首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
根据真菌Δ6-脂肪酸脱氢酶基因保守的组氨酸Ⅱ区和Ⅲ区附近保守序列设计兼并引物进行RT-PCR,得到雅致枝霉(Thamnidium elegans)As3.2806Δ6-脂肪酸脱氢酶基因459bp部分cDNA序列,然后通过快速扩增cDNA末端技术(RACE)向两端延伸得到1504bp的Δ6-脂肪酸脱氢酶基因全长cDNA序列。序列分析表明有一个1377bp、编码459个氨基酸的开放阅读框TED6。推测的氨基酸序列与已知其他真菌的Δ6-脂肪酸脱氢酶基因的氨基酸序列比对,具有3个组氨酸保守区、2个疏水区及N末端细胞色素b5融合区。将此编码区序列亚克隆到酿酒酵母缺陷型菌株INVSc1的表达载体pYES2.0中,构建表达载体pYTED6,并在酿酒酵母INVSc1中异源表达。通过气相色谱(GC)和气相色谱/质谱(GC-MS)分析表明,该序列在酿酒酵母中获得表达,产生γ-亚麻酸(GLA)的含量占酵母总脂肪酸的7.5%。证明此序列编码的蛋白能将外加的亚油酸转化为γ-亚麻酸,是一个新的有功能的Δ6-脂肪酸脱氢酶基因(GenBank,AY941161)。  相似文献   

2.
少根根霉△^6-脂肪酸脱氢酶基因的克隆和表达   总被引:1,自引:0,他引:1  
根据真菌△^6-脂肪酸脱氢酶保守的氨基酸序列设计简并引物进行RT-PCR,获得一个593 bp的cDNA片段,再根据获得的部分序列设计基因特异性引物,通过cDNA末端扩增技术(RACE)获得该cDNA的3’和5’序列,从而得到全长为1482bp的cDNA序列。序列分析结果表明,该序列具有一个长度为1377bp、编码458个氨基酸的开放阅读框,所编码蛋白质的大小为52kD。与报道的△^6-脂肪酸脱氢酶一样,推测的氨基酸序列具有膜整合脂肪酸脱氢酶特异性的3个组氨酸保守区和疏水结构,在其氨基酸序列的N-末端具有类似于细胞色素b5的血红素结合区。该序列为一个新的编码△^6-脂肪酸脱氢酶的基因,为了验证其功能,把开放阅读框序列RAD6亚克隆到表达载体pYES2.0,构建重组表达载体pYRAD6,并转化到酿酒酵母的缺陷型菌株INVScl进行表达。通过气相色谱(GC)和气相色谱/质谱(GC-MS)分析表明,该序列在酿酒酵母中获得表达。所编码的酶具有△^6-脂肪酸脱氢酶活性,能将外源性的底物亚油酸转化为γ-亚麻酸,γ-亚麻酸的含量占酵母总脂肪酸的3.85%。  相似文献   

3.
通过气相色谱法(GC)快速分析8种真菌的脂肪酸成分,发现匍枝根霉(Rhizopus stolonifer)具有较高的γ-亚麻酸含量,利用RT-PCR和RACE方法获得了全长为1475bp的匍枝根霉△6-脂肪酸脱氢酶基因的cDNA序列,其中开放阅读框为1380bp,编码459个氨基酸。生物信息学分析所克隆的基因具有△6-脂肪酸脱氢酶的典型结构:N端具有细胞色素b5结构、具有3个保守的组氨酸区序列和跨膜结构;把该基因的开放阅读框序列连接到表达载体pYES2.0上,构建重组表达载体pYRnD6D,并将其转入缺陷型酿酒酵母INVScl中进行表达。GC分析表明,该序列在酵母中获得了表达,表达产物表现出△6-脂肪酸脱氢酶的酶学活性,能将底物亚油酸转化为γ-亚麻酸。新生成的γ-亚麻酸占酵母细胞总脂肪酸的12.25%。  相似文献   

