首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 166 毫秒
1.
Pei H  Liu J  Li J  Guo A  Zhou J  Xiang H 《Nucleic acids research》2007,35(9):3087-3099
Thermoanaerobacter tengcongensis is an anaerobic low-GC thermophilic bacterium. To further elucidate the replication initiation of chromosomal DNA at high temperature, the interaction between the replication initiator (TtDnaA) and the putative origin (Tt-oriC) in this thermophile was investigated. We found that efficient binding of TtDnaA to Tt-oriC at high temperature requires (i) at least two neighboring DnaA boxes, (ii) the specific feature of the TtDnaA Domain IV and (iii) the self-oligomerization of TtDnaA. Replacement of the TtDnaA Domain IV by the counterpart of Escherichia coli DnaA or disruption of its oligomerization by amino acid mutations (W9A/L20S) abolished the oriC-binding activity of TtDnaA at 60°C, but not at 37°C. Moreover, ATP-TtDnaA, but not ADP-TtDnaA or the oligomerization-deficient mutants was able to unwind the Tt-oriC duplex. The minimal oriC required for this duplex opening in vitro was demonstrated to consist of DnaA boxes 1–8 and an unusual AT-rich region. Interestingly, although no typical ATP-DnaA box was found in this AT-rich region, it was exclusively bound by ATP-TtDnaA and acted as the duplex-opening and replication-initiation site. Taken together, we propose that oligomerization of ATP-DnaA and simultaneously binding of several DnaA boxes and/or AT-rich region may be generally required in replication initiation at high temperature.  相似文献   

2.
Shogo Ozaki  Tsutomu Katayama   《Plasmid》2009,62(2):71-82
Escherichia coli DnaA is the initiator of chromosomal replication. Multiple ATP-DnaA molecules assemble at the oriC replication origin in a highly regulated manner, and the resultant initiation complexes promote local duplex unwinding within oriC, resulting in open complexes. DnaB helicase is loaded onto the unwound single-stranded region within oriC via interaction with the DnaA multimers. The tertiary structure of the functional domains of DnaA has been determined and several crucial residues in the initiation process, as well as their unique functions, have been identified. These include specific DNA binding, inter-DnaA interaction, specific and regulatory interactions with ATP and with the unwound single-stranded oriC DNA, and functional interaction with DnaB helicase. An overall structure of the initiation complex is also proposed. These are important for deepening our understanding of the molecular mechanisms that underlie DnaA assembly, oriC duplex unwinding, regulation of the initiation reaction, and DnaB helicase loading. In this review, we summarize recent progress on the molecular mechanisms of the functions of DnaA on oriC. In addition, some members of the AAA+ protein family related to the initiation of replication and its regulation (e.g., DnaA) are briefly discussed.  相似文献   

3.
A hybrid bacterial replication origin   总被引:1,自引:0,他引:1       下载免费PDF全文
Seitz H  Welzeck M  Messer W 《EMBO reports》2001,2(11):1003-1006
We constructed a hybrid replication origin that consists of the main part of oriC from Escherichia coli, the DnaA box region and the AT-rich region from Bacillus subtilis oriC. The AT-rich region could be unwound by E. coli DnaA protein, and the DnaB helicase was loaded into the single-stranded bubble. The results show that species specificity, i.e. which DnaA protein can do the unwinding, resides within the DnaA box region of oriC.  相似文献   

