首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The type III secretion system (TTSS) encoded by Salmonella Pathogenicity Island 2 (SPI-2) is required for systemic infection and intracellular replication of Salmonella enterica serovar Typhimurium. The SPI-2 TTSS is activated after internalization of bacteria by host cells, and translocates effector proteins into and across the vacuolar membrane, where they interfere with several host cell functions. Here, we investigated the function of SsaM, a small protein encoded within SPI-2. An ssaM deletion mutant had virulence and intracellular replication defects comparable to those of a SPI-2 TTSS null mutant. Although the ssaM mutant was able to secrete the effector protein SseJ in vitro, it failed to translocate SseJ into host cells, and to secrete the translocon proteins SseB, SseC and SseD in vitro. This phenotype is similar to that of a strain carrying a mutation in the SPI-2 gene spiC, whose product is reported to be an effector involved in trafficking of the Salmonella vacuole in macrophages. Both ssaM and spiC mutants were found to oversecrete the SPI-2 effector proteins SseJ and PipB in vitro. Fractionation assays and immunofluorescence microscopy were used to investigate the localization of SsaM and SpiC in macrophages. No evidence for translocation of these proteins was obtained. The similar phenotypes of the ssaM and spiC mutants suggested that they might be involved in the same function. Pull-down and co-immune precipitation experiments showed that SpiC and SsaM interact within the bacterial cell. We propose that a complex involving SsaM and SpiC distinguishes between translocators and effector proteins, and controls their ordered secretion through the SPI-2 TTSS.  相似文献   

2.
3.
4.
Salmonella enterica subspecies 1 serovar Typhimurium encodes a type III secretion system (TTSS) within Salmonella pathogenicity island 1 (SPI-1). This TTSS injects effector proteins into host cells to trigger invasion and inflammatory responses. Effector proteins are recognized by the TTSS via signals encoded in their N termini. Specific chaperones can be involved in this process. The chaperones InvB, SicA, and SicP are encoded in SPI-1 and are required for transport of SPI-1-encoded effectors. Several key effector proteins, like SopE and SopE2, are located outside of SPI-1 but are secreted in an SPI-1-dependent manner. It has not been clear how these effector proteins are recognized by the SPI-1 TTSS. Using pull-down and coimmunoprecipitation assays, we found that SopE is copurified with InvB, the known chaperone for the SPI-1-encoded effector protein Sip/SspA. We also found that InvB is required for secretion and translocation of SopE and SopE2 and for stabilization of SopE2 in the bacterial cytosol. Our data demonstrate that effector proteins encoded within and outside of SPI-1 use the same chaperone for secretion via the SPI-1 TTSS.  相似文献   

5.
Type III secretion systems (TTSS) are virulence-associated components of many gram-negative bacteria that translocate bacterial proteins directly from the bacterial cytoplasm into the host cell. The Salmonella translocated effector protein SopE has no consensus cleavable amino-terminal secretion sequence, and the mechanism leading to its secretion through the Salmonella pathogenicity island 1 (SPI-1) TTSS is still not fully understood. There is evidence from other bacteria which suggests that the TTSS signal may reside within the 5' untranslated region (UTR) of the mRNA of secreted effectors. We investigated the role of the 5' UTR in the SPI-1 TTSS-mediated secretion of SopE using promoter fusions and obtained data indicating that the mRNA sequence is not involved in the secretion process. To clarify the proteinaceous versus RNA nature of the signal, we constructed frameshift mutations in the amino-terminal region of SopE of Salmonella enterica serovar Typhimurium SL1344. Only constructs with the native amino acid sequence were secreted, highlighting the importance of the amino acid sequence versus the mRNA sequence for secretion. Additionally, we obtained frameshift mutation data suggesting that the first 15 amino acids are important for secretion of SopE independent of the presence of the chaperone binding site. These data shed light on the nature of the signal for SopE secretion and highlight the importance of the amino-terminal amino acids for correct targeting and secretion of SopE via the SPI-1-encoded TTSS during host cell invasion.  相似文献   

