首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Ichthyoplankton was sampled from the Antarctic Peninsula area of the South Polar Ocean in early winter (May and June 1986). A total of 153 eggs from two species and 1368 larvae or juvenile stages from 12 species were obtained. These included pelagic species, and demersal species with a long pelagic larval or juvenile phase. Most abundant were larvae of Pleuragramma antarcticum and Notothenia kempi, and eggs of Notothenia neglecta. The distribution of notothenioid and paralepidid larvae was apparently unaffected by ice cover, whereas myctophid larvae were confined to ice-free waters. Areas where newly hatched Chionodraco hamatus occurred coincided with dense aggregations of Euphausia superba (Krill) furcilia larvae which is a potential food resource during winter. The hatching of icefish larvae during winter is apparently independent of the seasonal production cycle. Epipelagic eggs of Notothenia neglecta were found during the spawning season, which suggests that eggs ascend to the surface after demersal spawning and that development takes place near the sea surface during winter. Larvae of Notothenia kempi were chiefly confined to shelf and slope waters to the west of the Antarctic Peninsula, with larger larvae found in coastal shelf areas. Pleuragramma antarcticum occurred in the coastal waters off the Biscoe Islands, in the Gerlache Strait, and in the northern Bransfield Strait. The smallest larvae were found in the northern Bransfield Strait, whereas those at the Biscoe Islands and in Gerlache Strait waters were larger and of a similar size. A cyclonic gyre to the west of the Antarctic Peninsula observed in the austral summer was likely to have affected the larval drift of Pleuragramma antarcticum and Notothenia kempi. Differences in the timing of spawning and hatching and the vertical distribution of these larvae will lead to different transport and spatial distribution patterns. It is hypothesized that early winter conditions do not imply severe limitations on the year-class success of larval fish. Dispersal and increased mortality may occur during the second half of the winter.  相似文献   

2.
It is hypothesized that fish larvae undertake vertical movements in estuarine waters. To test this hypothesis, a sampling period was selected during times when many spring‐spawning fish reach maximum abundance in coastal waters so that spring and summer variations in larval fish assemblages could be determined in the Yangtze River estuary. Six oceanographic surveys were conducted across the salinity gradient of an inshore (freshwater) and offshore area (brackish intersection) during spring (May) and summer (August) between 2010 and 2012. The fish larval community was dominated by species of Engraulidae, Gobiidae, Champsodontidae and Mugilidae. The pre‐flexion and flexion larval stages of euryhaline marine species, which are dependent on estuaries as nursery areas, were common. The brackish and marine larval assemblage was the most abundant with taxa such as Coilia mystus and Engraulis japonicus accounting for more than 57.3% of the total catch. Spatial differences in the taxonomic composition of larval fish assemblages were evident between the inshore and offshore areas. Additionally, the Yangtze River runoff regulatory functions as affected by the Three Gorges Reservoir operational mode (hydrological alternating operations) showed weak influences on fish and habitat environments. Low salinities from high freshwater inflow limited bay anchovy production in the inshore area.  相似文献   

3.
Fish larvae assemblages in the Gulf of California   总被引:1,自引:0,他引:1  
The distributional diversity and assemblages of fish larvae in the Gulf of California indicated two main seasonal stages and two transitional periods: in winter, the tropical water mass is confined to the south‐east portion of the mouth of the Gulf and larval fish assemblages are dominated by subtropical and temperate‐subarctic species; in summer; tropical water invades the Gulf and assemblages are dominated by tropical species. Both seasonal stages are separated by transitional periods coinciding with strong latitudinal temperature gradients. During the autumn and spring transitional periods, the Gulf of California splits into three regions: a northern region where temperate and subarctic species spawn from autumn to spring, a southern region dominated by tropical and subtropical species year round and a central region where tropical and temperate assemblages merge. Seasonal changes in the location of the regions, as well as the borders between them, show expansion and contraction of the northern and southern faunas related to the general oceanic circulation patterns during the year.  相似文献   

