首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Abstract Nutrient resorption from senescing leaves enables plants to conserve and reuse nutrients. As such, it could be expected that plant species adapted to infertile soils have a higher nutrient resorption efficiency (percentage reduction of nutrients between green and senesced leaves) and/or higher nutrient resorption proficiency (absolute reduction of nutrients in senesced leaves) than those adapted to fertile soils. Our objective was to compare nitrogen (N) and phosphorous (P) resorption of two congener grasses that successfully occupy uplands of relatively low fertility (Stipa gynerioides) or lowlands of relatively high fertility (Stipa brachychaeta) in natural grasslands of central Argentina. The two Stipa species did not differ in N and P resorption efficiency, but S. gynerioides had a higher N and P resorption proficiency than S. brachychaeta. As a consequence, leaf‐level N and P use efficiency were higher in the species adapted to low fertility conditions than in the species adapted to high fertility conditions. The higher nutrient resorption proficiency of S. gynerioides was also associated with relatively low leaf‐litter decomposition and nutrient release rates found in a previous study.  相似文献   

2.
Nutrient limitation in Brazilian savanna (known as cerrado) presumably causes trees to maximize nutrient resorption from senesced leaves to reduce their dependence on nutrient availability. To assess patterns between nutrient resorption and soil fertility, we measured community-level nitrogen (N), phosphorus (P), and potassium (K) concentrations in mature and senesced leaves and soil fertility in the upper 50 cm soil layer in structurally diverse cerrado ecosystems in the Cuiaba Basin (CB) and Pantanal (PAN) of Mato Grosso, Brazil. Foliar nutrient concentration data were used to estimate resorption efficiency and proficiency, and correlation was used to determine whether resorption efficiency and proficiency varied across soil fertility gradients. We found that N and P resorption proficiency (NRP and PRP, respectively) and P resorption efficiency (PRE) increased significantly as total soil N (NRP) and extractable P (PRP and PRE) declined. In contrast, K resorption efficiency (KRE) declined as soil sand content and bulk density increased, which was likely due to a reduction in soil water-holding capacity. Leaf N/P ratios indicate potential N limitation and/or N + P co-limitation for ecosystems in the PAN and P limitation and/or N + P co-limitation for ecosystems in the CB, while trends in leaf N/K ratios indicate possible K or K + P co-limitation for the CB only. Our results illustrate that cerrado forests and woodlands have highly variable nutrient resorption capacities that vary predictably across soil fertility or textural gradients and indicate that cerrado communities have flexible nutrient resorption that can reduce their dependence on soil nutrient availability.  相似文献   

3.
Nutrient resorption from senesced leaves as a nutrient conservation strategy is important for plants to adapt to nutrient deficiency, particularly in alpine and arid environment. However, the leaf nutrient resorption patterns of different functional plants across environmental gradient remain unclear. In this study, we conducted a transect survey of 12 communities to address foliar nitrogen (N) and phosphorus (P) resorption strategies of four functional groups along an eastward increasing precipitation gradient in northern Tibetan Changtang Plateau. Soil nutrient availability, leaf nutrient concentration, and N:P ratio in green leaves ([N:P]g) were linearly correlated with precipitation. Nitrogen resorption efficiency decreased, whereas phosphorus resorption efficiency except for sedge increased with increasing precipitation, indicating a greater nutrient conservation in nutrient‐poor environment. The surveyed alpine plants except for legume had obviously higher N and P resorption efficiencies than the world mean levels. Legumes had higher N concentrations in green and senesced leaves, but lowest resorption efficiency than nonlegumes. Sedge species had much lower P concentration in senesced leaves but highest P resorption efficiency, suggesting highly competitive P conservation. Leaf nutrient resorption efficiencies of N and P were largely controlled by soil and plant nutrient, and indirectly regulated by precipitation. Nutrient resorption efficiencies were more determined by soil nutrient availability, while resorption proficiencies were more controlled by leaf nutrient and N:P of green leaves. Overall, our results suggest strong internal nutrient cycling through foliar nutrient resorption in the alpine nutrient‐poor ecosystems on the Plateau. The patterns of soil nutrient availability and resorption also imply a transit from more N limitation in the west to a more P limitation in the east Changtang. Our findings offer insights into understanding nutrient conservation strategy in the precipitation and its derived soil nutrient availability gradient.  相似文献   

