首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   230篇
  免费   24篇
  国内免费   1篇
  2023年   1篇
  2021年   2篇
  2020年   3篇
  2019年   2篇
  2018年   5篇
  2017年   3篇
  2016年   12篇
  2015年   9篇
  2014年   11篇
  2013年   15篇
  2012年   17篇
  2011年   20篇
  2010年   15篇
  2009年   7篇
  2008年   11篇
  2007年   21篇
  2006年   18篇
  2005年   22篇
  2004年   11篇
  2003年   10篇
  2002年   7篇
  2001年   2篇
  1999年   2篇
  1998年   5篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1989年   2篇
  1988年   1篇
  1985年   1篇
  1984年   3篇
  1980年   3篇
  1978年   1篇
  1975年   1篇
排序方式: 共有255条查询结果,搜索用时 140 毫秒
1.
Fermentations with yeastSaccharomyces cerevisiae in semiaerobic and in static conditions with the addition of chromic chloride into the used molasses medium were analysed. It was proved that the addition of optimal amounts of CrCl3 into the basal medium enhanced the kinetics of alcohol fermentations. The addition of 200 mg/l CrCl3 into the medium stimulated both the yeast growth and the ethanol production in all experimental conditions. On the other hand, the results showed that Cr3+ ions were incorporated into yeast cells during fermentation. Under these conditions the accumulation of Cr3+ ions was performed by yeast cells during the exponential growth phase, and with enriched amounts of 30–45 (μg/gd.m. of cells. Yeast biomass enriched with chromium ions was extracted with 01 mol/l NH4OH assuming that the extracts had the glucose tolerance factor (GTF). Then the extracts were passed through a gel-filtration column in order to isolate and purify the GTF. The presence of GTF in the purified fractions was determined by measuring the absorbance at 260 nm. It is evident from the obtained results that the added purified fractions enhanced the rates of CO2 production as well as the glucose utilization during alcoholic fermentation. As expected, the enhancement of both rates depended on the amounts of extracts added to the fermentation substrate. Thus, it is evident that purified extracts contained the GTF compound, and that Cr3+ ions were bonded to the protein molecule.  相似文献   
2.
Apitol®, with cymiazole hydrochloride as the active ingredient, is used in bee-keeping against the ectoparasitic mite Varroa destructor. The preparation was evaluated for genotoxicity in cultured human peripheral blood lymphocytes. Sister chromatid exchange, the mitotic index and the cell proliferation index were determined for three experimental concentrations of Apitol® (0.001, 0.01 and 0.1 mg/ml). All concentrations significantly (p < 0.001) increased the mitotic index (MI = 7.35 ± 0.18%, 8.31 ± 0.20% and 12.33 ± 0.25%, respectively), the proliferative index (PI = 1.83 ± 0.01, 1.84 ± 0.01 and 1.88 ± 0.02, respectively) and the frequency of sister chromatid exchange (SCE = 8.19 ± 1.81, 8.78 ± 1.80 and 13.46 ± 1.88, respectively), suggesting that cymiazole hydrochloride has genotoxic potential.  相似文献   
3.
Advanced oxidation protein products (AOPP) and total thiol (SH) groups levels in plasma and CSF were studied in a cohort of 50 clinically isolated syndrome (CIS) and 57 relapsing remittent multiple sclerosis (RRMS) patients related to 20 control group (CG) patients’ values. The obtained results were compared regarding patients demographic, biochemical, clinical (EDSS) and MRI features (total T2 weighted lesions number and Gd enhancement lesion volume).  相似文献   
4.
T-type calcium channels in the dorsal root ganglia (DRG) have a central function in tuning neuronal excitability and are implicated in sensory processing including pain. Previous studies have implicated redox agents in control of T-channel activity; however, the mechanisms involved are not completely understood. Here, we recorded T-type calcium currents from acutely dissociated DRG neurons from young rats and investigated the mechanisms of CaV3.2 T-type channel modulation by S-nitrosothiols (SNOs). We found that extracellular application of S-nitrosoglutathione (GSNO) and S-nitroso-N-acetyl-penicillamine rapidly reduced T-type current amplitudes. GSNO did not affect voltage dependence of steady-state inactivation and macroscopic current kinetics of T-type channels. The effects of GSNO were abolished by pretreatment of the cells with N-ethylmaleimide, an irreversible alkylating agent, but not by pretreatment with 1H-(1,2,4) oxadiazolo (4,3-a) quinoxalin-1-one, a specific soluble guanylyl cyclase inhibitor, suggesting a potential effect of GSNO on putative extracellular thiol residues on T-type channels. Expression of wild-type CaV3.2 channels or a quadruple Cys-Ala mutant in human embryonic kidney cells revealed that Cys residues in repeats I and II on the extracellular face of the channel were required for channel inhibition by GSNO. We propose that SNO-related molecules in vivo may lead to alterations of T-type channel-dependent neuronal excitability in sensory neurons and in the central nervous system in both physiological and pathological conditions such as neuronal ischemia/hypoxia.  相似文献   
5.