6.
7.
The Salmonella effector protein SopA is translocated into host cells via the SPI-1 type III secretion system (TTSS) and contributes to enteric disease. We found that the chaperone InvB binds to SopA and slightly stabilizes it in the bacterial cytosol and that it is required for its transport via the SPI-1 TTSS.  相似文献   

8.
The type III secretion systems (TTSS) encoded in Salmonella pathogenicity island-1 and -2 (SPI-1 and -2) are virulence factors required for specific phases of Salmonella infection in animal hosts. However, the host cell types targeted by the TTSS have not been determined. To investigate this, we have constructed translational fusions between the beta-lactamase reporter and a broad array of TTSS effectors secreted via SPI-1, SPI-2, or both. Secretion of the fusion protein to a host cell was determined by cleavage of a specific fluorescent substrate. In cultured cells, secretion of all six effectors could be observed. However, two to four days following i.p. infection of mice, only effectors secreted by SPI-2 were detected in spleen cells. The cells targeted were identified via staining with nine different cell surface markers followed by FACS analysis as well as by conventional cytological methods. The targeted cells include B and T lymphocytes, neutrophils, monocytes, and dendritic cells, but not mature macrophages. To further investigate replication in these various cell types, Salmonella derivatives were constructed that express a red fluorescent protein. Bacteria could be seen in each of the cell types above; however, most viable bacteria were present in neutrophils. We find that Salmonella is capable of targeting most phagocytic and non-phagocytic cells in the spleen but has a surprisingly high preference for neutrophils. These findings suggest that Salmonella specifically target splenic neutrophils presumably to attenuate their microbicidal functions, thereby promoting intracellular survival and replication in the mouse.  相似文献   

9.
Type III secretion systems (TTSS) are used by many Gram-negative pathogens for transporting effector proteins into eukaryotic host cells. Two modes of type III effector protein transport can be distinguished: transport into the surrounding medium (secretion) and cell-contact induced injection of effector proteins directly into the host cell cytosol (translocation). Two domains within the N-terminal regions of effector proteins determine the mode of transport. The amino terminal approximately 20 amino acids (N-terminal secretion signal, NSS) mediate secretion. In contrast, translocation generally requires the NSS, the adjacent approximately 100 amino acids (chaperone binding domain, CBD) and binding of the cognate chaperone to this CBD. TTSS are phylogenetically related to flagellar systems. Because both systems are expressed in Salmonella Typhimurium, correct effector protein transport involves at least two decisions: transport via the Salmonella pathogenicity island 1 (SPI-1) but not the flagellar TTSS (= specificity) and translocation into the host cell instead of secretion into the surrounding media (= transport mode). The mechanisms guiding these decisions are poorly understood. We have studied the S. Typhimurium effector protein SopE, which is specifically transported via the SPI-1 TTSS. Secretion and translocation strictly require the cognate chaperone InvB. Alanine replacement of amino acids 30-42 (and to some extent 44-54) abolished tight InvB binding, abolished translocation into the host cell and led to secretion of SopE via both, the flagellar and the SPI-1 TTSS. In clear contrast to wild-type SopE, secretion of SopE(Ala30-42) and SopE(Ala44-54) via the SPI-1 and the flagellar export system did not require InvB. These data reveal a novel function of the CBD: the CBD inhibits secretion of wild-type SopE via the flagellar and the SPI-1 TTSS in the absence of the chaperone InvB. Our data provide new insights into mechanisms ensuring specific effector protein transport by TTSS.  相似文献   

