indicator of changes in nutrient availability than resorption efficiency. The results confirmed that resorption in wetland macrophytes depends on nutrient availability, and is higher at nutrient-limited sites. A particularly strong relationship was found between resorption indicators and P limitation expressed either as live tissue N : P or soil P.  相似文献   

3.
Despite a growing knowledge of nutrient limitation for mangrove species and how mangroves adapt to low nutrients, there is scant information about the relative importance of N:P ratio and leaf phenolics variability in determining nutrient conservation. In this study, we evaluated possible nutrient conservation strategies of a mangrove Rhizophora stylosa under nutrient limitation. 1. The leaf nutrient concentrations of R. stylosa changed with season, with the highest N concentration in winter and the highest P concentration in spring for both mature and senescent leaves. Leaf N and P concentrations decreased significantly during leaf senescence. Based on N:P ratios R. stylosa forest was N-limited. Accordingly, the nitrogen resorption efficiency (NRE) was significantly higher than phosphorus resorption efficiency (PRE) for the R. stylosa leaves during leaf senescence. The NRE and PRE both reached the highest in the autumn. Average N and P concentrations in the senescent leaves were 0.15% and 0.06% for R. stylosa, respectively, indicating a complete resorption of N and an incomplete resorption of P. There was a significant negative correlation between nitrogen resorption proficiency (NRP) and NRE, meanwhile phosphorus resorption proficiency (PRP) and PRE correlation was also highly significantly. 2. R. stylosa leaves contained relatively high tannin level. Total phenolics, extractable condensed tannins and total condensed tannins contents increased during leaf senescence, and changed between seasons. The lowest concentrations of total phenolics, extractable condensed tannins and total condensed tannins occurred in summer, total phenolics concentrations were inversely related to nitrogen or phosphorus concentrations. 3. Our results confirmed that resorption efficiency during leaf senescence depends on the type of nutrient limitation, and NRE was much higher than PRE under N-limited conditions. R. stylosa forest developed several nutrient conservation strategies in the intertidal coastline surroundings, including high nitrogen resorption efficiency, low nutrient losses and high tannins level.  相似文献   

4.
在我国南方亚热带湿地松人工林设置了3个水平的野外氮添加控制试验(0、40、120 kg N·hm-2·a-1),于2014和2015年生长季高峰期(7月底)和末期(10月底)采集湿地松成熟绿叶和落叶,分析外源氮添加对湿地松叶片碳(C)、氮(N)、磷(P)、钾(K)、钙(Ca)、镁(Mg)、铝(Al)、铁(Fe)、锰(Mn)9种元素浓度及其养分回收的影响.结果表明: N添加显著增加了湿地松绿叶中N、Al、Mn浓度,降低了P和2014年的Ca浓度,而对C、K、Mg、Fe 浓度无显著影响.N添加显著提高了绿叶N/P,且该比值及绿叶养分浓度(N、P、Mn)对N添加的响应依赖于N的剂量(高N条件下响应更强).N添加显著降低了2015年N的回收效率,提高了2014年K的回收效率.相比于养分回收效率,回收能力对增加的可利用氮响应更强.N添加显著降低了N的回收能力,提高了P、K的回收能力,降低了枯叶中的Fe浓度,而对枯叶中Ca、Mg、Al、Mn浓度无显著影响.这表明,N添加对叶片化学计量的影响因不同元素而异,植物会通过调整自身的养分内循环(养分回收)来应对环境变化.N添加提高了绿叶N/P和K/P,说明氮添加条件下植物生长可能由N、P共同限制转变为P限制.氮添加增加了绿叶中Al、Mn浓度,表明N添加下湿地松面临潜在的金属离子毒性风险升高.  相似文献   