4.
少根根霉Δ6-脂肪酸脱氢酶基因的克隆和表达   总被引:3,自引:0,他引:3  
根据真菌Δ6 脂肪酸脱氢酶保守的氨基酸序列设计简并引物进行RT PCR ,获得一个 5 93bp的cDNA片段 ,再根据获得的部分序列设计基因特异性引物 ,通过cDNA末端扩增技术 (RACE)获得该cDNA的 3′和 5′序列 ,从而得到全长为 14 82bp的cDNA序列。序列分析结果表明 ,该序列具有一个长度为 1377bp、编码 4 5 8个氨基酸的开放阅读框 ,所编码蛋白质的大小为 5 2kD。与报道的Δ6 脂肪酸脱氢酶一样 ,推测的氨基酸序列具有膜整合脂肪酸脱氢酶特异性的 3个组氨酸保守区和疏水结构 ,在其氨基酸序列的N 末端具有类似于细胞色素b5的血红素结合区。该序列为一个新的编码Δ6 脂肪酸脱氢酶的基因 ,为了验证其功能 ,把开放阅读框序列RAD6亚克隆到表达载体 pYES2 0 ,构建重组表达载体pYRAD6 ,并转化到酿酒酵母的缺陷型菌株INVScl进行表达。通过气相色谱(GC)和气相色谱 /质谱 (GC MS)分析表明 ,该序列在酿酒酵母中获得表达。所编码的酶具有Δ6 脂肪酸脱氢酶活性 ,能将外源性的底物亚油酸转化为γ 亚麻酸 ,γ 亚麻酸的含量占酵母总脂肪酸的 3 85 %。  相似文献   

5.
△8途径是合成多不饱和脂肪酸的替代途径,△8-脂肪酸脱氢酶是该途径的关键酶之一.根据已报道的△8-脂肪酸脱氢酶基因设计引物,分别从小眼虫藻基因组DNA和cDNA中扩增得到该基因片段,序列分析表明:结构基因长1 266 bp,编码421个氨基酸;该基因没有内含子,比已经报道的△8-脂肪酸脱氢酶基因长6bp,并且N末端序列也有所不同.利用酿酒酵母的载体pYES2.0构建△8-脂肪酸脱氢酶表达载体pYEFD,并转化到营养缺陷型酿酒酵母菌株INVSc1中,在选择培养基中筛选得到酿酒酵母转化菌株YD8.YD8在合适的培养条件下,添加外源底物二十碳二烯酸和二十碳三烯酸并诱导基因表达.脂肪酸甲酯气相色谱分析表明小眼虫藻△8-脂肪酸脱氢酶基因在酿酒酵母中获得了高效表达,将二十碳二烯酸和二十碳三烯酸分别转化成二高-γ-亚麻酸和二十碳四烯酸,其底物转化率分别达到了31.2%和46.3%.  相似文献   

6.
深黄被孢霉△^6—脂肪酸脱氢酶基因的克隆及序列分析   总被引:14,自引:0,他引:14  
γ-亚麻酸(GLA,C18:3△^6,9,12)是由△^6-脂肪酸脱氢酶以亚油酸(LA,C18:2△^9,12)为底物,在C6位脱氢形成的。由于在人体中,γ-亚麻酸是花生四烯酸、前列腺素类和白三烯类等生理活性物质的前体物,而深黄被孢霉是目前用于微生物发酵生产γ-亚麻酸的主要菌株。本文根据脂肪酸脱氢酶的保守区设计引物,利用反转录聚合酶链式反应从丝状真菌深黄被孢霉中克隆了编码△^6-脂肪酸脱氢酶的cDNA,全长为1374个核苷酸,编码457个氨基酸,但与其他位点的脂肪酸脱氢酶不同的是,△^6-脂肪酸脱氢酶在其序列的N端特有细胞色素b5(Cytb5)区。这是国际上对深黄被孢霉△^6-脂肪酸脱氢酶基因的首次报道。  相似文献   

7.
从高山被孢霉ATCC16266总DNA中扩增出大小为1374bp和1947bp的两条特异片段,序列分析表明后者在细胞色素b5和组氨酸Ⅰ之间含有一大小为573bp的内含子和两条分别为197bp和828bp的外显子,推导的氨基酸二级结构分析表明,该基因有两个长的跨膜疏水区和3个组氨酸保守区,分别根据D6D内含子及组氨酸Ⅱ区,Ⅲ区的序列设计引物,制备不同的探针与高山被孢霉的基因组杂交,证明在其基因组中确实存在两个△^6-脂肪酸脱氢酶基因,其中一个基因含有内含子,把不含有内含子的核基因MAGL6-1克隆到的酿酒酵母表达载体pYES2.0中,转化到酿酒酵母INVSc1中,对筛选得到的酵母工程菌株进行脂肪酸GC分析,检测到了γ-亚麻酸,说明克隆的D6D基因MAGL6-1能在酿酒酵母中进行功能性表达。  相似文献   