4.
Leaf strategies and soil N across a regional humidity gradient in Patagonia   总被引:1,自引:0,他引:1  
We analyzed leaf traits related to carbon-fixation, nutrient conservation strategies, and decomposability and their relationships with potential N-mineralization and microbial N in soil in 19 species of 5 dominant life forms growing in 40 sites across a regional humidity gradient in northern Patagonia. We hypothesized that (1) the shifting of species and life forms across the humidity gradient is related to a shifting in traits of green and senesced leaves with some overlapping among life forms, and (2) leaf traits associated with litter decomposition are related to the potential dynamics of soil-N across the humidity gradient. LMA in green leaves and P-resorption efficiency decreased with humidity while concentrations of lignin and total phenolics in green and senesced leaves and P concentration in senesced leaves increased with humidity. Soil C and N concentrations were positively correlated to humidity. Increasing soil N concentration was related to increasing rates of absolute (per unit soil mass) potential net N-mineralization and microbial-N flush. Relative (per unit N mass) potential net N-mineralization and microbial-N flush decreased with soil N and were inversely correlated to lignin concentration and C/N ratio in senesced leaves. We found overlapping in N concentration and C/N ratio in green and senesced leaves, P concentration in green leaves, and N resorption among species and life forms across the humidity gradient. We concluded that (1) leaf traits related to carbon fixation and the decomposition pathway significantly varied with humidity and were not overlapped between plant life forms from dry and humid habitats, (2) the largest overlapping among species and plant life forms across the gradient occurred in those leaf traits related to N conservation in the plant, and (3) life forms from humid habitats produce more recalcitrant litter that induce lower rates of relative potential net N mineralization (per unit N) than those of dry habitats.  相似文献   

5.
6.
Nutrient availability varies across climatic gradients, yet intraspecific adaptation across such gradients in plant traits related to internal cycling and nutrient resorption remains poorly understood. We examined nutrient resorption among six Scots pine (Pinus sylvestris L.) populations of wide-ranging origin grown under common-garden conditions in Poland. These results were compared with mass-based needle N and P for 195 Scots pine stands throughout the species' European range. At the common site, green needle N (r(2)=0.81, P=0.01) and P (r(2)=0.58, P=0.08) concentration increased with increasing latitude of population origin. Resorption efficiency (the proportion of the leaf nutrient pool resorbed during senescence) of N and P of Scots pine populations increased with the latitude of seed origin (r(2) > or = 0.67, P < or = 0.05). The greater resorption efficiency of more northerly populations led to lower concentrations of N and P in senescent leaves (higher resorption proficiency) than populations originating from low latitudes. The direction of change in these traits indicates potential adaptation of populations from northern, colder habitats to more efficient internal nutrient cycling. For native Scots pine stands, results showed greater nutrient conservation in situ in cold-adapted northern populations, via extended needle longevity (from 2 to 3 years at 50 degrees N to 7 years at 70 degrees N), and greater resorption efficiency and proficiency, with their greater resorption efficiency and proficiency having genotypic roots demonstrated in the common-garden experiment. However, for native Scots pine stands, green needle N decreased with increasing latitude (r(2)=0.83, P=0.0002), and P was stable other than decreasing above 62 degrees N. Hence, the genotypic tendency towards maintenance of higher nutrient concentrations in green foliage and effective nutrient resorption, demonstrated by northern populations in the common garden, did not entirely compensate for presumed nutrient availability limitations along the in situ latitudinal temperature gradient.  相似文献   