4.
H. Masai  K. Arai 《Biochimie》1996,78(11-12)
In DNA replication, DNA chains are generally initiated from small pieces of ribonucleotides attached to DNA templates. These ‘primers’ are synthesized by various enzymatic mechanisms in Escherichia coli. Studies on primer RNA synthesis on single-stranded DNA templates containing specific ‘priming signals’ revealed the presence of two distinct modes, ie immobile and mobile priming. The former includes primer RNA synthesis by primase encoded by dnaG and by RNA polymerase containing a σ70 subunit. Priming is initiated at a specific site in immobile priming. Novel immobile priming signals were identified from various plasmid replicaons, some of which function in initiation of the leading strand synthesis. The latter, on the other hand, involves a protein complex, primosome, which contains DnaB, the replicative helicase for E coli chromosomal replication. Utilizing the energy fueled by ATP hydrolysis of DnaB protein, primosomes are able to translocate on a template DNA and primase synthesizes primer RNAs at multiple sites. Two distinct primosomes. DnaA-dependent primosome supports normal chromosomal identified, which are differentially utilized for E coli chromosomal replication. Whereas DnaA-dependent primosome supports normal chromosomal replication from oriC, the PriA-dependent primosome functions in oriC-independent chromosomal replication observed in DNA-damaged cells or cells lacking RNaseH activity. In oriC-independent replication, PriA protein may recognize the D- or R-loop structure, respectively, to initiate assembly of a primosome which mediates primer RNA synthesis and replication fork progression.  相似文献   

5.
ATP-DnaA binds to multiple DnaA boxes in the Escherichia coli replication origin (oriC) and forms left-half and right-half subcomplexes that promote DNA unwinding and DnaB helicase loading. DnaA forms homo-oligomers in a head-to-tail manner via interactions between the bound ATP and Arg-285 of the adjacent protomer. DnaA boxes R1 and R4 reside at the outer edges of the DnaA-binding region and have opposite orientations. In this study, roles for the protomers bound at R1 and R4 were elucidated using chimeric DnaA molecules that had alternative DNA binding sequence specificity and chimeric oriC molecules bearing the alternative DnaA binding sequence at R1 or R4. In vitro, protomers at R1 and R4 promoted initiation regardless of whether the bound nucleotide was ADP or ATP. Arg-285 was shown to play an important role in the formation of subcomplexes that were active in oriC unwinding and DnaB loading. The results of in vivo analysis using the chimeric molecules were consistent with the in vitro data. Taken together, the data suggest a model in which DnaA subcomplexes form in symmetrically opposed orientations and in which the Arg-285 fingers face inward to mediate interactions with adjacent protomers. This mode is consistent with initiation regulation by ATP-DnaA and bidirectional loading of DnaB helicases.  相似文献   