8.
Δ8途径是合成多不饱和脂肪酸的替代途径,Δ8-脂肪酸脱氢酶是该途径的关键酶之一。根据已报道的Δ8-脂肪酸脱氢酶基因设计引物,分别从小眼虫藻基因组DNA和cDNA中扩增得到该基因片段,序列分析表明:结构基因长1 266 bp,编码421个氨基酸;该基因没有内含子,比已经报道的Δ8-脂肪酸脱氢酶基因长6 bp,并且N末端序列也有所不同。利用酿酒酵母的载体pYES2.0构建Δ8-脂肪酸脱氢酶表达载体pYEFD,并转化到营养缺陷型酿酒酵母菌株INVSc1中,在选择培养基中筛选得到酿酒酵母转化菌株YD8。YD8在合适的培养条件下,添加外源底物二十碳二烯酸和二十碳三烯酸并诱导基因表达。脂肪酸甲酯气相色谱分析表明小眼虫藻Δ8-脂肪酸脱氢酶基因在酿酒酵母中获得了高效表达,将二十碳二烯酸和二十碳三烯酸分别转化成二高-γ-亚麻酸和二十碳四烯酸,其底物转化率分别达到了31.2%和46.3%。  相似文献   

9.
克隆并在酵母中表达两个不同N段序列长度的匍枝根霉△6-脂肪酸脱氢酶重组子,其中长序列的重组子LYRnD6D是从匍枝根霉中克隆的△6-脂肪酸脱氢酶基因,编码459个氨基酸,N端序列为MSTLDRQSIFTIKELESISQRIHDG-DEEAMKFIII;短序列重组子SYRnD6D是预测的匍枝根霉△6-脂肪酸脱氢酶基因的ORF序列,N端序列为MKFIIIDKKVY,编码430个氨基酸;两个重组子均具有△6-脂肪酸脱氢酶保守的组氨酸序列和HPGG序列,长序列的N端比短序列长29个氨基酸残基(MSTLDRQSIFTIKELESISQRIHDGDE-EA)。两个重组子在缺陷型酵母中均得到了的表达,产生了γ-亚麻酸。利用酶的相对活力比较两个重组子在同一温度下的稳定性,长序列重组子的酶在15℃下反应4h后相对活力仍有74%,而短序列酶的相对活力只有43%,所以长序列重组子酶在低温下比短序列酶稳定性高,是因为长序列多出的氨基酸序列增加了酶的稳定性。  相似文献   

10.
△5-脂肪酸脱氢酶是合成花生四烯酸的关键酶.根据已报道的△5-脂肪酸脱氢酶基因设计引物,分别从三角褐指藻基因组DNA和总cDNA中扩增得到1520 bp和1410 bp的特异片段,序列分析结果显示,结构基因中含有一个大小为110 bp的内含子,这是国内外首次报道.将△5-脂肪酸脱氢酶基因亚克隆到大肠杆菌和酿酒酵母的穿梭表达载体pYES2.0中,在大肠杆菌中筛选到含有目的片段的重组质粒pYPTD5,用电击转化的方法将重组质粒pYPTD5转化到营养缺陷型酿酒酵母菌株INVSc1中,在缺省培养基中筛选得到酿酒酵母转化菌株YPTD5,在合适的培养条件下,添加外源底物双高γ-亚麻酸和诱导物半乳糖,培养并收集菌体.通过脂肪酸甲酯气相色谱分析,表明三角褐指藻△5-脂肪酸脱氢酶基因在酿酒酵母中获得了高效的表达,将双高γ-亚麻酸转化为花生四烯酸,其底物转化率达到了45.9%.  相似文献   

11.
Δ^6-脂肪酸脱氢酶是一种膜整合蛋白,也是多不饱和脂肪酸合成途径中的限速酶。在前期工作中,通过RT-PCR和RACE技术,从少根根霉NK300037中克隆到一个潜在编码Δ^6-脂肪酸脱氢酶的序列,序列和功能分析结果表明该序列具有一个长度为1377bp、编码由458个氨基酸组成、大小为52kD的新的Δ^6-肪酸脱氢酶基因。把少根根霉Δ^6-脂肪酸脱氢酶基因(RAD6)亚克隆到表达载体pPIC3.5K,构建重组表达载体pPICRAD6,并转化到毕赤酵母菌株GS115进行表达。提取酵母细胞总脂肪酸和进行甲酯化,经气相色谱和气相色谱-质谱连用分析表明,目的基因的编码产物能将C16:1、C17:1、C18:1、亚油酸和α-亚麻酸在△6和7位间特异性脱氢而引入一个新的双键,生成更高不饱和的脂肪酸,该催化反应没有链长特异性,只有键位特异性。此外,按Kozak序列特点,改变目的基因转译起始密码子周边序列结构,并把改变后序列导入毕赤酵母GS115中进行功能表达分析,结果表明在毕赤酵母中这种改变同样能提高目的基因的表达水平。综合所有分析结果表明,巴斯德毕赤酵母更适合用来综合分析Δ^6-脂肪酸脱氢酶基因的功能。  相似文献   