5.
Changes in precipitation can influence soil water and nutrient availability, and thus affect plant nutrient conservation strategies. Better understanding of how nutrient conservation changes with variations in water availability is crucial for predicting the potential influence of global climate change on plant nutrient-use strategy. Here, green-leaf nitrogen (N) and phosphorus (P) concentrations, N- and P-resorption proficiency (the terminal N and P concentration in senescent leaves, NRP and PRP, respectively), and N- and P-resorption efficiency (the proportional N and P withdrawn from senescent leaves prior to abscission, NRE and PRE, respectively) of Leymus chinensis (Trin.) Tzvel., a typical perennial grass species in northern China, were examined along a water supply gradient to explore how plant nutrient conservation responds to water change. Increasing water supply at low levels (< 9000 mL/year) increased NRP, PRP and PRE, but decreased green-leaf N concentration. It did not significantly affect green-leaf P concentration or NRE. By contrast, all N and P conservation indicators were not significantly influenced at high water supply levels (> 9000 mL/year). These results indicated that changes in water availability at low levels could affect leaf-level nutrient characteristics, especially for the species in semiarid ecosystems. Therefore, global changes in precipitation may pose effects on plant nutrient economy, and thus on nutrient cycling in the plant-soil systems.  相似文献   

6.
广西猫儿山不同海拔常绿和落叶树种的营养再吸收模式   总被引:1,自引:0,他引:1  
土壤养分供给性大小是否影响植物氮和磷再吸收效率仍存在争议。调查了广西猫儿山不同海拔常绿和落叶树种成熟和衰老叶片的氮和磷含量,探讨营养再吸收是否受到叶片习性和海拔的影响。所有树种氮和磷再吸收效率的平均值分别为56.5%和52.1%。常绿树种比落叶树种有显著较高的氮再吸收效率(P0.001)和磷再吸收效率(P0.01),这与前者有较低的衰老叶片氮和磷含量密切相关。随着海拔的上升,氮再吸收效率显著下降(P0.01),磷再吸收效率显著提高(P0.05)。氮再吸收效率与土壤氮:磷比(r=-0.41,P0.05)和成熟叶片氮:磷比(r=-0.37,P0.05)负相关,磷再吸收效率与土壤氮:磷比(r=0.44,P0.05)和成熟叶片氮:磷比(r=0.47,P0.01)正相关,表明了树种对低海拔氮限制的适应逐渐转变为对高海拔磷限制的适应。此外,氮再吸收效率与年均温正相关(r=0.43,P0.05)而磷再吸收效率与年均温负相关(r=-0.45,P0.01),这表明气温也是调节树木营养再吸收格局的重要影响因素。不同海拔树种氮和磷再吸收模式的差异可能是引起广西猫儿山常绿树种沿海拔形成双峰分布的原因之一。  相似文献   

7.
Nutrient resorption from senesced leaves as a nutrient conservation strategy is important for plants to adapt to nutrient deficiency, particularly in alpine and arid environment. However, the leaf nutrient resorption patterns of different functional plants across environmental gradient remain unclear. In this study, we conducted a transect survey of 12 communities to address foliar nitrogen (N) and phosphorus (P) resorption strategies of four functional groups along an eastward increasing precipitation gradient in northern Tibetan Changtang Plateau. Soil nutrient availability, leaf nutrient concentration, and N:P ratio in green leaves ([N:P]g) were linearly correlated with precipitation. Nitrogen resorption efficiency decreased, whereas phosphorus resorption efficiency except for sedge increased with increasing precipitation, indicating a greater nutrient conservation in nutrient‐poor environment. The surveyed alpine plants except for legume had obviously higher N and P resorption efficiencies than the world mean levels. Legumes had higher N concentrations in green and senesced leaves, but lowest resorption efficiency than nonlegumes. Sedge species had much lower P concentration in senesced leaves but highest P resorption efficiency, suggesting highly competitive P conservation. Leaf nutrient resorption efficiencies of N and P were largely controlled by soil and plant nutrient, and indirectly regulated by precipitation. Nutrient resorption efficiencies were more determined by soil nutrient availability, while resorption proficiencies were more controlled by leaf nutrient and N:P of green leaves. Overall, our results suggest strong internal nutrient cycling through foliar nutrient resorption in the alpine nutrient‐poor ecosystems on the Plateau. The patterns of soil nutrient availability and resorption also imply a transit from more N limitation in the west to a more P limitation in the east Changtang. Our findings offer insights into understanding nutrient conservation strategy in the precipitation and its derived soil nutrient availability gradient.  相似文献   