4.
Many marine organisms spend the early life history stages in neuston domain. Although the importance of ichthyoneuston, few studies were developed in the Southwest Atlantic Ocean. Therefore, this study aimed to improve the knowledge on ichthyoneuston of the Brazilian coast analyzing the vertical stratification and horizontal distribution of these organisms. Neuston samples were collected in daylight between 20°S and 23°S from February to April 2009 (late summer/early autumn; rainy season) and from August to September 2009 (late winter/early spring; dry season). Eggs of six taxa were identified: Anguilliformes, Engraulidae, Clupeidae, Synodontidae, Trichiuridae, and Maurolicus stehmanni (Sternoptychidae). The neustonic larval fish assemblage was composed by 40 families and 63 species. Mullidae and Myctophidae larvae were the most abundant in the rainy period while Mullidae and Mugilidae dominated in the dry season. Seasonal and spatial variation of larval fish assemblages in the neuston were structured by oceanographic features. The larval fish abundance on the outer slope stations may have been favored by the advection of an anticyclone that encompassed most of the study region during the cruise periods. In the rainy season, salinity and local depth structured the larval fish assemblage in a cross‐shelf gradient, while in the dry season the larval assemblage was structured around temperature and north‐south gradient. In the dry season, the cross‐shelf gradient was less pronounced mainly because of the low abundance and frequency of mesopelagic larvae. The low frequency and abundance of some species are probably related to the net avoidance of fish larvae during the day or dial vertical migration, as many species migrate to deeper layers during the day and ascend to neuston only at night. Nevertheless, the present study presented baseline information about the seasonal and spatial variation of the neustonic larval fish assemblage influenced by the oceanographic conditions in the Campos Basin. We recommend to additionally collect night samples to decrease larval escapement rates and to compare night versus day catches to further investigate the influence of daily migration in the neustonic larval fish in the area.  相似文献   

5.
The larval fish fauna occurring in temperate bay and shelf waters off Victoria, southern Australia, was found to be diverse, comprising taxa from 52 families. The most abundant groups collected were gobiids, tripterygiids, gobiesocids and clupeids. Fish egg concentrations were highest during spring and summer (September to February). Eggs of the Australian anchovy Engraulis australis occurred mainly during spring (September to November). Total larval fish concentrations were highest during summer (December to February), and were significantly higher at 1 km than 2 and 5 km from shore in offshore samples. Larval concentrations of a number of families, mainly reef‐associated taxa that attach their eggs to hard substrata, were also higher nearer to shore. These larvae are more developed upon hatching than those of pelagic spawners and more capable of avoiding passive drift. Multivariate analyses found that larval taxonomic composition did not vary significantly with distance from shore, but that seasonal and monthly groupings were evident, with different taxa dominating at different times of the year. Larvae of the families Gobiidae and Tripterygiidae occurred in all months, but were less abundant during winter. Spatial differences in the larval fish assemblage between offshore samples and samples taken in the bay were only apparent during summer. This was primarily due to a higher abundance of seagrass‐associated species, such as syngnathids and hemiramphids, utilizing specific habitats in the bay.  相似文献   

