首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Directional orientation of pomacentrid larvae to ambient reef sound   总被引:1,自引:1,他引:0  
Tolimieri  N.  Haine  O.  Jeffs  A.  McCauley  R.  Montgomery  J. 《Coral reefs (Online)》2004,23(2):184-191
The mechanisms by which reef fish larvae locate settlement habitat at the end of their pelagic phase are unclear. We used an in situ binary choice chamber and an artificial source of reef sound to determine whether pomacentrid larvae can use ambient sound to locate reefs. Larvae were caught in light traps and then placed in a submerged binary choice chamber with an artificial source of reef sound ~80 m from one end of the chamber. At night, larvae moved towards the sound source; during the day, larvae showed no preference. These results suggest that pomacentrid larvae can detect reef sound and are capable of directional hearing. While other studies have shown that reef fish larvae respond to reef sound, and that the adults of some species can localize underwater sound sources, the localization of underwater sound by fish larvae has not been demonstrated previously.Communicated by Ecological Editor P.F. Sale  相似文献   

2.
The development of behaviours that are relevant to larval dispersal of marine, demersal fishes is poorly understood. This review focuses on recent work that attempts to quantify the development of swimming, orientation, vertical distribution and sensory abilities. These behaviours are developed enough to influence dispersal outcomes during most of the pelagic larval stage. Larvae swim in the ocean at speeds similar to the currents found in many locations and at 3–15 body lengths per second (BL s−1), although, based on laboratory measurements, species from cold environments swim slower than those from warm environments. At least in warm-water species, larvae swim in an inertial hydrodynamic environment for most of their pelagic period. Unfed swimming endurance is >10 km from about 8–10 mm, and reaches more than 50 km before settlement in several species. Larval fishes are efficient swimmers. In most species, a large majority of larvae have orientated swimming in the ocean, but the precision of orientation does not improve with growth. Swimming direction of the larvae frequently changes ontogenetically. Vertical distribution changes ontogenetically in most species, and both ontogenetic ascents and descents are found. Development of schooling is poorly understood, but it may influence speed, orientation and vertical distribution. Sensory abilities (hearing, olfaction, vision) form early, are well developed and are able to detect cues relevant to orientation for most of the pelagic larval stage. All this indicates that the passive portion of the pelagic larval duration will be short, at least in most warm-water species, and that behaviour must be taken into account when considering dispersal, and in particular in dispersal models. Although quantitative information on the ontogeny of some behaviours is available for a relatively small number of species, more research in this field is required, especially on species from colder waters.  相似文献   

3.
Larvae of some species of damselflies respond to chemical cues of fish predators but, while larvae of many species are thought to detect prey through vision, there is little evidence that larvae respond to visual cues of predator presence. This laboratory study indicated larval Ischnura verticalis behaviours are affected by visual cues and, to a much lesser extent, chemical cues of fish; there was no significant interaction between the effects of visual and chemical cues. Responses to chemical cues of fish did not depend on whether fish were fed I. verticalis larvae versus commercial fish food. Larvae were more active in the spring than the fall when they were likely in diapause. Results suggest larvae can use vision to detect large, active predators but can also detect predators through olfaction when visual cues are unreliable.  相似文献   

4.
Locating appropriate settlement habitat is a crucial step in the life cycle of most benthic marine animals. In marine fish, this step involves the use of multiple senses, including audition, olfaction and vision. To date, most investigations of larval fish audition focus on the hearing thresholds to various frequencies of sounds without testing an ecological response to such sounds. Identifying responses to biologically relevant sounds at the development stage in which orientation is most relevant is fundamental. We tested for the existence of ontogenetic windows of reception to sounds that could act as orientation cues with a focus on vulnerability to alteration by human impacts. Here we show that larvae of a catadromous fish species (barramundi, Lates calcarifer) were attracted towards sounds from settlement habitat during a surprisingly short ontogenetic window of approximately 3 days. Yet, this auditory preference was reversed in larvae reared under end-of-century levels of elevated CO2, such that larvae are repelled from cues of settlement habitat. These future conditions also reduced the swimming speeds and heightened the anxiety levels of barramundi. Unexpectedly, an acceleration of development and onset of metamorphosis caused by elevated CO2 were not accompanied by the earlier onset of attraction towards habitat sounds. This mismatch between ontogenetic development and the timing of orientation behaviour may reduce the ability of larvae to locate habitat or lead to settlement in unsuitable habitats. The misinterpretation of key orientation cues can have implications for population replenishment, which are only exacerbated when ontogenetic development decouples from the specific behaviours required for location of settlement habitats.  相似文献   