8.
Abstract Nutrient resorption from senescing leaves enables plants to conserve and reuse nutrients. As such, it could be expected that plant species adapted to infertile soils have a higher nutrient resorption efficiency (percentage reduction of nutrients between green and senesced leaves) and/or higher nutrient resorption proficiency (absolute reduction of nutrients in senesced leaves) than those adapted to fertile soils. Our objective was to compare nitrogen (N) and phosphorous (P) resorption of two congener grasses that successfully occupy uplands of relatively low fertility (Stipa gynerioides) or lowlands of relatively high fertility (Stipa brachychaeta) in natural grasslands of central Argentina. The two Stipa species did not differ in N and P resorption efficiency, but S. gynerioides had a higher N and P resorption proficiency than S. brachychaeta. As a consequence, leaf‐level N and P use efficiency were higher in the species adapted to low fertility conditions than in the species adapted to high fertility conditions. The higher nutrient resorption proficiency of S. gynerioides was also associated with relatively low leaf‐litter decomposition and nutrient release rates found in a previous study.  相似文献   

9.
Plant nutrient resorption, a ubiquitous mechanism of nutrient conservation, has often been proposed to be more pronounced in infertile than fertile habitats, and in species common to infertile compared to fertile habitats, because of the presumed advantage when nutrients are scarce. However, previous studies provide weak and inconsistent empirical support for these hypotheses, although few have examined intraspecific variation across well-quantified resource gradients. This study addresses intraspecific patterns of nutrient resorption for eight species across two N availability gradients on similar soils in an N-limited oak savanna ecosystem: a long-term fire frequency gradient with a negatively correlated N fertility gradient and a long-term N fertilization gradient. We hypothesized that both resorption proficiency (the minimum nutrient level retained in a senesced leaf) and efficiency (the proportional change in leaf nutrient concentration) would decrease with increasing soil N availability and plant N status. For the seven non-N fixers, either resorption proficiency or efficiency decreased modestly in treatments with higher N availability. In contrast, the legume Amorpha canescens Pursh had higher N levels in green and senesced leaves, and resorbed N much more weakly than the non-fixers, and did not respond in terms of proficiency or efficiency to soil N availability. Across all species and sites in each N fertility gradient, a scaling analysis showed greater resorption efficiency in plants with lower N concentrations. Our data suggest that species can have modest resorption responses reflective of soil nutrient availability and differences in resorption related to their N economy that represent mechanisms of nutrient conservation in nutrient-limited soils.  相似文献   

10.

Background and aims

Nutrient resorption from the senesced to the green leaves can help a plant re-use elements, thus improving adaptability and persistence. How the resorption of nitrogen (N), phosphorus (P) and potassium (K) varies among differently aged lucerne (Medicago sativa) stands and how they correlate to their stoichiometry in the leaves and soil remain uncertain. This study aimed to analyze the resorption efficiencies (REs) of N, P and K and their possible correlations with stoichiometric ratios in the plant and soil.

Methods

The concentrations of plant N, P and K and soil N, P, K and carbon (C) were measured under lucerne stands established in different years, and stoichiometric ratios and REs were calculated. The relationships of REs with stoichiometric ratios were analyzed.