6.
Chromosomal replication initiation requires the regulated formation of dynamic higher order complexes. Escherichia coli ATP-DnaA forms a specific multimer on oriC, resulting in DNA unwinding and DnaB helicase loading. DiaA, a DnaA-binding protein, directly stimulates the formation of ATP-DnaA multimers on oriC and ensures timely replication initiation. In this study, DnaA Phe-46 was identified as the crucial DiaA-binding site required for DiaA-stimulated ATP-DnaA assembly on oriC. Moreover, we show that DiaA stimulation requires only a subgroup of DnaA molecules binding to oriC, that DnaA Phe-46 is also important in the loading of DnaB helicase onto the oriC-DnaA complexes, and that this process also requires only a subgroup of DnaA molecules. Despite the use of only a DnaA subgroup, DiaA inhibited DnaB loading on oriC-DnaA complexes, suggesting that DiaA and DnaB bind to a common DnaA subgroup. A cellular factor can relieve the DiaA inhibition, allowing DnaB loading. Consistently, DnaA F46A caused retarded initiations in vivo in a DiaA-independent manner. It is therefore likely that DiaA dynamics are crucial in the regulated sequential progress of DnaA assembly and DnaB loading. We accordingly propose a model for dynamic structural changes of initial oriC complexes loading DiaA or DnaB helicase.In many cellular organisms, multiple proteins form dynamic complexes on the chromosomal origin for the initiation of DNA replication. In Escherichia coli, ATP-DnaA forms a specific multimeric complex on the origin (oriC), resulting in an initiation complex that is competent in the replicational initiation (13). ATP-DnaA complexes, but not ADP-DnaA complexes, unwind the DNA duplex within the oriC DNA unwinding element (DUE)2 with the aid of superhelicity of oriC DNA and heat energy, resulting in the formation of open complexes (4, 5). At the unwound region, the loading of a DnaB replicative helicase is mediated by a DnaC helicase loader, resulting in the formation of the prepriming complex (6, 7). DnaG primase then complexes with DnaB loaded on the single-stranded (ss) region, which leads to primer synthesis and the loading of DNA polymerase III holoenzyme (8). The cellular ATP-DnaA level fluctuates during the replication cycle with a peak around the time of initiation (9). At the post-initiation stage, DnaA-ATP is hydrolyzed in a manner depending on ADP-Hda protein and the DNA-loaded form of the β-clamp subunit of the polymerase III holoenzyme, yielding inactive ADP-DnaA (1013). This DnaA inactivation system is called RIDA (regulatory inactivation of DnaA). Hda consists of a short N-terminal region bearing a clamp-binding motif and a C-terminal AAA+ domain. This protein is activated by ADP binding, which allows interaction with ATP-DnaA in a DNA-loaded β-clamp-dependent manner. RIDA decreases the level of cellular ATP-DnaA in a replication-coordinated manner and represses extra initiation events (911).The timing of chromosomal replication initiation is strictly regulated and needs to be linked to the regulation of the dynamic conformational changes in the DnaA-oriC complexes, as well as to the cellular ATP-DnaA levels. DiaA is a DnaA-binding protein that stimulates ATP-DnaA assembly on oriC and thus the initiation of replication (14, 15). DiaA mutants show delayed initiation and even asynchronous initiations of multiple origins when cells are rapidly growing and multiple rounds of replication are progressing simultaneously. DiaA is a homotetramer, and each protomer has a DnaA-binding site, which allows the simultaneous binding of multiple DnaA molecules to the homotetramer and the stimulation of cooperative binding of ATP-DnaA molecules on oriC.DnaA consists of four functional domains as follows: the C-terminal domain IV has a DNA-binding helix-turn-helix structure (16) and domain III is an AAA+ domain that contains ATP-interacting motifs, homomultimer formation sites, and specific residues, termed B/H motifs, that can interact with ssDNA of the unwound DUE (1721). Domain III forms a head-to-tail homomultimer whose overall structure is altered by ATP binding. It is possible that this multimer forms a spiral shape, in which one round of the spiral contains approximately seven protomers, and the resultant central pore carries the B/H motifs on the surface (21, 22). Domain II is a flexible, unstructured linker (23, 24), and domain I has a compactly folded structure, which interacts with several proteins including domain I per se, DiaA, and DnaB helicase (14, 15, 23, 25, 26). Domain I most likely forms homodimers in a head-to-head manner, which would line up the DnaB-interacting sites within this domain, thereby promoting DnaB loading (23).E. coli oriC carries a dozen DnaA-binding sites, including the high affinity 9-mer DnaA boxes (R1 and R4 sites) and ATP-DnaA-preferential low affinity sites (ADLAS), which include the I and τ sites (20, 27). The interaction of ATP-DnaA with ADLAS is specifically important for the activation of DnaA-oriC complexes. DiaA stimulates the cooperative binding of ATP-DnaA on oriC, especially on ADLAS, resulting in the formation of open complexes (15). DnaB helicase stably complexes with DnaC, and the resulting DnaBC complexes can interact with open complexes, loading DnaB onto ssDNA of the unwound DUE. We have previously determined the tertiary structure of the DnaA domain I and found that DnaA Glu-21, within this domain, is a DnaB interaction site, specifically required for DnaB loading onto open complexes (23). The fundamental complex structure, the spatial organization of oriC-DnaA multimers complexed with DiaA, and those involved in the loading of DnaB onto oriC complexes have yet to be revealed.In this study, our first step was the determination of a crucial DiaA-binding site, Phe-46, on DnaA domain I, using NMR and mutant analyses. Next we found that this site is required for DiaA-dependent stimulation of initiation complex formation and that only a subgroup of DnaA molecules, assembled on oriC, is sufficient for DiaA stimulation. Furthermore, we revealed that DnaA Phe-46 is also important for interactions with DnaB helicase. Like the DiaA stimulation, the stimulation of DnaB loading requires only a subgroup of DnaA molecules assembled on oriC. Competition analyses suggested that DiaA and DnaB interact with a common DnaA subgroup on oriC. Only a specific DnaA subgroup in an initiation complex might expose domain I to a position available for the protein loading. Cells might contain a modulator for the inhibition of DnaB loading by DiaA. Thus we infer that DiaA can regulate the initiation of replication both positively and negatively, i.e. it promotes ATP-DnaA assembly and inhibits DnaB loading, thereby ensuring the sequential and regulated progress of initiation reactions. In addition we propose a novel model for the structure of initiation complexes that includes DiaA and suggest possible modes of interactions for DiaA and DnaB on the initial complexes.  相似文献   