12.
从高山被孢霉ATCC1 62 66总DNA中扩增出大小为 1 374bp和 1 947bp的两条特异片段 ,序列分析表明后者在细胞色素b5和组氨酸Ⅰ之间含有一大小为 5 73bp的内含子和两条分别为 1 97bp和 82 8bp的外显子。推导的氨基酸二级结构分析表明 ,该基因有两个长的跨膜疏水区和 3个组氨酸保守区。分别根据D6D内含子及组氨酸Ⅱ区、Ⅲ区的序列设计引物 ,制备不同的探针与高山被孢霉的基因组杂交 ,证明在其基因组中确实存在两个Δ6 脂肪酸脱氢酶基因 ,其中一个基因含有内含子。把不含有内含子的核基因MAGL6 1克隆到的酿酒酵母表达载体pYES2 0中 ,转化到酿酒酵母INVSc1中。对筛选得到的酵母工程菌株进行脂肪酸GC分析 ,检测到了γ 亚麻酸 ,说明克隆的D6D基因MAGL6 1能在酿酒酵母中进行功能性表达。  相似文献   

13.
从高山被孢霉ATCC16266总DNA中扩增出大小为1374bp和1947bp的两条特异片段,序列分析表明后者在细胞色素b5和组氨酸Ⅰ之间含有一大小为573bp的内含子和两条分别为197bp和828bp的外显子。推导的氨基酸二级结构分析表明,该基因有两个长的跨膜疏水区和3个组氨酸保守区。分别根据D6D内含子及组氨酸Ⅱ区、Ⅲ区的序列设计引物,制备不同的探针与高山被孢霉的基因组杂交,证明在其基因组中确实存在两个Δ6脂肪酸脱氢酶基因,其中一个基因含有内含子。把不含有内含子的核基因MAGL61克隆到的酿酒酵母表达载体pYES20中,转化到酿酒酵母INVSc1中。对筛选得到的酵母工程菌株进行脂肪酸GC分析,检测到了γ亚麻酸,说明克隆的D6D基因MAGL61能在酿酒酵母中进行功能性表达。  相似文献   

14.
γ-亚麻酸(GLA)作为人体必需的不饱和脂肪酸,具有重要的营养和药用价值。△^6-脂肪酸脱氢酶是γ-亚麻酸合成途径中的关键酶。为了在毕赤酵母中建立一种新的合成γ-亚麻酸的表达体系,将高山被孢霉△^6-脂肪酸脱氢酶基因与胞内表达载体pPIC3.5K连接,SacⅠ线性化后电击法转化毕赤酵母SMD1168,获得的转化子经PCR鉴定目的基因已整合到毕赤酵母的基因组中。用甲醇诱导表达,通过脂肪酸气相色谱和气相色谱-质谱(GC-MS)联用分析表明高山被孢霉△^6-脂肪酸脱氢酶基因在毕赤酵母中获得表达,γ-亚麻酸含量占总脂肪酸的16.26%。  相似文献   

15.
△6-脂肪酸脱氢酶是一种膜整合蛋白,也是多不饱和脂肪酸合成途径中的限速酶.在前期工作中,通过RT-PCR和RACE技术,从少根根霉NK300037中克隆到一个潜在编码△6-脂肪酸脱氢酶的序列,序列和功能分析结果表明该序列具有一个长度为1377bp、编码由458个氨基酸组成、大小为52kD的新的△6-脂肪酸脱氢酶基因.把少根根霉△6-脂肪酸脱氢酶基因(RAD6)亚克隆到表达载体pPIC3.5K,构建重组表达载体pPICRAD6,并转化到毕赤酵母菌株GS115进行表达.提取酵母细胞总脂肪酸和进行甲酯化,经气相色谱和气相色谱-质谱连用分析表明,目的基因的编码产物能将C16:1、C17:1、C18:1、亚油酸和α-亚麻酸在△6和7位间特异性脱氢而引入一个新的双键,生成更高不饱和的脂肪酸,该催化反应没有链长特异性,只有键位特异性.此外,按Kozak序列特点,改变目的基因转译起始密码子周边序列结构,并把改变后序列导入毕赤酵母GS115中进行功能表达分析,结果表明在毕赤酵母中这种改变同样能提高目的基因的表达水平.综合所有分析结果表明,巴斯德毕赤酵母更适合用来综合分析△6-脂肪酸脱氢酶基因的功能.  相似文献   