5.
The larval phase of most species of coral reef fishes is spent away from the reef in the pelagic environment. At the time of settlement, these larvae need to locate a reef, and recent research indicates that sound emanating from reefs may act as a cue to guide them. Here, the auditory abilities of settlement-stage larvae of four species of coral reef fishes (families Pomacentridae, Lutjanidae and Serranidae) and similar-sized individuals of two pelagic species (Carangidae) were tested using an electrophysiological technique, auditory brainstem response (ABR). Five of the six species heard frequencies in the 100–2,000 Hz range, whilst one carangid species did not detect frequencies higher than 800 Hz. The audiograms of the six species were of similar shape, with best hearing at lower frequencies between 100 and 300 Hz. Strong within-species differences were found in hearing sensitivity both among the coral reef species and among the pelagic species. Larvae of the coral reef species had significantly more sensitive hearing than the larvae of the pelagic species. The results suggest that settlement-stage larval reef fishes may be able to detect reef sounds at distances of a few 100 m. If true hearing thresholds are lower than ABR estimates, as indicated in some comparisons of ABR and behavioural methods, the detection distances would be much larger.  相似文献   

6.
Ichthyologists, natural‐history artists, and tropical‐fish aquarists have described, illustrated, or photographed colour patterns in adult marine fishes for centuries, but colour patterns in marine fish larvae have largely been neglected. Yet the pelagic larval stages of many marine fishes exhibit subtle to striking, ephemeral patterns of chromatophores that warrant investigation into their potential taxonomic and phylogenetic significance. Colour patterns in larvae of over 200 species of marine teleosts, primarily from the western Caribbean, were examined from digital colour photographs, and their potential utility in elucidating evolutionary relationships at various taxonomic levels was assessed. Larvae of relatively few basal marine teleosts exhibit erythrophores, xanthophores, or iridophores (i.e. nonmelanistic chromatophores), but one or more of those types of chromatophores are visible in larvae of many basal marine neoteleosts and nearly all marine percomorphs. Whether or not the presence of nonmelanistic chromatophores in pelagic marine larvae diagnoses any major teleost taxonomic group cannot be determined based on the preliminary survey conducted, but there is a trend toward increased colour from elopomorphs to percomorphs. Within percomorphs, patterns of nonmelanistic chromatophores may help resolve or contribute evidence to existing hypotheses of relationships at multiple levels of classification. Mugilid and some beloniform larvae share a unique ontogenetic transformation of colour pattern that lends support to the hypothesis of a close relationship between them. Larvae of some tetraodontiforms and lophiiforms are strikingly similar in having the trunk enclosed in an inflated sac covered with xanthophores, a character that may help resolve the relationships of these enigmatic taxa. Colour patterns in percomorph larvae also appear to diagnose certain groups at the interfamilial, familial, intergeneric, and generic levels. Slight differences in generic colour patterns, including whether the pattern comprises xanthophores or erythrophores, often distinguish species. The homology, ontogeny, and possible functional significance of colour patterns in larvae are discussed. Considerably more investigation of larval colour patterns in marine teleosts is needed to assess fully their value in phylogenetic reconstruction. © 2013 The Authors. Zoological Journal of the Linnean Society published by John Wiley & Sons Ltd on behalf of The Linnean Society of London  相似文献   

7.
Mortality is very high during the pelagic larval phase of fishes but the factors that determine recruitment success remain unclear and hard to predict. Because of their bipartite life history, larvae of coastal species have to head back to the shore at the end of their pelagic episode, to settle. These settlement-stage larvae are known to display strong sensory and motile abilities, but most work has been focused on tropical, insular environments and on the influence of coast-related cues on orientation. In this study we quantified the in situ orientation behavior of settlement-stage larvae in a temperate region, with a continuous coast and a dominant along-shore current, and inspected both coast-dependent and independent cues. We tested six species: one Pomacentridae, Chromis chromis, and five Sparidae, Boops boops, Diplodus annularis, Oblada melanura, Spicara smaris and Spondyliosoma cantharus. Over 85% of larvae were highly capable of keeping a bearing, which is comparable to the orientation abilities of tropical species. Sun-related cues influenced the precision of bearing-keeping at individual level. Three species, out of the four tested in sufficient numbers, oriented significantly relative to the sun position. These are the first in situ observations demonstrating the use of a sun compass for orientation by wild-caught settlement-stage larvae. This mechanism has potential for large-scale orientation of fish larvae globally.  相似文献   