10.
Type III secretion systems (TTSS) are used by Gram-negative pathogens to translocate proteins into eukaryotic host cells. Salmonella enterica serovar Typhimurium (S. Typhimurium) has two of these specialized systems, which are encoded on separate Salmonella pathogenicity islands (SPI-1 and SPI-2) and translocate unique sets of effectors. The specific roles of these systems in Salmonella pathogenesis remain undefined, although SPI-1 is required for bacterial invasion of epithelial cells and SPI-2 for survival/replication in phagocytic cells. However, because SPI-1 TTSS mutants are invasion-incompetent, the role of this TTSS in post-invasion processes has not been investigated. In this study, we have used two distinct methods to internalize a non-invasive SPI-1 TTSS mutant (invA) into cultured epithelial cells: (i) co-internalization with wild-type S. Typhimurium (SPI-1-dependent) and (ii) complementation with the Yersinia pseudotuberculosis invasin (inv) gene (SPI-1-independent). In both cases, internalized invA mutants were unable to replicate intracellularly, indicating that SPI-1 effectors are essential for this process and cannot be complemented by wild-type bacteria in the same cell. Analysis of the biogenesis of SCVs showed that vacuoles containing mutant bacteria displayed abnormal maturation that was dependent on the mechanism of entry. Manipulation of Salmonella-containing vacuole (SCV) biogenesis by pharmacologically perturbing membrane trafficking in the host cell increased intracellular replication of wild-type but not mutant S. Typhimurium This demonstrates a previously unknown role for SPI-1 in vacuole biogenesis and intracellular survival in non-phagocytic cells.  相似文献   

11.
Salmonella typhimurium is a facultative intracellular pathogen that utilizes two type III secretion systems to deliver virulence proteins into host cells. These proteins, termed effectors, alter host cell function to allow invasion into and intracellular survival/replication within a vacuolar compartment. Here we describe SopD2, a novel member of the Salmonella translocated effector (STE) family, which share a conserved N-terminal type III secretion signal. Disruption of the sopD2 gene prolonged the survival of mice infected with a lethal dose of Salmonella typhimurium , demonstrating a significant role for this effector in pathogenesis. Expression of sopD2 was induced inside host cells and was dependent on functional ssrA/B and phoP/Q, two component regulatory systems. HA-tagged SopD2 was delivered into HeLa cells in a SPI-2-dependent manner and associated with both the Salmonella -containing vacuole and with swollen endosomes elsewhere in the cell. Subcellular fractionation confirmed that SopD2 was membrane associated in host cells, while the closely related effector SopD was localized to the cytosol. A SopD2 fusion to GFP associated with small tubular structures and large vesicles containing late endocytic markers, including Rab7. Surprisingly, expression of N-terminal amino acids 1–150 of SopD2 fused to GFP was sufficient to mediate both binding to late endosomes/lysosomes and swelling of these compartments. These findings demonstrate that the N-terminus of SopD2 is a bifunctional domain required for both type III secretion out of Salmonella as well as late endosome/lysosome targeting following translocation into host cells .  相似文献   

12.
The intracellular pathogen, Salmonella enterica, translocates type III effectors across its vacuolar membrane into host cells. Herein we describe a new Salmonella effector, PipB2, which has sequence similarity to another type III effector, PipB. In phagocytic cells, PipB2 localizes to the Salmonella-containing vacuole (SCV) and tubular extensions from the SCV, Salmonella-induced filaments (Sifs). We used the specific targeting of PipB2 in macrophages to characterize Sifs in phagocytic cells for the first time. In epithelial cells, PipB2 has a unique localization pattern, localizing to SCVs and Sifs and additionally to vesicles at the periphery of infected cells. We further show that the N-terminal 225-amino-acid residues of PipB2 are sufficient for type III translocation and association with SCVs and Sifs, but not peripheral vesicles. Subcellular fractionation demonstrated that both PipB and PipB2 associate with host cell membranes and resist extraction by high salt, high pH and to a significant extent, non-ionic detergent. Furthermore, PipB and PipB2 are enriched in detergent-resistant microdomains (DRMs), also known as lipid rafts, present on membranes of SCVs and Sifs. The enrichment of Salmonella effectors in DRMs on these intracellular membranes probably permits specific interactions with host cell molecules that are concentrated in these signalling platforms.  相似文献   

13.
Effectors translocated into the host cell by Salmonella enterica serovar Typhimurium are critical for bacterial virulence. For many effectors, the mechanisms of their interactions with host pathways are not yet understood. We have recently found an interaction between the SPI-2 effector SseL and oxysterol-binding protein (OSBP). We show here that SseL binds the N-terminus of OSBP and that S. Typhimurium infection results in redistribution of OSBP. We furthermore demonstrate that OSBP is required for efficient replication of intracellular S. Typhimurium. This suggests that S. Typhimurium hijacks OSBP-dependent pathways to benefit its intracellular life-style, possibly by SseL- and OSBP-mediated manipulation of host lipid metabolism.  相似文献   