6.
长江口水域夏季鱼卵和仔稚鱼年间变化   总被引:3,自引:0,他引:3  
基于2005年、2008年、2009年和2011年8月(夏季)在长江口水域(30°30'—31°45'N,121°15'—123°10'E)4个航次的浮游生物拖网资料,分析了长江口水域鱼卵和仔稚鱼的种类组成、数量分布特征及其年间变化。结果表明:4个航次采集的鱼卵和仔稚鱼鉴定到种的种类有17种,隶属于8目13科,以鲈形目种类最多,11种,其次是鲱形目,5种,其他各目种类均小于5种;种类数存在明显年间差异,2005年种类数最多(鱼卵3种,仔稚鱼8种),其次是2009年和2011年,2008年种类数最少(鱼卵1种,仔稚鱼5种)。优势种年间更替明显,长蛇鲻(Saurida elongata)、虾虎鱼(Gobiidae spp.)和中华小公鱼(Stolephorus chinensis)在2005年是优势种,2008年优势种为鳀鱼(Engraulis japonicus),2009年优势种为鳀鱼、寡鳞飘鱼(Pseudolaubuca engraulis)、虾虎鱼等,2011年虾虎鱼和小公鱼(包括小公鱼属未定种Stolephorus spp.和中华小公鱼Stolephorus chinensis)成为优势种。2005年鱼卵和仔稚鱼数量分布的密集区在嵊泗列岛附近水域,2008年鱼卵和仔稚鱼出现较少,未出现明显的数量密集区;2009年鱼卵数量较少,仔稚鱼数量较多,密集区主要分布在在长江口以外123°E附近水域;2011年鱼卵主要分布在在长江北支口门外附近水域,仔稚鱼在调查区内分布相对均匀。  相似文献   

7.
The Pacific Arctic marine ecosystem has undergone rapid changes in recent years due to ocean warming, sea ice loss, and increased northward transport of Pacific-origin waters into the Arctic. These climate-mediated changes have been linked to range shifts of juvenile and adult subarctic (boreal) and Arctic fish populations, though it is unclear whether distributional changes are also occurring during the early life stages. We analyzed larval fish abundance and distribution data sampled in late summer from 2010 to 2019 in two interconnected Pacific Arctic ecosystems: the northern Bering Sea and Chukchi Sea, to determine whether recent warming and loss of sea ice has restricted habitat for Arctic species and altered larval fish assemblage composition from Arctic- to boreal-associated taxa. Multivariate analyses revealed the presence of three distinct multi-species assemblages across all years: (1) a boreal assemblage dominated by yellowfin sole (Limanda aspera), capelin (Mallotus catervarius), and walleye pollock (Gadus chalcogrammus); (2) an Arctic assemblage composed of Arctic cod (Boreogadus saida) and other common Arctic species; and (3) a mixed assemblage composed of the dominant species from the other two assemblages. We found that the wind- and current-driven northward advection of warmer, subarctic waters and the unprecedented low-ice conditions observed in the northern Bering and Chukchi seas beginning in 2017 and persisting into 2018 and 2019 have precipitated community-wide shifts, with the boreal larval fish assemblage expanding northward and offshore and the Arctic assemblage retreating poleward. We conclude that Arctic warming is most significantly driving changes in abundance at the leading and trailing edges of the Chukchi Sea larval fish community as boreal species increase in abundance and Arctic species decline. Our analyses document how quickly larval fish assemblages respond to environmental change and reveal that the impacts of Arctic borealization on fish community composition spans multiple life stages over large spatial scales.  相似文献   

8.
The coastal ocean off south-western Australia is characterisedby the southward-flowing Leeuwin Current, which suppresses theupwelling typically associated with other eastern boundary currentsin the southern hemisphere. This results in a unique environmentfor the transport and survival of planktonic fish larvae. Thehorizontal and vertical structure of larval fish assemblagesoff south-western Australia was investigated during winter (August2003) and summer (January 2004), and related to these unusualregional oceanographic and biological processes. Larval fishwere sampled along a four station transect running from theinner continental shelf to offshore waters, using depth-integratedbongo net tows and depth-stratified EZ net tows. The distributionof taxa across the shelf and offshore was strongly influencedby the current regime at the time of sampling. Larval fish assemblagestructure reflected the distinctive oceanographic conditionsfound during each season, and vertical depth distributions oflarvae affected their horizontal location. Continental shelfsamples were dominated by larvae of pelagic fishes, such asclupeiform species (e.g. Sardinops sagax), whereas offshoreassemblages were characterised by larvae of oceanic families,such as Myctophidae and Phosichthyidae. The winter cruise (August2003) was completed during a time of strong, southerly LeeuwinCurrent flow, whereas the northward-flowing Capes Current, incombination with surface offshore Ekman transport, predominatedduring summer. The vertical depth preferences of larvae wereparticularly influential in affecting their horizontal position;especially so for surface-dwelling larval fishes found duringsummer. This study represents the first documentation of thevertical structure of ichthyoplankton assemblages in the oligotrophicwaters off south-western Australia.  相似文献   

