首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
2.
Selective proteolysis of regulatory proteins mediated by the ubiquitin pathway is an important mechanism for controlling many biological events. The SCF (Skpl-Cullin-F-box protein) class of E3 ubiquitin ligases controls the ubiquitination of a wide variety of substrates, thereby mediating their degradation by the 26S proteasome. The Arabidopsis genome contains 21 genes encoding Skp1-like proteins that are named as ASKs (Arabidopsis Skp1-like). So far, only the ASK1 gene has been characterized genetically, and is known to be required for male meiosis, flower development, and auxin response. The ASK2 gene is most similar to ASK1 in terms of both the amino acid sequence and expression pattern. To compare ASK2 with ASK1 functionally in male meiosis, different transgenic lines over-expressing ASK1 and ASK2 were tested for their ability to complement the male meiosis defect of the ask1-1 mutant. The genomic ASK1 rescued the ask1-1 mutant defects. The 35S::ASK1 transgene restored male fertility to the ask1-1 mutant, although the percentages of normal pollen grains and tetrads were reduced. 35S::ASK2 lines in the ask1-1 background exhibited partial fertility with even fewer normal pollen grains and tetrads than those of the 35S::ASK1 lines. Detailed analysis of chromosome behavior during male meiosis demonstrated that 35S::ASK1 and 35S::ASK2 lines had different fractions of pollen mother cells undergoing normal meiosis. Our results suggest that ASK2 partially substitutes for ASK1 if expressed at higher than normal levels.  相似文献   

3.
4.
Normal flower development likely requires both specific and general regulators. We have isolated an Arabidopsis mutant ask1-1 (for -Arabidopsis skp1-like1-1), which exhibits defects in both vegetative and reproductive development. In the ask1-1mutant, rosette leaf growth is reduced, resulting in smaller than normal rosette leaves, and internodes in the floral stem are shorter than normal. Examination of cell sizes in these organs indicates that cell expansion is normal in the mutant, but cell number is reduced. In the mutant, the numbers of petals and stamens are reduced, and many flowers have one or more petals with a reduced size. In addition, all mutant flowers have short stamen filaments. Furthermore, petal/stamen chimeric organs are found in many flowers. These results indicate that the ASK1 gene affects the size of vegetative and floral organs. The ask1 floral phenotype resembles somewhat that of the Arabidopsis ufo mutants in that both genes affect whorls 2 and 3. We therefore tested for possible interactions between ASK1 and UFO by analyzing the phenotypes of ufo-2 ask1-1 double mutant plants. In these plants, vegetative development is similar to that of the ask1-1 single mutant, whereas the floral defects are more severe than those in either single mutant. Interior to the first whorl, the double mutant flowers have more sepals or sepal-like organs than are found in ufo-2, and less petals than ask1-1. Our results suggest that ASK1 interacts with UFO to control floral organ identity in whorls 2 and 3. This is very intriguing because ASK1 is very similar in sequence to the yeast SKP1 protein and UFO contains an F-box, a motif known to interact with SKP1 in yeast. Although the precise mechanism of ASK1 and UFO action is unknown, our results support the hypothesis that these two proteins physically interact in vivo.  相似文献   

5.
Jasmonates (JAs) are a new class of plant hormone that regulate expression of diverse genes to mediate various plant responses. The Arabidopsis F-box protein COM is required for plant defense and male fertility in JA signal pathway. To further investigate the regulatory role of COM in male fertility, we compared the proteomics profiles of Arabidopsis wild type (WT) flowers with coi1-1 mutant male-sterile flowers using two-dimensional difference gel electrophoresis coupled with matrix-assisted laser desoption/ionization-time-of-flight mass spectrometry. Sixteen proteins with potential function in specific biological processes such as metabolism processes and defense/stress responses were differentially expressed in WT and coi1-1 mutant flowers. Verification on a phi class glutathione transferase AtGSTF9, one out of these 16 identified proteins, revealed that the expression of AtGSTF9 was severely downregulated in flowers of coi1-1 mutant compared with that of WT. Further function analyses of these genes would provide new insights into the molecular basis of COI1-regulated male fertility.  相似文献   

6.
7.
The ASK1 and ASK2 genes are essential for Arabidopsis early development   总被引:5,自引:0,他引:5  
Liu F  Ni W  Griffith ME  Huang Z  Chang C  Peng W  Ma H  Xie D 《The Plant cell》2004,16(1):5-20
The requirement of CUL1 for Arabidopsis embryogenesis suggests that Skp1-CUL1-F-box protein (SCF) complexes play important roles during embryo development. Among the 21 Arabidopsis Skp1-like genes (ASKs), it is unknown which ASK gene(s) is essential for embryo development. In this study, we demonstrate a vital role for ASK1 and ASK2 in Arabidopsis embryogenesis and postembryonic development through analysis of the ask1 ask2 double mutant. Our detailed analysis indicates that the double mutations in both ASK1 and ASK2 affect cell division and cell expansion/elongation and cause a developmental delay during embryogenesis and lethality in seedling growth. The expression patterns of ASK1 and ASK2 were examined further and found to be consistent with their roles in embryogenesis and seedling development. We propose that mutations in ASK1 and ASK2 abolish all of the ASK1- and ASK2-based SCF and non-SCF complexes, resulting in alteration of gene expression and leading to defects in growth and development.  相似文献   