7.
《新西兰生态学杂志》2011,34(3):306-310
Leaf lifespan varies widely among plant species, from a few weeks to >40 years. This variation is associated with differences in plant form and function, and the distribution of species along resource gradients. Longer leaf lifespans increase the residence time of nutrients and are one mechanism by which plants conserve nutrients; consequently, leaf lifespan should increase within species with declining soil nutrient availability. The Franz Josef chronosequence is a series of post-glacial surfaces along which soil fertility declines strongly with increasing soil age. We used this fertility gradient to test whether leaf lifespans of six common indigenous woody species increased as soil nutrient availability declined. Leaf lifespan varied from 12.4 months in Coprosma foetidissima (Rubiaceae) to 47.1 months in Pseudopanax crassifolius (Araliaceae). These leaf lifespans sample 12% of the full range of leaf lifespans reported globally and occupy a relatively conservative portion of global leaf trait space. Contrary to our expectations, leaf lifespan of two species (Pseudopanax crassifolius and Prumnopitys ferruginea) decreased by 44?61% with increasing soil age and there were no other relationships between soil age and leaf lifespan. Across all species, leaf nutrient residence times increased by 85% for N and 90% for P with declining soil fertility, but this was caused by increased nutrient resorption efficiency rather than by increased leaf longevity. These data demonstrate that plants increase leaf nutrient resorption efficiency rather than leaf lifespan as a within-species response to long-term declines in soil fertility.  相似文献   

8.
Aims Conversion of secondary forests to pure larch plantations is a common management practice driven by the increasing demand for timber production in Northeast China, resulting in a reduction in soil nutrient availability after a certain number of years following conversion. Nutrient resorption prior to leaf senescence was related to soil fertility, an important nutrient conservation strategy for plants, being especially significant in nutrient-poor habitats. However, the seasonal dynamics of leaf nutrients and nutrient resorption in response to secondary forest conversion to larch plantations is not well understood.Methods A comparative experiment between larch plantations (Larix spp.) and adjacent secondary forests (dominant tree species including Quercus mongolica, Acer mono, Juglans mandshurica and Fraxinus rhynchophylla) was conducted. We examined the variations in leaf nutrient (macronutrients: N, P, K, Ca and Mg; micronutrients: Cu and Zn) concentrations of these tree species during the growing season from May to October in 2013. Nutrient resorption efficiency and proficiency were compared between Larix spp. and the broadleaved species in the secondary forests.Important findings Results show that the seasonal variation of nutrient concentrations in leaves generally exhibited two trends, one was a downward trend for N, P, K, Cu and Zn, and another was an upward trend for Ca and Mg. The variations in foliar nutrient concentrations were mainly controlled by the developmental stage of leaves rather than by tree species. Resorption of the observed seven elements varied among the five tree species during leaf senescence. Nutrient resorption efficiency varied 6–75% of N, P, K, Mg, Cu and Zn, while Ca was not retranslocated in the senescing leaves of all species, and Mg was not retranslocated in Larix spp. Generally, Larix spp. tended to be more efficient and proficient (higher than 6–30% and 2–271% of nutrient resorption efficiency and resorption proficiency, respectively) in resorbing nutrients than the broadleaved species in the secondary forests, indicating that larch plantations had higher leaf nutrient resorption and thus nutrient use efficiency. Compared with Larix spp., more nutrients would remain in the leaf litter of the secondary forests, indicating an advantage of secondary forests in sustaining soil fertility. In contrast, the larch plantation would reuse internal nutrients rather than lose nutrients with litter fall and thus produce a positive feedback to soil nutrient availability. In summary, our results suggest that conversion from secondary forests to pure larch plantations would alter nutrient cycling through a plant-mediated pathway.  相似文献   

9.
The influence of environmental gradients on the foliar nutrient economy of forests has been well documented; however, we have little understanding of what drives variability among individuals within a single forest stand, especially tropical forests. We evaluated inter‐ and intra‐specific variation in nutrient resorption, foliar nutrient concentrations and physical leaf traits of nine canopy tree species within a 1‐ha secondary tropical rain forest in northeastern Costa Rica. Both nitrogen (N) and phosphorus (P) resorption efficiency (RE) and proficiency of the nine tree species varied significantly among species, but not within. Both N and P RE were significantly negatively related to leaf specific strength. Green leaf N and P concentrations were strongly negatively related to leaf mass per area, and senesced leaf nutrient concentrations were significantly positively related to green leaf nutrient concentrations. This study reveals a strong influence of physical leaf traits on foliar nutrient and resorption traits of co‐occurring species in a secondary wet tropical forest stand.  相似文献   

