首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2.
Expansion into new host niches requires bacterial pathogens to adapt to changes in nutrient availability and to evade an arsenal of host defenses. Horizontal acquisition of Salmonella Pathogenicity Island (SPI)-2 permitted the expansion of Salmonella enterica serovar Typhimurium into the intracellular environment of host cells by allowing it to deliver bacterial effector proteins across the phagosome membrane. This is facilitated by the SsrA-SsrB two-component regulatory system and a type III secretion system encoded within SPI-2. SPI-2 acquisition was followed by evolution of existing regulatory DNA, creating an expanded SsrB regulon involved in intracellular fitness and host infection. Here, we identified an SsrB-regulated operon comprising an ABC transporter in Salmonella. Biochemical and structural studies determined that the periplasmic solute-binding component, STM1633/DalS, transports D-alanine and that DalS is required for intracellular survival of the bacteria and for fitness in an animal host. This work exemplifies the role of nutrient exchange at the host-pathogen interface as a critical determinant of disease outcome.  相似文献   

3.
4.
5.
6.
7.
8.
9.
Salmonella enterica subspecies 1 serovar Typhimurium encodes a type III secretion system (TTSS) within Salmonella pathogenicity island 1 (SPI-1). This TTSS injects effector proteins into host cells to trigger invasion and inflammatory responses. Effector proteins are recognized by the TTSS via signals encoded in their N termini. Specific chaperones can be involved in this process. The chaperones InvB, SicA, and SicP are encoded in SPI-1 and are required for transport of SPI-1-encoded effectors. Several key effector proteins, like SopE and SopE2, are located outside of SPI-1 but are secreted in an SPI-1-dependent manner. It has not been clear how these effector proteins are recognized by the SPI-1 TTSS. Using pull-down and coimmunoprecipitation assays, we found that SopE is copurified with InvB, the known chaperone for the SPI-1-encoded effector protein Sip/SspA. We also found that InvB is required for secretion and translocation of SopE and SopE2 and for stabilization of SopE2 in the bacterial cytosol. Our data demonstrate that effector proteins encoded within and outside of SPI-1 use the same chaperone for secretion via the SPI-1 TTSS.  相似文献   

10.
11.
Expression of genes located on Salmonella pathogenicity island 2 (SPI-2) is required for systemic infection in mice. This region encodes a type III secretion system, secreted effectors and the two-component regulatory system SsrA/B (also referred to as SpiR), as well as additional uncharacterized genes. In the present work, we demonstrate that phospho-OmpR (OmpR-P) functions as an activator at the spiC-ssrA/B locus. There are two promoters at spiR; one is upstream of ssrA and the other upstream of ssrB. Our results indicate that, in contrast to many two-component regulatory systems, regulation of the sensor kinase SsrA appears to be uncoupled and distinct from regulation of the response regulator SsrB. OmpR regulation of ssrA/B is one of only a few examples known in which a two-component response regulator directly regulates the expression of another two-component regulatory system.  相似文献   

12.
13.
14.
15.
A Caenorhabditis elegans-Salmonella enterica host-pathogen model was used to identify both novel and previously known S. enterica virulence factors (HilA, HilD, InvH, SptP, RhuM, Spi4-F, PipA, VsdA, RepC, Sb25, RfaL, GmhA, LeuO, CstA, and RecC), including several related to the type III secretion system (TTSS) encoded in Salmonella pathogenicity island 1 (SPI-1). Mutants corresponding to presumptive novel virulence-related genes exhibited diminished ability to invade epithelial cells and/or to induce polymorphonuclear leukocyte migration in a tissue culture model of mammalian enteropathogenesis. When expressed in C. elegans intestinal cells, the S. enterica TTSS-exported effector protein SptP inhibited a conserved p38 MAPK signaling pathway and suppressed the diminished pathogenicity phenotype of an S. enterica sptP mutant. These results show that C. elegans is an attractive model to study the interaction between Salmonella effector proteins and components of the innate immune response, in part because there is a remarkable overlap between Salmonella virulence factors required for human and nematode pathogenesis.  相似文献   

16.
Salmonella enterica uses two functionally distinct type III secretion systems encoded on the pathogenicity islands SPI-1 and SPI-2 to transfer effector proteins into host cells. A major function of the SPI-1 secretion system is to enable bacterial invasion of epithelial cells and the principal role of SPI-2 is to facilitate the replication of intracellular bacteria within membrane-bound Salmonella-containing vacuoles (SCVs). Studies of mutant bacteria defective for SPI-2-dependent secretion have revealed a variety of functions that can be attributed to this secretion system. These include an inhibition of various aspects of endocytic trafficking, an avoidance of NADPH oxidase-dependent killing, the induction of a delayed apoptosis-like host cell death, the control of SCV membrane dynamics, the assembly of a meshwork of F-actin around the SCV, an accumulation of cholesterol around the SCV and interference with the localization of inducible nitric oxide synthase to the SCV. Several effector proteins that are translocated across the vacuolar membrane in a SPI-2-dependent manner have now been identified. These are encoded both within and outside SPI-2. The characteristics of these effectors, and their relationship to the physiological functions listed above, are the subject of this review. The emerging picture is of a multifunctional system, whose activities are explained in part by effectors that control interactions between the SCV and intracellular membrane compartments.  相似文献   