7.
In Escherichia coli, the DnaB helicase forms the basis for the assembly of the DNA replication complex. The stability of DnaB at the replication fork is likely important for successful replication initiation and progression. Single-molecule experiments have significantly changed the classical model of highly stable replication machines by showing that components exchange with free molecules from the environment. However, due to technical limitations, accurate assessments of DnaB stability in the context of replication are lacking. Using in vitro fluorescence single-molecule imaging, we visualise DnaB loaded on forked DNA templates. That these helicases are highly stable at replication forks, indicated by their observed dwell time of ∼30 min. Addition of the remaining replication factors results in a single DnaB helicase integrated as part of an active replisome. In contrast to the dynamic behaviour of other replisome components, DnaB is maintained within the replisome for the entirety of the replication process. Interestingly, we observe a transient interaction of additional helicases with the replication fork. This interaction is dependent on the τ subunit of the clamp-loader complex. Collectively, our single-molecule observations solidify the role of the DnaB helicase as the stable anchor of the replisome, but also reveal its capacity for dynamic interactions.  相似文献   

8.
DNA replication in Helicobacter pylori is initiated from a unique site (oriC) on its chromosome where several proteins assemble to form a functional replisome. The assembly of H. pylori replication machinery is similar to that of the model gram negative bacterium Escherichia coli except for the absence of DnaC needed to recruit the hexameric DnaB helicase at the replisome assembly site. In the absence of an obvious DnaC homologue in H. pylori, the question arises as to whether HpDnaB helicase is loaded at the Hp-replication origin by itself or is assisted by other unidentified protein(s). A high-throughput yeast two-hybrid study has revealed two proteins of unknown functions (Hp0897 and Hp0340) that interact with HpDnaB. Here we demonstrate that Hp0897 interacts with HpDnaB helicase in vitro as well as in vivo. Furthermore, the interaction stimulates the DNA binding activity of HpDnaB and modulates its adenosine triphosphate hydrolysis and helicase activities significantly. Prior complex formation of Hp0897 and HpDnaB enhances the binding/loading of DnaB onto DNA. Hp0897, along with HpDnaB, colocalizes with replication complex at initiation but does not move with the replisome during elongation. Together, these results suggest a possible role of Hp0897 in loading of HpDnaB at oriC.  相似文献   

9.
The replication of chromosomal DNA is a fundamental event in the life cycle of every cell. The first step of replication, initiation, is controlled by multiple factors to ensure only one round of replication per cell cycle. The process of initiation has been described most thoroughly for bacteria, especially Escherichia coli, and involves many regulatory proteins that vary considerably between different species. These proteins control the activity of the two key players of initiation in bacteria: the initiator protein DnaA and the origin of chromosome replication (oriC). Factors involved in the control of the availability, activity, or oligomerization of DnaA during initiation are generally regarded as the most important and thus have been thoroughly characterized. Other aspects of the initiation process, such as origin accessibility and susceptibility to unwinding, have been less explored. However, recent findings indicate that these factors have a significant role. This review focuses on DNA topology, conformation, and methylation as important factors that regulate the initiation process in bacteria. We present a comprehensive summary of the factors involved in the modulation of DNA topology, both locally at oriC and more globally at the level of the entire chromosome. We show clearly that the conformation of oriC dynamically changes, and control of this conformation constitutes another, important factor in the regulation of bacterial replication initiation. Furthermore, the process of initiation appears to be associated with the dynamics of the entire chromosome and this association is an important but largely unexplored phenomenon.  相似文献   