10.
Prior field studies have shown that populations of forest herbs on relatively nutrient poor soils have higher vesicular-arbuscular mycorrhizal (VAM) infection intensity than plants on rich soils. However, the growth responses and ability to take up P against the soil nutrient gradient are often not linearly related to infection intensity. To determine if intraspecific differences among populations of the common VAM fungus Glomus occultum could differentially affect growth and nutrient uptake, Geranium robertianum seedlings were inoculated with Glomus occultum isolated from four forest types along a gradient of soil fertility, and grown in a greenhouse at P levels typical of the extremes of that gradient. Plants given inoculum from relatively infertile forest sites generally produced greater root, shoot, and total mass than plants given inoculum from fertile sites or uninoculated plants, especially at the low P supply rate. Total P uptake and both P and N uptake efficiency were also highest in plants given inocula from low fertility sites. These results indicate that local adaptation and intraspecific variations in the ability of VAM fungi to induce growth and nutrient uptake effects on host plants may be as important as interspecific differences among VAM fungus species.  相似文献   

11.
为了探讨荒漠草原植物养分回收特征对长期增温和氮素添加的响应以及自然降水变异对其的调控作用,该研究依托实施12年的模拟增温和氮素添加实验平台,在相对多雨的2016年(超过长期均值52%)和相对少雨的2017年(低于长期均值16%),以常见C_3植物银灰旋花(Convolvulus ammannii)和C_4植物木地肤(Kochia prostrata)为研究对象,测定分析绿叶和枯叶的氮磷含量及回收效率。结果表明:(1)在相对多雨年(2016年),增温使2种植物的绿叶氮、枯叶氮、绿叶磷、枯叶磷含量分别增加了14.32%、25.45%、17.97%和46.47%,氮、磷回收效率分别显著减小了9.41%和16.99%(P0.05);氮素添加使2种植物的绿叶氮、枯叶氮、绿叶磷、枯叶磷含量分别提高了17.32%、25.62%、20.21%和51.41%,而氮、磷回收效率显著降低了9.33%和18.89%(P0.05);增温+氮素添加共同处理显著增加了植物氮磷含量、降低了氮磷回收效率。(2)在相对少雨年(2017年),增温、氮素添加、增温+氮素添加处理对植物叶片氮磷含量、回收效率均无显著影响。(3)叶片氮磷含量在物种间差异极显著(P0.000 1),而氮磷回收效率在物种间无显著差异。(4)回归分析表明,植物叶片氮磷含量随着土壤无机氮、有效磷及含水量的增加而增加,植物氮磷回收效率则随着土壤养分和水分的可利用性的增加而降低。研究认为,荒漠草原植物养分回收对全球变化的响应受自然降水变异的调控。  相似文献   

12.
The aim of this study was to examine how shifts in soil nutrient availability along a soil chronosequence affected temperate rainforest vegetation. Soil nutrient availability, woody plant diversity, composition and structure, and woody species leaf and litter nutrient concentrations were quantified along the sequence through ecosystem progression and retrogression. In this super-wet, high leaching environment, the chronosequence exhibited rapid soil development and decline within 120,000 years. There were strong gradients of soil pH, N, P and C, and these had a profound effect on vegetation. N:Pleaf increased along the chronosequence as vegetation shifted from being N- to P- limited. However, high N:Pleaf ratios, which indicate P-limitation, were obtained on soils with both high and low soil P availability. This was because the high N-inputs from an N-fixing shrub caused vegetation to be P-limited in spite of high soil P availability. Woody species nutrient resorption increased with site age, as availability of N and P declined. Soil P declined 8-fold along the sequence and P resorption proficiency decreased from 0.07 to 0.01%, correspondingly. N resorption proficiency decreased from 1.54 to 0.26%, corresponding to shifts in mineralisable N. Woody plant species richness, vegetation cover and tree height increased through ecosystem progression and then declined. During retrogression, the forest became shorter, more open and less diverse, and there were compositional shifts towards stress-tolerant species. Conifers (of the Podocarpaceae) were the only group to increase in richness along the sequence. Conifers maintained a lower N:Pleaf than other groups, suggesting superior acquisition of P on poor soils. In conclusion, there was evidence that P limitation and retrogressive forests developed on old soils, but N limitation on very young soils was not apparent because of inputs from an abundant N-fixing shrub.Electronic Supplementary Material Supplementary material is available in the online version of this article at .  相似文献   