9.
Fish eggs and larvae were collected monthly between September 1987 and April 1989 from sites throughout the main basin and within the saline regions of the two main tributary rivers of Wilson Inlet, a seasonally closed estuary in south-western Australia. Of the eggs, 43.7% belonged to Engraulis australis (Shaw) and the rest to unidentified teleosts. The larval fish assemblage comprised 17 families represented by 25 species. The Gobiidae contained the highest number of species (four) and contributed approximately 57% of all larvae caught. Pseudogobius olorum (Sauvage) and E. australis were the most abundant species, contributing 43.9 and 27.9% to the total larval catch, respectively. The larvae of species which breed within Wilson Inlet dominated the assemblage, both in terms of number of species (64%) and contribution to total catch (99.9%). The numbers of the eight marine species and one freshwater species represented in the ichthyoplankton were very low. Classification and multi-dimensional scaling ordination showed that the composition of the larval fish fauna at the various sites during a period when the estuary remained open to the sea (December 1988-April 1989) was similar to that of the corresponding sites during the same period in the previous year when the estuary had become closed (December 1987-April 1988). This can be attributed to the spatial distribution, time of occurrence and abundance of estuarine-spawned larvae being similar in the two periods and to the rarity of marine-spawned larvae, even in the spring and summer of 1988/1989 when the estuary was open for the whole time when most marine teleosts spawn in south-western Australia. The low occurrence of marine-spawned larvae in Wilson Inlet reflects the fact that tidal water movement within the basin of the system is so small that it is unable to facilitate the transport and dispersion of larvae. The ichthyoplankton of Wilson Inlet resembles that of other poorly-flushed estuaries in that it is low in species richness and dominated by estuarine-spawned larvae.  相似文献   

10.
Summary

Although a tendency for high latitude marine invertebrates to avoid pelagic larval stages was first described in the 19th century, the most detailed early study was that of Thorson in Greenland. This work also established other features of the reproduction of polar marine invertebrates that have become regarded as almost axiomatic (e.g., the release of larvae to coincide with the summer bloom) or largely ignored (a latitudinal cline in egg size within species). This short and selective review examines Thorson's conclusions in the light of recent work. It is now clear that although polar prosobranch gastropods reproduce almost entirely by direct development, for many taxa the real distinction between polar and non-polar species is in the proportion of feeding to non-feeding larvae. Some species release feeding larvae in winter and the energy source for these larvae is obscure. Growth is slow and there is little or no evidence for temperature compensation. Many crustacean species have larger eggs at higher latitudes. Egg size varies significantly within species, with larger eggs being associated with larger females and often reduced fecundity. The reasons for these within-species patterns are currently unresolved.  相似文献   