10.
We have previously reported that baculovirus Bombyx mori nucleopolyhedrovirus (BmNPV) late expression factor 11 (lef-11) is associated with viral DNA replication and have demonstrated that it potentially interacts with itself; however, whether LEF-11 forms oligomers and the impact of LEF-11 oligomerization on viral function have not been substantiated. In this study, we first demonstrated that LEF-11 is capable of forming oligomers. Additionally, a series of analyses using BmNPV LEF-11 truncation mutants indicated that two distinct domains control LEF-11 oligomerization (aa 42–61 and aa 72–101). LEF-11 truncation constructs were inserted into a lef-11-knockout BmNPV bacmid, which was used to demonstrate that truncated LEF-11 lacking either oligomerization domain abrogates viral DNA replication. Finally, site-directed mutagenesis was used to determine that the conserved hydrophobic residues Y58&I59 (representing Y58 and I59), I85 and L88&L89 (representing L88 and L89) are required for LEF-11 oligomerization and viral DNA replication. Collectively, these data indicate that BmNPV LEF-11 oligomerization influences viral DNA replication.  相似文献   

11.
The essential proteins DnaB, DnaD and DnaI of Bacillus subtilis are required for initiation, but not elongation, of DNA replication, and for replication restart at stalled forks. The interactions and functions of these proteins have largely been determined in vitro based on their roles in replication restart. During replication initiation in vivo, it is not known if these proteins, and the replication initiator DnaA, associate with oriC independently of each other by virtue of their DNA binding activities, as a (sub)complex like other loader proteins, or in a particular dependent order. We used temperature‐sensitive mutants or a conditional degradation system to inactivate each protein and test for association of the other proteins with oriC in vivo. We found that there was a clear order of stable association with oriC; DnaA, DnaD, DnaB, and finally DnaI‐mediated loading of helicase. The loading of helicase via stable intermediates resembles that of eukaryotes and the established hierarchy provides several potential regulatory points. The general approach described here can be used to analyse assembly of other complexes.  相似文献   

12.
Replication initiation is a crucial step in genome duplication and homohexameric DnaB helicase plays a central role in the replication initiation process by unwinding the duplex DNA and interacting with several other proteins during the process of replication. N-terminal domain of DnaB is critical for helicase activity and for DnaG primase interactions. We present here the crystal structure of the N-terminal domain (NTD) of H. pylori DnaB (HpDnaB) helicase at 2.2 Å resolution and compare the structural differences among helicases and correlate with the functional differences. The structural details of NTD suggest that the linker region between NTD and C-terminal helicase domain plays a vital role in accurate assembly of NTD dimers. The sequence analysis of the linker regions from several helicases reveals that they should form four helix bundles. We also report the characterization of H. pylori DnaG primase and study the helicase-primase interactions, where HpDnaG primase stimulates DNA unwinding activity of HpDnaB suggesting presence of helicase-primase cohort at the replication fork. The protein-protein interaction study of C-terminal domain of primase and different deletion constructs of helicase suggests that linker is essential for proper conformation of NTD to interact strongly with HpDnaG. The surface charge distribution on the primase binding surface of NTDs of various helicases suggests that DnaB-DnaG interaction and stability of the complex is most probably charge dependent. Structure of the linker and helicase-primase interactions indicate that HpDnaB differs greatly from E.coli DnaB despite both belong to gram negative bacteria.  相似文献   

13.
A crude soluble enzyme system capable of authentic replication of a variety of oriC plasmids has been replaced by purified proteins constituting three functional classes: initiation proteins (RNA polymerase, dnaA protein, gyrase) that recognize the oriC sequence and presumably prime the leading strand of the replication fork; replication proteins (DNA polymerase III holoenzyme, single-strand binding protein, primosomal proteins) that sustain progress of the replication fork; and specificity proteins (topoisomerase I, RNAase H1 protein HU) that suppress initiation of replication at sequences other than oriC, coated with dnaA protein. Protein HU and unidentified factors in crude enzyme fractions stimulate replication at one or more stages. Replication has been separated temporally and physically into successive stages of RNA synthesis and DNA synthesis.  相似文献   