Results

The nitrogen resorption efficiency (NRE) was quite variable among the different stands and tended to rise and then drop with stand age, ranging from 4.6 to 33.7 % with an average of 16.2 %. The phosphorus resorption efficiency (PRE) tended to increase with stand age, ranging from 11.1 to 38.3 % with an average of 27.3 %. The potassium resorption efficiency (KRE) increased with stand age, ranging from 21.0 to 49.8 % with an average of 36.9 %. The KRE was generally highest, followed by the PRE, and the NRE was lowest. Leaf N:P and N:K generally decreased and then increased with stand age, while the K:P increased and then decreased. In the green leaves, total N concentration increased significantly with NRE and PRE, and total P concentration rose significantly with PRE, while in the senesced leaves, total N concentration decreased significantly with NRE and KRE. The N:P in the green leaves decreased significantly with PRE and the K:P in the senesced leaves dropped with NRE. Furthermore, the REs decreased with total soil nutrition status if there was any correlation. The REs increased significantly with soil ammonium N concentration, while the NRE decreased significantly with soil nitrate N concentration. In addition, soil available P concentration at most depths led to significant increases in NRE and KRE. However, the REs were rarely influenced by stoichiometric ratios of soil N, P, K and C.

Conclusions

The NRE rose and then dropped, and the PRE and KRE both increased with stand age. Leaf N:P and N:K generally decreased and then increased with stand age, while K:P increased and then decreased. The concentrations of N, P and K increased in the green leaves and decreased in the senesced leaves with REs if there was any correlation. The REs decreased with total soil nutrition status if there was any correlation. However, the REs hardly changed with stoichiometric ratios in the leaves and soil under differently aged lucerne stands. There appear to be no correlations between REs and element stoichiometries.  相似文献   

11.
12.
Plant resorption of multiple nutrients during leaf senescence has been established but stoichiometric changes among N, P and K during resorption and after fertilization are poorly understood. We anticipated that increased N supply would lead to further P limitation or co-limitation with N or K [i.e. P-(co)limitation], decrease N resorption and increase P and K resorption, while P and K addition would decrease P and K resorption and increase N resorption. Furthermore, Ca would accumulate while Mg would be resorbed during leaf senescence, irrespective of fertilization. We investigated the effect of N, P and K addition on resorption in two evergreen shrubs (Chamaedaphne calyculata and Rhododendron groenlandicum) in a long-term fertilization experiment at Mer Bleue bog, Ontario, Canada. In general, N addition caused further P-(co)limitation, increased P and K resorption efficiency but did not affect N resorption. P and K addition did not shift the system to N limitation and affect K resorption, but reduced P resorption proficiency. C. calyculata resorbed both Ca and Mg while R. groenlandicum resorbed neither. C. calyculata showed a higher resorption than R. groenlandicum, suggesting it is better adapted to nutrient deficiency than R. groenlandicum. Resorption during leaf senescence decreased N:P, N:K and K:P ratios. The limited response of N and K and the response of P resorption to fertilization reflect the stoichiometric coupling of nutrient cycling, which varies among the two shrub species; changes in species composition may affect nutrient cycling in bogs.  相似文献   

13.
We report results from a large-scale nutrient fertilization experiment along a “megadiverse” (154 unique species were included in the study) 3,000-m elevation transect in the Peruvian Andes and adjacent lowland Amazonia. Our objectives were to test if nitrogen (N) and phosphorus (P) limitation shift along this elevation gradient, and to determine how an alleviation of nutrient limitation would manifest in ecosystem changes. Tree height decreased with increasing elevation, but leaf area index (LAI) and diameter at breast height (DBH) did not vary with elevation. Leaf N:P decreased with increasing elevation (from 24 at 200 m to 11 at 3,000 m), suggesting increased N limitation and decreased P limitation with increasing elevation. After 4 years of fertilization (N, P, N + P), plots at the lowland site (200 m) fertilized with N + P showed greater relative growth rates in DBH than did the control plots; no significant differences were evident at the 1,000 m site, and plots fertilized with N at the highest elevation sites (1,500, 3,000 m) showed greater relative growth rates in DBH than did the control plots, again suggesting increased N constraint with elevation. Across elevations in general N fertilization led to an increase in microbial respiration, while P and N + P addition led to an increase in root respiration and corresponding decrease in hyphal respiration. There was no significant canopy response (LAI, leaf nutrients) to fertilization, suggesting that photosynthetic capacity was not N or P limited in these ecosystems. In sum, our study significantly advances ecological understanding of nutrient cycling and ecosystem response in a region where our collective knowledge and data are sparse: we demonstrate N limitation in high elevation tropical montane forests, N and P co-limitation in lowland Amazonia, and a nutrient limitation response manifested not in canopy changes, but rather in stem and belowground changes.  相似文献   