8.
Brassinosteroids (BRs) are essential hormones for growth and development of plant. In rice, BRs regulate multiple developmental processes and affect many important traits such as height, leaf angle, fertility and seed filling. We identified brassinosteroid-regulated proteins in rice using proteomic approaches and performed functional analysis of some BR-regulated proteins by overexpression experiments. Using two-dimensional difference gel electrophoresis (2-D DIGE) followed by protein identification by mass spectrometry, we compared proteomic differences in the shoots and roots of the BR-insensitive mutant d61-4 and BR-deficient mutant brd1-3. We identified a large number of proteins differentially expressed in the mutants compared with wild type control. These include a glycine-rich RNA-binding protein (OsGRP1) and a DREPP2 protein, which showed reduced levels in the BR mutants. Overexpression of these two proteins partially suppressed the dwarf phenotype of the Arabidopsis BR-insensitive mutant bri1-5. In contrast to the reduced protein level, the RNA level of OsGRP1 was not significantly affected in the BR mutants or by BR treatment, suggesting BR regulation of OsGRP1 at the posttranslational level. This study identifies many BR-regulated proteins and demonstrates that OsGRP1 functions downstream in the BR signal transduction pathway to promote cell expansion.  相似文献   

9.
泛素-蛋白酶体系统(ubiquitin-proteasome system, UPS)是广泛存在于真核生物中的一种重要的蛋白降解系统。拟南芥ASK (Arabidopsis SKP1-LIKE)基因编码拟南芥E3连接酶SCF复合物的一个亚蛋白, 在拟南芥SCF复合物中起到连接器的作用。近年来, 人们对ASK基因及其同源基因进行了很多表达规律、基因功能方面的研究。本文从ASK基因表达方式、对生理发育过程的调节、与F-box相互作用及ASK基因的进化方式4个方面对这些进展进行总结。已有的研究结果表明, ASK基因在拟南芥中广泛地表达并表现出各自不同的表达水平和表达方式, 它们在很多发育和生理过程中起到重要作用。  相似文献   

10.
The Arabidopsis floral regulatory genes APETALA3 (AP3) and PISTILLATA (PI) are required for the B function according to the ABC model for floral organ identity. AP3 and PI expression are positively regulated by the LEAFY (LFY) and UNUSUAL FLORAL ORGANS (UFO) genes. UFO encodes an F-box protein, and we have shown previously that UFO genetically interacts with the ASK1 gene encoding a SKP1 homologue; both the F-box containing protein and SKP1 are subunits of ubiquitin ligases. We show here that the ask1-1 mutation can enhance the floral phenotypes of weak lfy and ap3 mutants; therefore, like UFO, ASK1 also interacts with LFY and AP3 genetically. Furthermore, our results from RNA in situ hybridizations indicate that ASK1 regulates early AP3 and PI expression. These results support the idea that UFO and ASK1 together positively regulate AP3 and PI expression. We propose that the UFO and ASK1 proteins are components of a ubiquitin ligase that mediates the proteolysis of a repressor of AP3 and PI expression. Our genetic studies also indicate that ASK1 and UFO play a role in regulating the number of floral organ primordia, and we discuss possible mechanisms for such a regulation.  相似文献   

11.
Cullin proteins, which belong to multigenic families in all eukaryotes, associate with other proteins to form ubiquitin protein ligases (E3s) that target substrates for proteolysis by the 26S proteasome. Here, we present the molecular and genetic characterization of a plant Cullin3. In contrast to fungi and animals, the genome of the model plant Arabidopsis thaliana contains two related CUL3 genes, called CUL3A and CUL3B. We found that CUL3A is ubiquitously expressed in plants and is able to interact with the ring-finger protein RBX1. A genomic search revealed the existence of at least 76 BTB-domain proteins in Arabidopsis belonging to 11 major families. Yeast two-hybrid experiments indicate that representative members of certain families are able to physically interact with both CUL3A and CUL3B, suggesting that Arabidopsis CUL3 forms E3 protein complexes with certain BTB domain proteins. In order to determine the function of CUL3A, we used a reverse genetic approach. The cul3a null mutant flowers slightly later than the control plants. Furthermore, this mutant exhibits a reduced sensitivity of the inhibition of hypocotyl growth in far-red light and miss-expresses COP1. The viability of the mutant plants suggests functional redundancy between the two CUL3 genes in Arabidopsis.  相似文献   