16.
γ-亚麻酸(GLA,C18:3△6,9,12)是由△6-脂肪酸脱氢酶以亚油酸(LA,C18:2△9,12)为底物,在C6位脱氢形成的。由于在人体中,γ-亚麻酸是花生四烯酸、前列腺素类和白三烯类等生理活性物质的前体物,而深黄被孢霉是目前用于微生物发酵生产γ-亚麻酸的主要菌株。本文根据脂肪酸脱氢酶的保守区设计引物,利用反转录聚合酶链式反应从丝状真菌深黄被孢霉中克隆了编码△6-脂肪酸脱氢酶的cDNA,全长为1374个核苷酸,编码457 个氨基酸,但与其他位点的脂肪酸脱氢酶不同的是, △6-脂肪酸脱氢酶在其序列的 N 端特有细胞色素 b5(Cytb5)区。这是国际上对深黄被孢霉△6-脂肪酸脱氢酶基因的首次报道。  相似文献   

17.
将少根根霉中△^6-脂肪酸脱氢酶基因(RAD6)的起始密码子周边序列作适当的修改,并把修改后获得的片段(RAD6-1)亚克隆到表达载体pYES2.0,构建重组表达载体pYRAD6-1。经测序验证,把pYRAD6-1转化到酿酒酵母的缺陷型菌株INVScl进行表达分析,同时以空载体pYES2.0和出发序列所构建的pYRAD6作为对照。通过气相色谱(GC)和气相色谱,质谱(GC-MS)分析表明,在pYRAD6和pYRAD6-1转化的酿酒酵母中生成γ-亚麻酸,而pYES2.0中没有检测到。其中,pYRAD6-1转化的酿酒酵母γ-亚麻酸表达量占细胞总脂肪酸含量的5.23%,而对照pYRAD6转化的酿酒酵母中表达量只占2.64%。  相似文献   

18.
旨在探讨三疣梭子蟹高度不饱和脂肪酸自身合成能力,探究三疣梭子蟹HUFA生物合成途径。采用cDNA末端快速扩增(RACE)技术克隆得到三疣梭子蟹△6去饱和酶cDNA全长序列,并利用荧光定量PCR技术进行肝胰腺、肠道、鳃等8种组织的表达分析。通过分析序列表明,基因序列全长2875bp,其中5'非编码区长465bp,3'非编码区长1078bp,开放阅读框(ORF)长1332bp,编码443个氨基酸;并且编码的蛋白序列具有典型的去饱和酶特性:3个组氨酸保守区,一个N端细胞色素b5结构域以及一个血红素结合的HPGG结构域。荧光定量PCR结果显示,Δ6脂肪酸去饱和酶基因在三疣梭子蟹多个组织中均有表达,在肝胰腺中表达量最高,其次是肠道和肌肉,心脏中表达最少。结果表明三疣梭子蟹具有△6去饱和酶。  相似文献   

19.
添加α-亚麻酸作为底物,经半乳糖诱导,在含有少根根霉△6-脂肪酸脱氢酶基因的酿酒酵母总脂肪酸中检测到十八碳四烯酸的生成;同时添加亚油酸和α-亚麻酸时,检测到γ-亚麻酸和十八碳四烯酸生成,而且十八碳四烯酸的含量是γ-亚麻酸含量的3.81倍,表明在酿酒酵母中少根根霉△6-脂肪酸脱氢酶不仅能催化α-亚麻酸生成十八碳四烯酸,而且偏好n-3途径中的底物α-亚麻酸.同样,在改变少根根霉△6-脂肪酸脱氢酶基因的转译起始密码子周边序列后所构建的转基因酵母中,也得到类似的结果,而且各种目的脂肪酸的含量均有明显提高.  相似文献   

20.
Δ^6-脂肪酸脱氢酶对n-6和n-3途径中脂肪酸底物的偏好   总被引:4,自引:0,他引:4  
添加α-亚麻酸作为底物,经半乳糖诱导,在含有少根根霉Δ^6-脂肪酸脱氢酶基因的酿酒酵母总脂肪酸中检测到十八碳四烯酸的生成;同时添加亚油酸和α-亚麻酸时,检测到γ-亚麻酸和十八碳四烯酸生成,而且十八碳四烯酸的含量是γ-亚麻酸含量的3.81倍,表明在酿酒酵母中少根根霉Δ^6-脂肪酸脱氢酶不仅能催化α-亚麻酸生成十八碳四烯酸,而且偏好n-3途径中的底物α-亚麻酸。同样,在改变少根根霉Δ^6-脂肪酸脱氢酶基因的转译起始密码子周边序列后所构建的转基因酵母,也得到类似的结果,而且各种目的脂肪酸的含量均有明显提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号