14.
Plant growth in semi‐arid ecosystems is usually severely limited by soil nutrient availability. Alleviation of these resource stresses by fertiliser application and aboveground litter input may affect plant internal nutrient cycling in such regions. We conducted a 4‐year field experiment to investigate the effects of nitrogen (N) addition (10 g N·m?2·year?1) and plant litter manipulation on nutrient resorption of Leymus chinensis, the dominant native grass in a semi‐arid grassland in northern China. Although N addition had no clear effects on N and phosphorus (P) resorption efficiencies in leaves and culms, N fertilisation generally decreased leaf N resorption proficiency by 54%, culm N resorption proficiency by 65%. Moreover, N fertilisation increased leaf P resorption proficiency by 13%, culm P resorption proficiency by 20%. Under ambient or enriched N conditions, litter addition reduced N and P resorption proficiencies in both leaves and culms. The response of P resorption proficiency to litter manipulation was more sensitive than N resorption proficiency: P resorption proficiency in leaves and culms decreased strongly with increasing litter amount under both ambient and enriched N conditions. In contrast, N resorption proficiency was not significantly affected by litter addition, except for leaf N resorption proficiency under ambient N conditions. Furthermore, although litter addition caused a general decrease of leaf and culm nutrient resorption efficiencies under both ambient and enriched N conditions, litter addition effects on nutrient resorption efficiency were much weaker than the effects of litter addition on nutrient resorption proficiency. Taken together, our results show that leaf and non‐leaf organs of L. chinensis respond consistently to altered soil N availability. Our study confirms the strong effects of N addition on plant nutrient resorption processes and the potential role of aboveground litter, the most important natural fertiliser in terrestrial ecosystems, in influencing plant internal nutrient cycling.  相似文献   

15.
The vegetation N:P ratio is thought to be a diagnostic indicator of the nature of nutrient limitation in wetland vegetation. It should therefore be closely linked to other indicators of nutrient acquisition and conservation, such as nitrogen stable isotope fractionation (δ15N), nutrient resorption efficiency (RE) and resorption proficiency (RP). However, the interrelationships among these traits and the N:P ratio remain unclear. We compared tissue nutrient concentrations, N:P ratios, δ15N fractionation, RE, and RP along an N to P limitation gradient in an oligotrophic wetland valley in the South Island of New Zealand. Within the valley, the soil TN:TP ratio increased from 1.3 to 18.0 in three discrete wetlands along the gradient. In pooled data from all vegetation communities within each site, the mass-based vegetation N:P ratio correlated significantly (r2 = 0.35, P < 0.01) to soil TN:TP ratios and increased from 10.2 ± 2.7 to 13.5 ± 3.6 along the N to P limitation gradient. This was accompanied by an increase in tissue δ15N enrichment from 2.05 ± 1.12‰ to 6.27 ± 1.70‰, consistent with more open N cycling and lower N demand. These trends held within all vegetation types, but were particularly strong in a Typha orientalis (C-strategist) community (soil TN:TP vs vegetation N:P correlation r2 = 0.78, P < 0.001; δ15N increase from 1.81 ± 0.44‰ to 7.73 ± 1.79‰). The individual N and P concentrations and retention patterns were more species-specific and less responsive to the nutrient limitation gradient. T. orientalis maximised N resorption as N limitation increased (increasing NRE from 50.8 ± 3.3% to 71.7 ± 7.4%; reducing NRP from 0.70 ± 0.12% to 0.36 ± 0.13%) but did not alter PRE or PRP, whereas the S-strategist Schoenus pauciflorus maximised P resorption as P limitation increased (increasing PRE from 48.0 ± 5.6% to 73.5 ± 10.1%; reducing PRP from 0.053 ± 0.008% to 0.015 ± 0.004%) but did not alter NRE or NRP. These results show that the tissue N:P ratio and its associated δ15N enrichment are highly responsive indicators of the relative availability of N and P at the site and community level. However, they are not indicators of species-specific physiological requirements for N and P, or of likely responses of individual species to N or P enrichment, which are better interpreted from indicators such as RE and RP that describe nutrient retention behaviour.  相似文献   