12.
Expression and interaction analysis of Arabidopsis Skp1-related genes   总被引:7,自引:0,他引:7  
Specific protein degradation has been observed in several aspects of development and differentiation in many organisms. One example of such proteolysis is regulated by protein polyubiquitination that is promoted by the SCF complex consisting of Skp1, cullin, and an F-box protein. We examined the activities of the Arabidopsis Skp1-related proteins (ASKs). Among 19 annotated ASK genes, we isolated 16 of the corresponding cDNAs (ASK1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19), and examined their gene products for interactions with 24 representatives of F-box proteins carrying various classes of the C-terminal domains using the yeast two-hybrid system. As a result, we found diverse binding specificities: ASK1, ASK2, ASK11 and ASK12 interacted well with COI1, FKF1, UFO-like protein, LRR-containing F-box proteins, and other F-box proteins with unknown C-terminal motifs. We also observed specific interaction between F-box proteins and ASK3, ASK9, ASK13, ASK14, ASK16 and ASK18. In contrast, we detected no interaction between any of the 12 ASK proteins and F-box proteins containing CRFA, CRFB or CRFC domains. Both histochemical and RT-PCR analysis of eight ASK genes expression revealed unique expression patterns for the respective genes.  相似文献   

13.
ORE9, an F-box protein that regulates leaf senescence in Arabidopsis   总被引:23,自引:0,他引:23       下载免费PDF全文
Woo HR  Chung KM  Park JH  Oh SA  Ahn T  Hong SH  Jang SK  Nam HG 《The Plant cell》2001,13(8):1779-1790
Senescence is a sequence of biochemical and physiological events that constitute the final stage of development. The identification of genes that alter senescence has practical value and is helpful in revealing pathways that influence senescence. However, the genetic mechanisms of senescence are largely unknown. The leaf of the oresara9 (ore9) mutant of Arabidopsis exhibits increased longevity during age-dependent natural senescence by delaying the onset of various senescence symptoms. It also displays delayed senescence symptoms during hormone-modulated senescence. Map-based cloning of ORE9 identified a 693-amino acid polypeptide containing an F-box motif and 18 leucine-rich repeats. The F-box motif of ORE9 interacts with ASK1 (Arabidopsis Skp1-like 1), a component of the plant SCF complex. These results suggest that ORE9 functions to limit leaf longevity by removing, through ubiquitin-dependent proteolysis, target proteins that are required to delay the leaf senescence program in Arabidopsis.  相似文献   

14.
15.
16.
? Successful genetic transformation of plants by Agrobacterium tumefaciens requires the import of bacterial T-DNA and virulence proteins into the plant cell that eventually form a complex (T-complex). The essential components of the T-complex include the single stranded T-DNA, bacterial virulence proteins (VirD2, VirE2, VirE3 and VirF) and associated host proteins that facilitate the transfer and integration of T-DNA. The removal of the proteins from the T-complex is likely achieved by targeted proteolysis mediated by VirF and the plant ubiquitin proteasome complex. ? We evaluated the involvement of the host SKP1/culin/F-box (SCF)-E3 ligase complex and its role in plant transformation. Gene silencing, mutant screening and gene expression studies suggested that the Arabidopsis homologs of yeast SKP1 (suppressor of kinetochore protein 1) protein, ASK1 and ASK2, are required for Agrobacterium-mediated plant transformation. ? We identified the role for SGT1b (suppressor of the G2 allele of SKP1), an accessory protein that associates with SCF-complex, in plant transformation. We also report the differential expression of many genes that encode F-box motif containing SKP1-interacting proteins (SKIP) upon Agrobacterium infection. ? We speculate that these SKIP genes could encode the plant specific F-box proteins that target the T-complex associated proteins for polyubiquitination and subsequent degradation by the 26S proteasome.  相似文献   

17.
18.
19.
Lin  Qing  Li  Jia  Smith  Robert D.  Walker  John C. 《Plant molecular biology》1998,37(3):471-481
Type one serine/threonine protein phosphatases (PP1s) have been implicated in various processes of plant growth and development. In all plant species studied, PP1s are encoded by multigene families. Previous studies in our laboratory identified five Arabidopsis thaliana PP1 genes (TOPP1, TOPP2, TOPP3, TOPP4 and TOPP5). In the present study, we report the isolation of three additional PP1 genes (TOPP6, TOPP7 and TOPP8). Southern blot analyses indicate that these three newly isolated genes are single-copy genes in A. thaliana genome. All the three genes are expressed in roots, rosettes and flowers, although their expression levels appear to be lower than those of the five previously identified TOPP genes. Six of the eight TOPP genes were mapped to different positions on four of five A. thaliana chromosomes. Sequence comparison revealed that TOPP genes belong to different subgroups of plant PP1 genes, suggesting that they may encode proteins with distinct functions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号