14.
The Salmonella SpvB protein possesses ADP-ribosyl transferase activity. SpvB, acting as an intracellular toxin, covalently modifies monomeric actin, leading to loss of F-actin filaments in Salmonella-infected human macrophages. Using defined Salmonella mutants, different functional components of the SPI-2 type three secretion system (TTSS), ssaV, spiC, sseB, sseC, and sseD, were found to be required for SpvB-mediated actin depolymerization in human macrophages. Expression of SpvB protein in Salmonella was not affected by any of the SPI-2 mutants and the effects of these loci were not due to reduced numbers of intracellular bacteria. Interestingly, the major SPI-2 virulence effector, SifA, is not required for SpvB action. Further, caspase-3 activation is an additional marker of cytotoxicity in Salmonella-infected human macrophages. Caspase-3 activity depended on SpvB and SPI-2 TTSS function, but not on SifA. These human macrophage cell culture results were corroborated by virulence studies in mice. Using competitive infection of mice with mixed inocula of single and double mutants, spvBmut1 mutation did not have an effect independent of ssaJ mutation, essential for SPI-2 TTSS function. In contrast, competitive infection studies in mice confirmed that SpvB and SifA have independent virulence effects, as predicted by the macrophage studies.  相似文献   

15.
Replication of Salmonella typhimurium in host cells depends in part on the action of the Salmonella Pathogenicity Island 2 (SPI-2) type III secretion system (TTSS), which translocates bacterial effector proteins across the membrane of the Salmonella-containing vacuole (SCV). We have shown previously that one activity of the SPI-2 TTSS is the assembly of a coat of F-actin in the vicinity of bacterial microcolonies. To identify proteins involved in SPI-2 dependent actin polymerization, we tested strains carrying mutations in each of several genes whose products are proposed to be secreted through the SPI-2 TTSS, for their ability to assemble F-actin around intracellular bacteria. We found that strains carrying mutations in either sseB, sseC, sseD or spiC were deficient in actin assembly. The phenotypes of the sseB-, sseC- and sseD- mutants can be attributed to their requirement for translocation of SPI-2 effectors. SpiC was investigated further in view of its proposed role as an effector. Transient expression of a myc::SpiC fusion protein in Hela cells did not induce any significant alterations to the host cell cytoskeleton, and failed to restore actin polymerization around intracellular spiC- mutant bacteria. However, the same protein did complement the mutant phenotype when expressed from a plasmid within bacteria. Furthermore, spiC was found to be required for SPI-2 mediated secretion of SseB, SseC and SseD in vitro. An antibody against SpiC detected the protein on immunoblots from total cell lysates of S. typhimurium expressing SpiC from a plasmid, but it was not detected in secreted fractions after exposure of cells to conditions that result in secretion of other SPI-2 effector proteins. Investigation of the trafficking of SCVs containing a spiC- mutant in macrophages revealed only a low level of association with the lysosomal marker cathepsin D, similar to that of wild-type bacteria. Together, these results show that SpiC is involved in the process of SPI-2 secretion and indicate that phenotypes associated with a spiC- mutant are caused by the inability of this strain to translocate effector proteins, thus calling for further investigation into the function(s) of this protein.  相似文献   

16.
Gram-negative bacterial pathogens have developed specialized secretion systems to transfer bacterial proteins directly into host cells. These bacterial effectors are central to virulence and reprogram host cell processes to favor bacterial survival, colonization, and proliferation. Knowing the complete set of effectors encoded by a particular pathogen is the key to understanding bacterial disease. In addition, the identification of the molecular assemblies that these effectors engage once inside the host cell is critical to determining the mechanism of action of each effector. In this work we used stable isotope labeling of amino acids in cell culture (SILAC), a powerful quantitative proteomics technique, to identify the proteins secreted by the Salmonella pathogenicity island-2 type three secretion system (SPI-2 T3SS) and to characterize the host interaction partners of SPI-2 effectors. We confirmed many of the known SPI-2 effectors and were able to identify several novel substrate candidates of this secretion system. We verified previously published host protein-effector binding pairs and obtained 11 novel interactions, three of which were investigated further and confirmed by reciprocal co-immunoprecipitation. The host cell interaction partners identified here suggest that Salmonella SPI-2 effectors target, in a concerted fashion, cellular processes such as cell attachment and cell cycle control that are underappreciated in the context of infection. The technology outlined in this study is specific and sensitive and serves as a robust tool for the identification of effectors and their host targets that is readily amenable to the study of other bacterial pathogens.  相似文献   