13.
广西猫儿山不同海拔常绿和落叶树种的营养再吸收模式   总被引:1,自引:0,他引:1  
土壤养分供给性大小是否影响植物氮和磷再吸收效率仍存在争议。调查了广西猫儿山不同海拔常绿和落叶树种成熟和衰老叶片的氮和磷含量,探讨营养再吸收是否受到叶片习性和海拔的影响。所有树种氮和磷再吸收效率的平均值分别为56.5%和52.1%。常绿树种比落叶树种有显著较高的氮再吸收效率(P0.001)和磷再吸收效率(P0.01),这与前者有较低的衰老叶片氮和磷含量密切相关。随着海拔的上升,氮再吸收效率显著下降(P0.01),磷再吸收效率显著提高(P0.05)。氮再吸收效率与土壤氮:磷比(r=-0.41,P0.05)和成熟叶片氮:磷比(r=-0.37,P0.05)负相关,磷再吸收效率与土壤氮:磷比(r=0.44,P0.05)和成熟叶片氮:磷比(r=0.47,P0.01)正相关,表明了树种对低海拔氮限制的适应逐渐转变为对高海拔磷限制的适应。此外,氮再吸收效率与年均温正相关(r=0.43,P0.05)而磷再吸收效率与年均温负相关(r=-0.45,P0.01),这表明气温也是调节树木营养再吸收格局的重要影响因素。不同海拔树种氮和磷再吸收模式的差异可能是引起广西猫儿山常绿树种沿海拔形成双峰分布的原因之一。  相似文献   

14.
Resorption efficiency (RE) and proficiency, foliar nutrient concentrations, and relative soil nutrient availability were determined during 3 consecutive years in tree species growing under contrasting topographic positions (i.e., top vs. bottom and north vs. south aspect) in a tropical dry forest in Mexico. The sites differed in soil nutrient levels, soil water content, and potential radiation interception. Leaf mass per area (g m–2) increased during the growing season in all species. Soil P availability and mean foliar P concentrations were generally higher at the bottom than at the top site during the 3 years of the study. Leaf N concentrations ranged from 45.4 to 31.4 mg g–1. Leaf P varied from 2.3 to 1.8 mg g–1. Mean N and P RE varied among species, occasionally between top and bottom sites, and were higher in the dry than in the wet years of study. Senesced-leaf nutrient concentrations (i.e., a measure of resorption proficiency) varied from 13.7 to 31.2 mg g–1 (N) and 0.4 to 3.3 mg g–1 (P) among the different species and were generally indicative of incomplete nutrient resorption. Phosphorus concentrations in senesced leaves were higher at the bottom than at the top site and decreased from the wettest to the the driest year. Soil N and P availability were significantly different in the north- and south-facing slopes, but neither nutrient concentrations of mature and senesced leaves nor RE differed between aspects. Our results suggest that water more than soil nutrient availability controls RE in the Chamela dry forest, while resorption proficiency may be interactively controlled by both nutrient and water availability.  相似文献   

15.
It is generally predicted that grazers enhance soil microbial activity and nutrient availability and promote soil bacteria in fertile ecosystems, but retard microbial activity and nutrient availability and promote soil fungi in infertile ecosystems. We tested these predictions in tundra by comparing grazing effects between fertile and infertile habitats and with/without nutrient manipulation by fertilization. Grazing decreased soil N content in fertile and in fertilized plots in infertile habitats while increased it in infertile tundra habitats, which directly opposed our prediction. We conclude that this unpredicted outcome probably resulted from nutrient transport between habitats. Also contrasting with our hypothesis, grazing increased fungal rather than bacterial abundance in fertilized plots at both habitats. In support with predictions, grazing increased microbial activity for soil C decomposition in fertile but decreased it in infertile habitats. The effect of grazing on soil C decomposition followed same patterns as grazer‐induced changes in the activity of β‐glucosidase, which is an extracellular enzyme synthesized by soil microorganisms for degrading soil cellulose. We suggest that the theoretical framework on grazer–soil interactions should incorporate microbial potential for extracellular enzyme production (‘microscale’ grazer effects) and nutrient translocation by grazers among habitats (‘macroscale’ grazer effects) as important mechanisms by which grazers influence soil processes and nutrient availability for plants at contrasting levels of habitat fertility.  相似文献   