16.
大气氮沉降增加能改变土壤养分可利用性,影响滨海湿地植物的养分再吸收。目前研究多关注氮沉降量对养分再吸收过程的影响,且研究集中于叶片,鲜有研究区分不同形态氮素对植物不同器官养分再吸收过程的影响。通过两年的野外控制实验,研究硝态氮、铵态氮添加对黄河三角洲滨海湿地芦苇(Phragmites australis)叶、茎养分再吸收效率的影响。结果表明:两类氮添加均显著增加叶、茎的氮、磷含量(P<0.001),增幅达32.74%—43.22%(氮)、30.91%—36.51%(磷)。叶片氮的再吸收效率为54.14%—67.66%,茎氮的再吸收效率为50.60%—62.85%。叶片磷的再吸收效率为56.80%—70.38%,茎磷的再吸收效率为77.43%—84.95%。两类氮添加均显著降低氮、磷的再吸收效率(P<0.001),但两类氮添加处理下的养分再吸收效率无差异。叶、茎氮的再吸收效率无差异,但茎磷的再吸收效率明显高于叶(P<0.01)。总之,氮添加降低芦苇对氮、磷的再吸收效率,且茎对养分的再吸收也具有不可忽略的贡献。  相似文献   

17.
Many arctic lakes are oligotrophic systems where phototrophic growth is controlled by nutrient supply. Recent anthropogenic nutrient loading is associated with biological and/or physico-chemical change in several lakes across the arctic. Shifts in nutrient limitation (nitrogen (N), phosphorus (P), or N + P) and associated effects on the growth and composition of algal communities are commonly reported. The Kangerlussuaq region of south-west Greenland forms a major lake district which is considered to receive little direct anthropogenic disturbance. However, long-range transport of pollutant N is now reaching Greenland, and it was hypothesised that a precipitation gradient from the inland ice sheet margin to the coast might also deliver increased N deposition. In situ nutrient bioassays were deployed in three lakes across the region: ice sheet margin, inland (close to Kangerlussuaq) and the coast (near Sisimiut), to determine nutrient limitation of lakes and investigate any effects of nutrients on periphyton growth and community composition. Nutrient limitation differed amongst lakes: N limitation (ice sheet margin), N and P limitation (inland) and N + P co-limitation (coast). Factors including variation in N supply, ice phenology, seasonal algal succession, community structure and physical limnology are explored as mechanisms to explain differences amongst lakes. Nutrient limitation of arctic lakes and associated ecological impacts are highly variable, even across small geographic areas. In this highly sensitive region, future environmental change scenarios carry a strong risk of significantly altering nutrient limitation; in turn, potentially severely impacting lake structure and function.  相似文献   