17.
Pathogenicity islands (PAIs) are large DNA segments in the genomes of bacterial pathogens that encode virulence factors. Five PAIs have been identified in the Gram-negative bacterium Salmonella enterica. Two of these PAIs, Salmonella pathogenicity island (SPI)-1 and SPI-2, encode type III secretion systems (TTSS), which are essential virulence determinants. These 'molecular syringes' inject effectors directly into the host cell, whereupon they manipulate host cell functions. These effectors are either encoded with their respective TTSS or scattered elsewhere on the Salmonella chromosome. Importantly, SPI-1 and SPI-2 are expressed under distinct environmental conditions: SPI-1 is induced upon initial contact with the host cell, whereas SPI-2 is induced intracellularly. Here, we demonstrate that a single PAI, in this case SPI-5, can encode effectors that are induced by distinct regulatory cues and targeted to different TTSS. SPI-5 encodes the SPI-1 TTSS translocated effector, SigD/SopB. In contrast, we report that the adjacently encoded effector PipB is part of the SPI-2 regulon. PipB is translocated by the SPI-2 TTSS to the Salmonella-containing vacuole and Salmonella-induced filaments. We also show that regions of SPI-5 are not conserved in all Salmonella spp. Although sigD/sopB is present in all Salmonella spp., pipB is not found in Salmonella bongori, which also lacks a functional SPI-2 TTSS. Thus, we demonstrate a functional and regulatory cross-talk between three chromosomal PAIs, SPI-1, SPI-2 and SPI-5, which has significant implications for the evolution and role of PAIs in bacterial pathogenesis.  相似文献   

18.
19.
A Salmonella virulence protein that inhibits cellular trafficking.   总被引:23,自引:0,他引:23       下载免费PDF全文
Salmonella enterica requires a type III secretion system, designated Spi/Ssa, to survive and proliferate within macrophages. The Spi/Ssa system is encoded within the SPI-2 pathogenicity island and appears to function intracellularly. Here, we establish that the SPI-2-encoded SpiC protein is exported by the Spi/Ssa type III secretion system into the host cell cytosol where it interferes with intracellular trafficking. In J774 macrophages, wild-type Salmonella inhibited fusion of Salmonella-containing phagosomes with lysosomes and endosomes, and interfered with trafficking of vesicles devoid of the microorganism. These inhibitory activities required living Salmonella and a functional spiC gene. Purified SpiC protein inhibited endosome-endosome fusion in vitro. A Sindbis virus expressing the SpiC protein interfered with normal trafficking of the transferrin receptor in vivo. A spiC mutant was attenuated for virulence, suggesting that the ability to interfere with intracellular trafficking is essential for Salmonella pathogenesis.  相似文献   

20.
Vi capsular polysaccharide production is encoded by the viaB locus, which has a limited distribution in Salmonella enterica serovars. In S. enterica serovar Typhi, viaB is encoded on a 134-kb pathogenicity island known as SPI-7 that is located between partially duplicated tRNA(pheU) sites. Functional and bioinformatic analysis suggests that SPI-7 has a mosaic structure and may have evolved as a consequence of several independent insertion events. Analysis of viaB-associated DNA in Vi-positive S. enterica serovar Paratyphi C and S. enterica serovar Dublin isolates revealed the presence of similar SPI-7 islands. In S. enterica serovars Paratyphi C and Dublin, the SopE bacteriophage and a 15-kb fragment adjacent to the intact tRNA(pheU) site were absent. In S. enterica serovar Paratyphi C only, a region encoding a type IV pilus involved in the adherence of S. enterica serovar Typhi to host cells was missing. The remainder of the SPI-7 islands investigated exhibited over 99% DNA sequence identity in the three serovars. Of 30 other Salmonella serovars examined, 24 contained no insertions at the equivalent tRNA(pheU) site, 2 had a 3.7-kb insertion, and 4 showed sequence variation at the tRNA(pheU)-phoN junction, which was not analyzed further. Sequence analysis of the SPI-7 region from S. enterica serovar Typhi strain CT18 revealed significant synteny with clusters of genes from a variety of saprophytic bacteria and phytobacteria, including Pseudomonas aeruginosa and Xanthomonas axonopodis pv. citri. This analysis suggested that SPI-7 may be a mobile element, such as a conjugative transposon or an integrated plasmid remnant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号