Length-dependent prediction of protein intrinsic disorder   总被引:2,自引:0,他引:2  

Background  

Due to the functional importance of intrinsically disordered proteins or protein regions, prediction of intrinsic protein disorder from amino acid sequence has become an area of active research as witnessed in the 6th experiment on Critical Assessment of Techniques for Protein Structure Prediction (CASP6). Since the initial work by Romero et al. (Identifying disordered regions in proteins from amino acid sequences, IEEE Int. Conf. Neural Netw., 1997), our group has developed several predictors optimized for long disordered regions (>30 residues) with prediction accuracy exceeding 85%. However, these predictors are less successful on short disordered regions (≤30 residues). A probable cause is a length-dependent amino acid compositions and sequence properties of disordered regions.  相似文献   
6.
Members of the astacin family of metalloproteinases such as human bone morphogenetic protein 1 (BMP-1) regulate morphogenesis by processing precursors to mature functional extracellular matrix (ECM) proteins and several growth factors including TGFβ, BMP2, BMP4 and GFD8. We have recently discovered that BMP1-3 isoform of the Bmp-1 gene circulates in the human plasma and is significantly increased in patients with acute bone fracture. We hypothesized that circulating BMP1-3 might have an important role in bone repair and serve as a novel bone biomarker. When administered systemically to rats with a long bone fracture and locally to rabbits with a critical size defect of the ulna, recombinant human BMP1-3 enhanced bone healing. In contrast, neutralization of the endogenous BMP1-3 by a specific polyclonal antibody delayed the bone union. Invitro BMP1-3 increased the expression of collagen type I and osteocalcin in MC3T3-E1 osteoblast like cells, and enhanced the formation of mineralized bone nodules from bone marrow mesenchymal stem cells. We suggest that BMP1-3 is a novel systemic regulator of bone repair.  相似文献   
7.
The present paper describes environmental and seasonal‐related chemical composition variations, vasorelaxant and angiotensin I‐converting enzyme (ACE) activities of essential oil from aerial parts of Seseli pallasii Besser . The composition was analyzed by GC and GC/MS. Monoterpenes were found to be the most abundant chemical class with α ‐pinene (42.7 – 48.2%) as the most prevalent component. Seseli pallasi essential oil relaxed isolated endothelium‐intact mesenteric arteries rings precontracted with phenylephrine with IC 50 = 3.10 nl/ml (IC 50 = 2.70 μg/ml). Also, S. pallasii essential oil was found to exhibit a dose‐dependent ACE inhibitory activity with an IC 50 value of 0.33 mg/ml. In silico evaluation of ACE inhibitory activity of the individual components showed that spathulenol exhibited the best binding affinity with ACE, and the lowest binding energy of ?7.5 kcal/mol. The results suggested that combination of vasorelaxing and ACE inhibitory effects of the analyzed S. pallasii essential oil might have the potential therapeutic significance in hypertension.  相似文献   
8.
The gypsy moth is a generalist insect pest with an extremely wide host range. Adaptive responses of digestive enzymes are important for the successful utilization of plant hosts that differ in the contents and ratios of constituent nutrients and allelochemicals. In the present study, we examined the responses of α‐amylase, trypsin, and leucine aminopeptidase to two tree hosts (suitable oak, Quercus cerris, and unsuitable locust tree, Robinia pseudoacacia) in the fourth, fifth, and sixth instars of gypsy moth larvae originating from oak and locust tree forest populations (hereafter assigned as Quercus and Robinia populations, respectively). Gypsy moths from the Robinia forest had been adapting to this unsuitable host for more than 40 generations. To test for population‐level host plant specialization, we applied a two‐population × two‐host experimental design. We compared the levels, developmental patterns, and plasticities of the activities of enzymes. The locust tree diet increased enzyme activity in the fourth instar and reduced activity in advanced instars of the Quercus larvae in comparison to the oak diet. These larvae also exhibited opposite developmental trajectories on the two hosts, i.e. activity increased on the oak diet and decreased on the locust tree diet with the progress of instar. Larvae of the Robinia population were characterized by reduced plasticity of enzyme activity and its developmental trajectories. In addition, elevated trypsin activity in response to an unsuitable host was observed in all instar larvae of the Robinia population, which demonstrated that Robinia larvae had an improved digestive performance than did Quercus larvae.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号