18.
养分再吸收是植物养分利用的重要策略,体现了植物对养分留存、利用和适应环境的能力。为研究亚热带不同生活型(常绿与落叶)阔叶树养分含量与养分再吸收的关系,以江西阳际峰国家级自然保护区内30种阔叶树为研究对象,测定成熟和衰老叶片氮(N)和磷(P)含量,分析常绿和落叶树种叶片N和P含量及其再吸收效率差异,揭示阔叶树种叶片养分再吸收效率对植物生活型的响应。结果表明: 落叶树种成熟叶片N和P含量显著高于常绿树种,衰老叶片P含量显著高于常绿树种,而两者衰老叶N含量差异不显著;30种阔叶林木叶片的氮再吸收效率(NRE)与磷再吸收效率(PRE)平均值分别为49.6%和50.9%,两种生活型树种间叶片的NRE与PRE无显著差异;落叶和常绿树种叶片的NRE均与衰老叶N含量呈显著负相关,PRE则与衰老叶P含量呈显著负相关,且这种关系在不同生活型之间差异不显著;总物种的PRE-NRE异速生长指数为1.18。江西阳际峰30种不同生活型阔叶树的养分再吸收效率会影响衰老叶片的养分状况,且相较于N,植物偏好从衰老叶中再吸收P。  相似文献   

19.
温带森林演替加剧了氮限制:来自叶片化学计量和养分重吸收的证据 森林生产力和碳汇功能在很大程度上取决于土壤氮和磷的有效性。然而,迄今为止,养分限制随森林演替的时间变化仍存在争议。叶片化学计量和养分重吸收是预测植物生长养分限制的重要指标。基于此,本研究测定了温带森林4个演替阶段所有木本植物叶片和凋落叶中氮和磷的含量,并分析了演替过程中非生物因子和生物因子如何影响叶片化学计量和养分重吸收。研究结果表明,在个体尺度上,叶片氮磷含量在演替末期显著增加,而叶片氮磷比无显著变化;氮的重吸收效率随演替显著增加,然而磷的重吸收效率先增加后减少;氮重吸收效率与磷重吸收效率的比值仅在演替末期显著增加。此外,植物氮素循环对土壤养分的响应比磷素循环更弱。在群落尺度上,叶片氮磷含量随森林演替呈现先降低后升高的趋势,主要受香农-维纳多样性指数和物种丰富度的影响;叶片氮磷比随演替而显著变化,主要由胸径的群落加权平均值决定;氮的重吸收效率增加,主要受物种丰富度和胸径的影响,而磷的重吸收效率相对稳定。因此,氮重吸收效率与磷重吸收效率的比值显著增加,表明随着温带森林演替,氮限制加剧。这些结果可能反映了较高生物多样性群落中物种间对有限资源的激烈竞争,强调了生物因子在驱动森林生态系统养分循环中的重要性,为中国温带和北方森林可持续经营的施肥管理提供了参考。  相似文献   

20.
黄土高原子午岭林区典型树种叶片N、P再吸收特征   总被引:1,自引:0,他引:1  
为揭示黄土高原子午岭林区不同演替阶段和植被类型主要树种养分再吸收特征,研究选取4种次生植被树种(白桦、山杨、辽东栎和油松)和2种人工植被树种(刺槐和侧柏),测定其成熟叶、凋落叶和林下土壤碳(C)、氮(N)、磷(P)含量,研究了叶片N、P再吸收率及其与养分指标的关系。结果表明:(1)不同树种叶片养分和林下土壤养分含量存在显著差异,土壤C、N含量和C∶N∶P计量比均表现为演替后期林地(辽东栎和油松)演替前期林地(山杨和白桦)人工林(侧柏和刺槐);(2)不同树种叶片N、P再吸收率分别为17.18%—43.34%和27.13%—58.12%,均表现为演替后期林地人工林演替前期林地,且P的再吸收率总体高于N的再吸收率;(3)不同树种叶片N、P再吸收率与叶片养分指标的关系强于土壤,与养分计量比的相关性大于养分含量的相关性。说明子午岭典型植被会通过叶片N、P再吸收来适应养分限制环境,尤其是演替后期植被再吸收能力更强,研究可为黄土高原植被恢复提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号