16.
Resorption of nitrogen (N) from senescing leaves is an important conservation mechanism that allows plants to use the same N repeatedly. Seasonal variations in leaf nitrogen of mature green and senescing leaves and N resorption in Salix gordejevii Chang, a sandy shrub in northern China, were studied. Our objective was to compare N resorption of this Salix species that successfully occupy different habitats (shifting sandland, fixed sandland and lowland) with differences in soil N availability and moisture. Nitrogen concentrations in green and senescing leaves were higher in June and July. N resorption efficiency (percentage reduction of N between green and senescing leaves) was highest at shifting sandland, intermediate at fixed sandland, and lowest at lowland. There was a clear seasonal variation in N-resorption efficiency, with a lower value at the early growing season and a higher value during summer. N resorption efficiency was lower at the sites with higher soil N availability, suggesting that the efficiency of the resorption process is determined by the availability of the nutrient in the soil. Resorption from senescing leaves may play an important role in the nitrogen dynamics of sandy plants and reduce the nitrogen requirements for plant growth. We conclude that N resorption from senescing leaves in S. gordejevii was correlated to soil characteristics and higher N resorption on poor soils is a phenotypic adjustment by this species to maximize N-use at low availability.  相似文献   

17.
It has been proposed that fertile soils reduce the incidence of gall-forming insect (GFI) species in plant communities. This is known as the soil fertility hypothesis. The main objective of this study was to analyze the spatial distribution of GFI species under different habitats in a tropical dry forest at the Chamela-Cuixmala Biosphere Reserve, Mexico. Eight habitats which differ in soil type, topography, nutrient availability and vegetation were chosen. We found that 38 GFI species specialize on their host plant species. GFI species richness was negatively correlated with phosphorous and nitrogen availability. Using phosphorous as an indicator of soil fertility, we found low frequency and density of GFI on fertile soils. Our study indicates that soil fertility is one of the factors that negatively affects the patterns of spatial distribution of species richness, incidence and abundance of GFI at the community level in two different ways: i) indirectly affecting GFI species richness in plants adapted to infertile soils and ii) directly affecting GFI responses to plant traits of hosts found in a fertility gradient.  相似文献   

18.
重庆石灰岩地区主要木本植物叶片性状及养分再吸收特征   总被引:5,自引:0,他引:5  
刘宏伟  刘文丹  王微  柴捷  陶建平 《生态学报》2015,35(12):4071-4080
以重庆石灰岩地区15种常绿木本植物和14种落叶木本植物为研究对象,对两种生活型植物叶片衰老前后叶干物质含量(LDMC)、比叶面积(SLA)和叶片厚度(LT)进行了比较,并采用不同的计算方法(单位质量叶片养分含量、单位面积叶片养分含量)分析了两类植物叶片衰老前后养分含量及再吸收特征,最后对养分再吸收效率与其他叶性状因子之间的关系进行了相关分析。结果表明:常绿植物成熟叶LDMC、LT及衰老叶LT显著低于落叶植物,落叶植物成熟叶和衰老叶SLA均显著高于常绿植物(P0.05);基于单位质量叶片计算的养分含量,常绿植物成熟和衰老叶N、P量均低于落叶植物,而基于单位面积叶片计算的N、P含量则表现出相反的趋势;基于不同方法计算的N、P再吸收效率差异不明显,其中常绿植物基于单位质量叶片养分含量计算的N、P平均再吸收效率为39.42%、43.79%,落叶植物的为24.08%、33.59%;常绿和落叶植物N、P再吸收效率与LDMC、SLA、LT和成熟叶N、P含量之间没有显著相关性,但与衰老叶养分含量存在显著负相关(P0.05)。研究发现,无论是常绿植物还是落叶植物,衰老叶N、P含量均较低,表明石灰岩地区植物具有较高的养分再吸收程度。  相似文献   