8.
Population connectivity for most marine species is dictated by dispersal during the pelagic larval stage. Although reef fish larvae are known to display behavioral adaptations that influence settlement site selection, little is known about the development of behavioral preferences throughout the larval phase. Whether larvae are attracted to the same sensory cues throughout their larval phase, or exhibit distinct ontogenetic shifts in sensory preference is unknown. Here, we demonstrate an ontogenetic shift in olfactory cue preferences for two species of anemonefish, a process that could aid in understanding both patterns of dispersal and settlement. Aquarium-bred na?ve Amphiprion percula and A. melanopus larvae were tested for olfactory preference of relevant reef-associated chemical cues throughout the 11-day pelagic larval stage. Age posthatching had a significant effect on the preference for olfactory cues from host anemones and live corals for both species. Preferences of olfactory cues from tropical plants of A. percula, increased by approximately ninefold between hatching and settlement, with A. percula larvae showing a fivefold increase in preference for the olfactory cue produced by the grass species. Larval age had no effect on the olfactory preference for untreated seawater over the swamp-based tree Melaleuca nervosa, which was always avoided compared with blank seawater. These results indicate that reef fish larvae are capable of utilizing olfactory cues early in the larval stage and may be predisposed to disperse away from reefs, with innate olfactory preferences drawing newly hatched larvae into the pelagic environment. Toward the end of the larval phase, larvae become attracted to the olfactory cues of appropriate habitats, which may assist them in identification of and navigation toward suitable settlement sites.  相似文献   

9.
Kevin R. Hopper 《Oikos》2001,93(3):470-476
Two of the main predators of dragonfly larvae, insectivorous fish in communities with fish and large dragonfly species in communities without fish, differ markedly in their mode of predation. In general, dragonfly species coexist successfully with one predator or the other, but larvae of the dragonfly Pachydiplax longipennis can coexist successfully with both. I examined the behavioral response of these larvae to a simulated predator attack to determine whether their response (1) differs between the two communities, and (2) is sensitive to waterborne cues about the type of predator present. I compared larvae from two different communities: fish ponds where insectivorous fish were the top predators, and fish-free ponds where large dragonflies were the top predators. Larvae from fish-free ponds actively moved away from an attack significantly more than did larvae from fish ponds, provided each was attacked in its native pond water. Larvae collected from a fish-free pond but then attacked in fish water moved less than did controls (larvae attacked in fish-free water). Likewise, larvae collected from a fish pond but attacked in fish-free water moved more than did controls (larvae attacked in fish water). Larvae attacked first in water from their native pond and then in water from the contrasting pond changed their response in the expected direction. These results indicate that escape behavior in P. longipennis differs between communities with different predator types and is sensitive to waterborne cues in a manner consistent with the mode of predation employed by each predator.  相似文献   

10.
Parasite avoidance is increasingly considered to be a potential driving factor in animal migrations. In many marine and freshwater benthic fish, migration into a pelagic environment by developing larvae is a common life history trait that could reduce exposure to parasites during a critical window of developmental susceptibility. We tested this hypothesis on congeneric fish (family Galaxiidae, genus Galaxias) belonging to a closely related species complex sampled from coastal streams in southeastern New Zealand. Migratory Galaxias have larvae that migrate to pelagic marine environments, whereas the larvae of non-migratory species rear close to adult habitats with no pelagic larval phase. Both migratory and non-migratory fish are hosts to two species of skin-penetrating trematodes that cause spinal malformations and high mortality in young fish. Using generalized linear models within an Akaike information criterion and model averaging framework, we compared infection levels between migratory and non-migratory fish while taking into account body size and several other local factors likely to influence infection levels. For one trematode species, we found a significant effect of migration: for any given body length, migratory fish harboured fewer parasites than non-migratory fish. Also, no parasites of any kind were found in juvenile migratory fish sampled in spring shortly after their return to stream habitats. Our results demonstrate that migration spares juvenile fish from the debilitating parasites to which they would be exposed in adult stream habitats. Therefore, either the historical adoption of a migratory strategy in some Galaxias was an adaptation against parasitism, or it evolved for other reasons and now provides protection from infection as a coincidental side-effect.  相似文献   