14.
In the pathogenic Mycobacterium tuberculosis H37Rv, the causative agent of tuberculosis, the genetic and biochemical mechanisms for initiation of DNA replication are largely unknown. In the present study, we have characterized the physical interactions between M. tuberculosis DnaA and DnaB using both in vivo methods, such as bacterial two-hybrid assays, and in vitro techniques, such as surface plasmon resonance (SPR) and Pull-down/Western blotting. The full-length N-terminus (1–206 residues) of DnaB was found to interact with DnaA, while the shorter N-terminal domain of DnaB (1–125 residues), which lacked the linker region, did not. Further SPR and electrophoretic mobility shift assays indicated that the N-terminus (1–206 residues) of DnaB also had a critical role in regulating DnaA complex formation at the origin of replication (OriC). This regulatory effect was not obviously observed for DNA substrates containing only two DnaA-boxes. This is the first report showing a physical interaction between DnaA and replicative helicase DnaB from M. tuberculosis and the role in subsequent DnaA-OriC interactions. The findings reported here further the understanding of the regulatory mechanisms for initiation of DNA replication in this important human pathogen.  相似文献   

15.
Although division site positioning in rod‐shaped bacteria is generally believed to occur through the combined effect of nucleoid occlusion and the Min system, several lines of evidence suggest the existence of additional mechanisms. Studies using outgrown spores of Bacillus subtilis have shown that inhibiting the early stages of DNA replication, leading up to assembly of the replisome at oriC, influences Z ring positioning. Here we examine whether Z ring formation at midcell under various conditions of DNA replication inhibition is solely the result of relief of nucleoid occlusion. We show that midcell Z rings form preferentially over unreplicated nucleoids that have a bilobed morphology (lowering DNA concentration at midcell), whereas acentral Z rings form beside a single‐lobed nucleoid. Remarkably however, when the DnaB replication initiation protein is inactivated midcell Z rings never form over bilobed nucleoids. Relieving nucleoid occlusion by deleting noc increased midcell Z ring frequency for all situations of DNA replication inhibition, however not to the same extent, with the DnaB‐inactivated strain having the lowest frequency of midcell Z rings. We propose an additional mechanism for Z ring positioning in which the division site becomes increasingly potentiated for Z ring formation as initiation of replication is progressively completed.  相似文献   

16.
PriA helicase and SSB interact physically and functionally   总被引:5,自引:2,他引:3  
PriA helicase is the major DNA replication restart initiator in Escherichia coli and acts to reload the replicative helicase DnaB back onto the chromosome at repaired replication forks and D-loops formed by recombination. We have discovered that PriA-catalysed unwinding of branched DNA substrates is stimulated specifically by contact with the single-strand DNA binding protein of E.coli, SSB. This stimulation requires binding of SSB to the initial DNA substrate and is effected via a physical interaction between PriA and the C-terminus of SSB. Stimulation of PriA by the SSB C-terminus may act to ensure that efficient PriA-catalysed reloading of DnaB occurs only onto the lagging strand template of repaired forks and D-loops. Correlation between the DNA repair and recombination defects of strains harbouring an SSB C-terminal mutation with inhibition of this SSB–PriA interaction in vitro suggests that SSB plays a critical role in facilitating PriA-directed replication restart. Taken together with previous data, these findings indicate that protein–protein interactions involving SSB may coordinate replication fork reloading from start to finish.  相似文献   

17.
Although archaeal genomes encode proteins similar to eukaryotic replication factors, the hyperthermophilic archaeon Pyrococcus abyssi replicates its circular chromosome at a high rate from a single origin (oriC) as in Bacteria. In further elucidating the mechanism of archaeal DNA replication, we have studied the elongation step of DNA replication in vivo. We have detected, in two main archaeal phyla, short RNA-primed replication intermediates whose structure and length are very similar to those of eukaryotic Okazaki fragments. Mapping of replication initiation points further showed that discontinuous DNA replication in P. abyssi starts at a well-defined site within the oriC recently identified in this hyperthermophile. Short Okazaki fragments and a high replication speed imply a very efficient turnover of Okazaki fragments in Archaea. Archaea therefore have a unique replication system showing mechanistic similarities to both Bacteria and Eukarya.  相似文献   