17.
Salmonella enterica has two pathogenicity islands encoding separate type three secretion systems (T3SS). Proteins secreted through these systems facilitate invasion and survival. After entry, Salmonella reside within a membrane bound vacuole, the Salmonella containing vacuole (SCV), where translocation of a second set of effectors by the Salmonella pathogenicity island 2 (SPI-2) T3SS is initiated. SPI-2 secretion in vitro can be induced by conditions that mimic the Salmonella containing vacuole. Utilising high-throughput mass spectrometry, we mapped the surface-attached proteome of S. Typhimurium SL1344 grown in vitro under SPI-2-inducing conditions and identified 108 proteins; using secretion signal prediction software, 43% of proteins identified contained a signal sequence. Of these proteins, 13 were known secreted effector proteins including SPI-2 effector proteins SseB, SseC, SseD, SseL, PipB2 and SteC, although surprisingly five were SPI-1 proteins, SipA, SipB, SipC, SipD and SopD, while 2 proteins SteA and SlrP are secreted by both T3SSs. This is the first in vitro study to demonstrate dual secretion of SPI-1 and SPI-2 proteins by S. Typhimurium and demonstrates the potential of high-throughput LC-ESI/MS/MS sequencing for the identification of novel proteins, providing a platform for subsequent comparative proteomic analysis, which should greatly assist understanding of the pathogenesis and inherent variation between serovars of Salmonella and ultimately help towards development of novel control strategies.  相似文献   

18.
Salmonella spp. possess a conserved type III secretion system encoded within the pathogenicity island 1 (SPI1; centisome 63), which mediates translocation of effector proteins into the host cell cytosol to trigger responses such as bacterial internalization. Several translocated effector proteins are encoded in other regions of the Salmonella chromosome. It remains unclear how this complex chromosomal arrangement of genes for the type III apparatus and the effector proteins emerged and how the different effector proteins cooperate to mediate virulence. By Southern blotting, PCR, and phylogenetic analyses of highly diverse Salmonella spp., we show here that effector protein genes located in the core of SPI1 are present in all Salmonella lineages. Surprisingly, the same holds true for several effector protein genes located in distant regions of the Salmonella chromosome, namely, sopB (SPI5, centisome 20), sopD (centisome 64), and sopE2 (centisomes 40 to 42). Our data demonstrate that sopB, sopD, and sopE2, along with SPI1, were already present in the last common ancestor of all contemporary Salmonella spp. Analysis of Salmonella mutants revealed that host cell invasion is mediated by SopB, SopE2, and, in the case of Salmonella enterica serovar Typhimurium SL1344, by SopE: a sopB sopE sopE2-deficient triple mutant was incapable of inducing membrane ruffling and was >100-fold attenuated in host cell invasion. We conclude that host cell invasion emerged early during evolution by acquisition of a mosaic of genetic elements (SPI1 itself, SPI5 [sopB], and sopE2) and that the last common ancestor of all contemporary Salmonella spp. was probably already invasive.  相似文献   

19.
Burkholderia pseudomallei, the etiological agent of melioidosis, is an animal pathogen capable of inducing a highly fatal septicemia. B. pseudomallei possesses three type III secretion system (TTSS) clusters, two of which (TTSS1 and TTSS2) are homologous to the TTSS of the plant pathogen Ralstonia solanacearum, and one (TTSS3) is homologous to the Salmonella SPI-1 mammalian pathogenicity island. We have demonstrated that TTSS3 is required for the full virulence of B. pseudomallei in a hamster model of infection. We have also examined the virulence of B. pseudomallei mutants deficient in several putative TTSS3 effector molecules, and found no significant attenuation of B. pseudomallei virulence in the hamster model.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号