11.
Theory and some empirical evidence suggest that groups of animals orient better than isolated individuals. We present the first test of this hypothesis for pelagic marine larvae, at the stage of settlement, when orientation is critical to find a habitat. We compare the in situ behaviour of individuals and groups of 10–12 Chromis atripectoralis (reef fish of the family Pomacentridae), off Lizard Island, Great Barrier Reef. Larvae are observed by divers or with a drifting image recording device. With both methods, groups orient cardinally while isolated individuals do not display significant orientation. Groups also swim on a 15% straighter course (i.e. are better at keeping a bearing) and 7% faster than individuals. A body of observations collected in this study suggest that enhanced group orientation emerges from simple group dynamics rather than from the presence of more skilful leaders.  相似文献   

12.
In order to test the temporal stability within and the reproducibility of larval fish assemblages between years, the larval fish assemblage at Helgoland Roads, North Sea (NE Atlantic) was quantitatively sampled almost daily from January 2003 to December 2005. The survey resulted in a total of 462 samples containing 50,632 larval fish of at least 42 taxa. In winter the larval fish assemblage was mainly dominated by larvae emerging from demersal eggs. This changed gradually to larvae hatching from pelagic eggs. Larvae from pelagic eggs dominated the ichthyoplankton assemblage in summer. A remarkably stable seasonality in terms of dominance patterns with recurring, season-specific fish assemblages was observed over the 3 years, despite substantial variation in environmental conditions such as a temperature difference of almost 20°C between summer and winter. The lesser sandeel (Ammodytes marinus), was the only species which showed significant fluctuations in abundance between the years. After removal of this species from the analysis, the dominance patterns of the remaining fish species were almost identical between years.  相似文献   

13.
The behavior of reef fish larvae, equipped with a complex toolbox of sensory apparatus, has become a central issue in understanding their transport in the ocean. In this study pelagic reef fish larvae were monitored using an unmanned open-ocean tracking device, the drifting in-situ chamber (DISC), deployed sequentially in oceanic waters and in reef-born odor plumes propagating offshore with the ebb flow. A total of 83 larvae of two taxonomic groups of the families Pomacentridae and Apogonidae were observed in the two water masses around One Tree Island, southern Great Barrier Reef. The study provides the first in-situ evidence that pelagic reef fish larvae discriminate reef odor and respond by changing their swimming speed and direction. It concludes that reef fish larvae smell the presence of coral reefs from several kilometers offshore and this odor is a primary component of their navigational system and activates other directional sensory cues. The two families expressed differences in their response that could be adapted to maintain a position close to the reef. In particular, damselfish larvae embedded in the odor plume detected the location of the reef crest and swam westward and parallel to shore on both sides of the island. This study underlines the critical importance of in situ Lagrangian observations to provide unique information on larval fish behavioral decisions. From an ecological perspective the central role of olfactory signals in marine population connectivity raises concerns about the effects of pollution and acidification of oceans, which can alter chemical cues and olfactory responses.  相似文献   

14.
Auditory information is widely used throughout the animal kingdom in both terrestrial and aquatic environments. Some marine species are dependent on reefs for adult survival and reproduction, and are known to use reef noise to guide orientation towards suitable habitat. Many others that forage in food-rich inshore waters would, however, benefit from avoiding the high density of predators resident on reefs, but nothing is known about whether acoustic cues are used in this context. By analysing a sample of nearly 700,000 crustaceans, caught during experimental playbacks in light traps in the Great Barrier Reef lagoon, we demonstrate an auditory capability in a broad suite of previously neglected taxa, and provide the first evidence in any marine organisms that reef noise can act as a deterrent. In contrast to the larvae of species that require reef habitat for future success, which showed an attraction to broadcasted reef noise, taxa with a pelagic or nocturnally emergent lifestyle actively avoided it. Our results suggest that a far greater range of invertebrate taxa than previously thought can respond to acoustic cues, emphasising yet further the potential negative impact of globally increasing levels of underwater anthropogenic noise.  相似文献   