18.
Genome replication is a fundamental requirement for the proliferation of all cells. Throughout the domains of life, conserved DNA replication initiation proteins assemble at specific chromosomal loci termed replication origins and direct loading of replicative helicases (1). Despite decades of study on bacterial replication, the diversity of bacterial chromosome origin architecture has confounded the search for molecular mechanisms directing the initiation process. Recently a basal system for opening a bacterial chromosome origin (oriC) was proposed (2). In the model organism Bacillus subtilis, a pair of double-stranded DNA (dsDNA) binding sites (DnaA‐boxes) guide the replication initiator DnaA onto adjacent single-stranded DNA (ssDNA) binding motifs (DnaA‐trios) where the protein assembles into an oligomer that stretches DNA to promote origin unwinding. We report here that these core elements are predicted to be present in the majority of bacterial chromosome origins. Moreover, we find that the principle activities of the origin unwinding system are conserved in vitro and in vivo. The results suggest that this basal mechanism for oriC unwinding is broadly functionally conserved and therefore may represent an ancestral system to open bacterial chromosome origins.  相似文献   

19.
In Escherichia coli, ATP-DnaA multimers formed on the replication origin oriC promote duplex unwinding, which leads to helicase loading. Based on a detailed functional analysis of the oriC sequence motifs, we previously proposed that the left half of oriC forms an ATP-DnaA subcomplex competent for oriC unwinding, whereas the right half of oriC forms a distinct ATP-DnaA subcomplex that facilitates helicase loading. However, the molecular basis for the functional difference between these ATP-DnaA subcomplexes remains unclear. By analyzing a series of novel DnaA mutants, we found that structurally distinct DnaA multimers form on each half of oriC. DnaA AAA+ domain residues Arg-227 and Leu-290 are specifically required for oriC unwinding. Notably, these residues are required for the ATP-DnaA-specific structure of DnaA multimers in complex with the left half of oriC but not for that with the right half. These results support the idea that the ATP-DnaA multimers formed on oriC are not uniform and that they can adopt different conformations. Based on a structural model, we propose that Arg-227 and Leu-290 play a crucial role in inter-ATP-DnaA interaction and are a prerequisite for the formation of unwinding-competent DnaA subcomplexes on the left half of oriC. These residues are not required for the interaction with DnaB, nucleotide binding, or regulatory DnaA-ATP hydrolysis, which further supports their important role in inter-DnaA interaction. The corresponding residues are evolutionarily conserved and are required for unwinding in the initial complexes of Thermotoga maritima, an ancient hyperthermophile. Therefore, our findings suggest a novel and common mechanism for ATP-DnaA-dependent activation of initial complexes.  相似文献   

20.
Replication of mini-F plasmids requires the initiator protein RepE, which binds specifically to four iterons within the origin (ori2), as well as some host factors that are involved in chromosomal DNA replication. To understand the role of host factors and RepE in the early steps of mini-F DNA replication, we examined the effects of RepE and the Escherichia coli proteins DnaA and HU on the localized melting of ori2 DNA in a purified in vitro system. We found that the binding of RepE to an iteron causes a 50° bend at or around the site of binding. RepE and HU exhibited synergistic effects on the localized melting within the ori2 region, as detected by sensitivity to the single-strand specific P1 endonuclease. This opening of duplex DNA occurred around the 13mer of ori2, whose sequence closely resembles the set of 13mers found in the chromosomal origin oriC. Further addition of DnaA to the reaction mixture increased the efficiency of melting and appeared to extend melting to the adjacent AT-rich region. Moreover, DNA melting with appreciably higher efficiencies was observed with mutant forms of RepE that were previously shown to be hyperactive both in DNA binding in vitro and in initiator activity in vivo. We propose that the binding of RepE to four iterons of ori2 causes bending at the sites of RepE binding and, with the assistance of HU, induces a localized melting in the 13mer region. The addition of DnaA extends melting to the AT-rich region, which could then serve as the entry site for the DnaB-DnaC complex, much as has been documented for oriC- dependent replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号