19.
Carrera  A.L.  Sain  C.L.  Bertiller  M.B. 《Plant and Soil》2000,224(2):185-193
We analysed the main plant strategies to conserve nitrogen in the Patagonian Monte. We hypothesized that the two main plant functional groups (xerophytic evergreen shrubs and mesophytic perennial grasses) display different mechanisms of nitrogen conservation related to their structural and functional characteristics. Evergreen shrubs are deep-rooted species, which develop vegetative and reproductive growth from spring to late summer coupled with high temperatures, independently from water inputs. In contrast, perennial grasses are shallow-rooted species with high leaf turnover, which display vegetative growth from autumn to spring and reproductive activity from mid-spring to early-summer, coupled with precipitation inputs. We selected three evergreen shrubs (Larrea divaricata Cav., Atriplex lampa Gill. ex Moq. and Junellia seriphioides (Gilles and Hook.) Moldenke) and three perennial grasses (Stipa tenuis Phil., S. speciosa Trin. and Rupr. and Poa ligularis Nees ex Steud.), characteristic of undisturbed and disturbed areas of the Patagonian Monte. N concentration in expanded green and senesced leaves was estimated in December 1997 (late spring) and June 1998 (late autumn). Deep-rooted evergreen shrubs displayed small differences in N concentration between green and senesced leaves (low N-resorption efficiency), having high N concentration in senesced leaves (low N-resorption proficiency). Shallow-rooted perennial grasses, conversely, showed high N-resorption efficiency and high N-resorption proficiency (large differences in N concentration between green and senesced leaves and very low N concentration in senesced leaves, respectively). The lack of a strong mechanism of N resorption in evergreen shrubs apparently does not agree with their ability to colonize N-poor soils. These results, however, may be explained by lower N requirements in evergreen shrubs resulting from lower growth rates, lower N concentrations in green leaves, and lower leaf turnover as compared with perennial grasses. Long-lasting N-poor green tissues may, therefore, be considered an efficient mechanism to conserve N in evergreen shrubs in contrast with the mechanism of strong N resorption from transient N-rich tissues displayed by perennial grasses. Evergreen shrubs with low N-resorption efficiency provide a more N-rich substrate, with probably higher capability of N mineralization than that of perennial grasses, which may eventually enhance N fertility and N availability in N-poor soils.  相似文献   

20.
Aims (i) To explore variations in nutrient resorption of woody plants and their relationship with nutrient limitation and (ii) to identify the factors that control these variations in forests of eastern China.Methods We measured nitrogen (N) and phosphorus (P) concentrations in both green and senesced leaves of 172 woody species at 10 forest sites across eastern China. We compared the nutrient resorption proficiency (NuRP) and efficiency (NuRE) of N and P in plant leaves for different functional groups; we further investigated the latitudinal and altitudinal variations in NuRP and NuRE and the impacts of climate, soil and plant types on leaf nutrient resorptions.Important findings On average, the leaf N resorption proficiency (NRP) and P resorption proficiency (PRP) of woody plants in eastern China were 11.1mg g ? 1 and 0.65 mg g ? 1, respectively; and the corresponding N resorption efficiency (NRE) and P resorption efficiency (PRE) were 49.1% and 51.0%, respectively. Angiosperms have higher NRP (are less proficient) values and lower NRE and PRE values than gymnosperms, but there are no significant differences in NRP, PRP and PRE values between species with different leaf habits (evergreen vs. deciduous angiosperms). Trees have higher NRE and PRE than shrubs. Significant geographical patterns of plant nutrient resorption exist in forests of eastern China. In general, NRP and PRE decrease and PRP and NRE increase with increasing latitude/altitude for all woody species and for the different plant groups. Plant functional groups show more controls than environmental factors (climate and soil) on the N resorption traits (NRP and NRE), while site-related variables present more controls than plant types on PRP and PRE. NRP increases and PRP and NRE decrease significantly with increasing temperature and precipitation for the overall plants and for most groups, except that significant PRE–climate relationship holds for only evergreen angiosperms. Leaf nutrient resorption did not show consistent responses in relation to soil total N and P stoichiometry, probably because the resorption process is regulated by the relative costs of drawing nutrients from soil versus from senescing leaves. These results support our hypothesis that plants growing in P-limited habitats (low latitudes/altitudes or areas with high precipitation/temperature) should have lower PRP and higher PRE, compared with their counterparts in relatively N-limited places (high latitudes/altitudes or areas with low precipitation/temperature). Our findings can improve the understanding of variations in N and P resorption and their responses to global change, and thus facilitate to incorporate these nutrient resorption processes into future biogeochemical models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号