15.
Researchers have hypothesised that influxes of pelagic zooplankton to river channels after floods and high flows are necessary for strong recruitment of some native fish species, including Murray cod (Maccullochella peelii peelii) (Mitchell), in the Murray–Darling river system, Australia. This study investigated the composition of the diet and gut fullness of drifting Murray cod larvae weekly during two spawning seasons with contrasting flows, to determine if pelagic zooplankton comprised a greater proportion of the gut contents and guts were fuller in a high flow (2000) than in a low flow (2001) year. Gut fullness and yolk levels of 267 larvae were ranked, and prey identified to family level. Approximately 40 and 70% of individuals had been feeding in 2000 and 2001, respectively. Gut fullness increased with declining yolk reserves. Larvae in both the years had an almost exclusively benthic diet, irrespective of the flow conditions at the time. Substantial inundation of dry ground in 2000, albeit restricted to in-channel benches, anastomosing channels and oxbow lakes, did not lead to an influx of pelagic, floodplain-derived zooplankton subsequently exploited by Murray cod larvae. These results have the implications for the management of regulated temperate lowland rivers: high flows cannot automatically be assumed to be beneficial for the fish larvae of all species and their food resources, and caution should be exercised with the timing of flow releases.  相似文献   

16.
While ocean acidification is predicted to threaten marine biodiversity, the processes that directly impact species persistence are not well understood. For marine species, early life history stages are inherently vulnerable to predators and an innate ability to detect predators can be critical for survival. However, whether or not acidification inhibits predator detection is unknown. Here, we show that newly hatched larvae of the marine fish Amphiprion percula innately detect predators using olfactory cues and this ability is retained through to settlement. Aquarium-reared larvae, not previously exposed to predators, were able to distinguish between the olfactory cues of predatory and non-predatory species. However, when eggs and larvae were exposed to seawater simulating ocean acidification (pH 7.8 and 1000 p.p.m. CO2) settlement-stage larvae became strongly attracted to the smell of predators and the ability to discriminate between predators and non-predators was lost. Newly hatched larvae were unaffected by CO2 exposure and were still able to distinguish between predatory and non-predatory fish. If this impairment of olfactory preferences in settlement-stage larvae translates to higher mortality as a result of increased predation risk, there could be direct consequences for the replenishment and the sustainability of marine populations.
Ecology Letters (2010) 13: 68–75  相似文献   

17.
Early tetrapods faced an auditory challenge from the impedance mismatch between air and tissue in the transition from aquatic to terrestrial lifestyles during the Early Carboniferous (350 Ma). Consequently, tetrapods may have been deaf to airborne sounds for up to 100 Myr until tympanic middle ears evolved during the Triassic. The middle ear morphology of recent urodeles is similar to that of early ‘lepospondyl’ microsaur tetrapods, and experimental studies on their hearing capabilities are therefore useful to understand the evolutionary and functional drivers behind the shift from aquatic to aerial hearing in early tetrapods. Here, we combine imaging techniques with neurophysiological measurements to resolve how the change from aquatic larvae to terrestrial adult affects the ear morphology and sensory capabilities of salamanders. We show that air-induced pressure detection enhances underwater hearing sensitivity of salamanders at frequencies above 120 Hz, and that both terrestrial adults and fully aquatic juvenile salamanders can detect airborne sound. Collectively, these findings suggest that early atympanic tetrapods may have been pre-equipped to aerial hearing and are able to hear airborne sound better than fish on land. When selected for, this rudimentary hearing could have led to the evolution of tympanic middle ears.  相似文献   

18.
19.
Various species of marine fish larvae were reared in the laboratory to allow observation of the substratum preferences of newly settling fish. The range of preferences for settling larvae of intertidal species corresponded to the adult niche breadth. The preferred substratum was always an element of the adult habitat, although not necessarily the same substratum preferred by the adults. Experiments with artificial substrata indicated that settlement preferences are based on tactile cues and light transmission. Depending upon the species, other factors such as current speed or salinity can also influence settlement.  相似文献   

20.
Interactions of pelagic cnidarians and ctenophores with fish: a review   总被引:28,自引:7,他引:21  
Medusae, siphonophores and ctenophores (here grouped as `pelagic coelenterates') interact with fish in several ways. Some interactions are detrimental to fish populations, such as predation by gelatinous species on pelagic eggs and larvae of fish, the potential competition for prey among pelagic coelenterates and fish larvae and zooplanktivorous fish species, and pelagic coelenterates serving as intermediate hosts for fish parasites. Other interactions are positive for fish, such as predation by fish on gelatinous species and commensal associations among fish and pelagic coelenterates. The interactions range from beneficial for the gelatinous species (food, parasite removal), to negative (predation on them). We review existing information and present new data on these topics. Although such interactions have been documented frequently, the significance to either fish or pelagic coelenterate populations is poorly understood. The effects of pelagic coelenterates on fish populations are of particular interest because of the great importance of fisheries to the global economy. As fishing pressures mount, it becomes increasingly important to understand how they may influence the balance between pelagic coelenterates and fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号