11.
Developing networks of no-take marine reserves is often hindered by uncertainty in the extent to which local marine populations are connected to one another through larval dispersal and recruitment (connectivity). While patterns of connectivity can be predicted by larval dispersal models and validated by empirical methods, biogeographic approaches have rarely been used to investigate connectivity at spatial scales relevant to reserve networks (10's–100's of km). Here, species assemblage patterns in coral reef fish were used together with an individual-based model of dispersal of reef fish larvae to infer patterns of connectivity in a ∼300 km wide region in the Philippines that included the Bohol Sea and adjacent bodies of water. A dominant current flows through the study region, which may facilitate connectivity among >100 no-take reserves. Connectivity was first investigated by analysing data on the presence/absence of 216 species of reef fish and habitat variables across 61 sites. Hierarchical clustering of sites reflecting species assemblage patterns distinguished a major group of sites in the Bohol Sea (Bray–Curtis similarity >70%) from sites situated in adjacent bodies of water (bays, channels between islands and a local sea). The grouping of sites could be partly explained by a combination of degree of embayment, % cover of sand and % cover of rubble (Spearman rank correlation, ρw = 0.42). The individual-based model simulated dispersal of reef fish larvae monthly for three consecutive years in the region. The results of simulations, using a range of pelagic larval durations (15–45 days), were consistent with the species assemblage patterns. Sites in the model that showed strongest potential connectivity corresponded to the majority of sites that comprised the Bohol Sea group suggested by hierarchical clustering. Most sites in the model that exhibited weak connectivity were groups of sites which had fish assemblages that were least similar to those in the Bohol Sea group. Concurrent findings from the two approaches suggest a strong influence of local oceanography and geography on broad spatial patterns of connectivity. The predictions can be used as an initial basis to organise existing reserves to form ecologically meaningful networks. This study showed that species assemblage patterns could be a viable supplementary indicator of connectivity if used together with predictions from a larval dispersal model and if the potential effect of habitat on the structuring of species assemblages is taken into consideration.  相似文献   

12.
Fish larvae from horizontal plankton tows along a single transect near outer ribbon reefs of the Great Barrier Reef in spring 1979 and summer 1980 had persistent distributional patterns. Larvae were identified to family and divided into young (preflexion) and old (postflexion) larvae, thus giving 28 taxa abundant enough for analysis. Non-uniform larval distributions were found for 81% of the 16 reef fish taxa with non-pelagic eggs, but for only 17% of the six reef fish taxa with pelagic eggs. Most differences in larval concentration were between the lagoonal and seaward sides of the reef. Only tripterygiid larvae had highest concentration just seaward of the reef, while larvae of 12 reef and three oceanic fish taxa occurred in highest concentrations on the lagoonal side of the reef. In five taxa of reef fishes, higher larval concentrations were found in the lagoonal backreef compared with the mid-lagoon habitat; but the reverse was not found in any taxon. Eleven taxa had indeterminate distributions, (i.e. no difference in concentration between stations). Mechanisms responsible for the distribution remain unknown, but we suggest that the view which considers fish larvae to be passively-drifting particles is unjustified without more information on larval behaviour.  相似文献   

13.
Early life history strategies of notothenioids at South Georgia   总被引:4,自引:0,他引:4  
Antarctic notothenioid early life history strategies are examined in general and then for common species at South Georgia. Channichthyids, bathydraconids, artedidraconids and some nototheniids have large eggs 3·0–4·9 mm whereas other nototheniids and arpagiferids have smaller eggs 1·6–2·7 mm. At South Georgia the larvae of species with large eggs hatched between August (late winter) and late November (late spring) at 11–16 mm standard length ( L s). Larvae of species with small eggs hatched mainly during October and December at 4.5–9 mm L s. Most of the larvae of all species attain urostyle flexion between October and January, and develop to the end of the larval stage between November and May. The duration of the larval stage varies from 2 months in species with smaller larvae to 6 months for some of the species with larger larvae. Two nototheniid species develop to the early juvenile stage before a channichthyid and a bathydraconid that hatch around 2 months earlier. During their first winter, the early-juveniles of most species with large eggs are pelagic, whereas those of species with small eggs may be pelagic or demersal. Four groups of strategies are proposed based on egg size and the winter ecotype of the early-juvenile stage.  相似文献   

14.
We analyze spatial–temporal relationship between larvalfish assemblages and geostrophic surface flow in Bahíade La Paz and the neighboring Gulf of California (May, Julyand October 2001 and February 2002). The analysis of fish larvaedistribution in relation to geostrophic circulation and hydrographyis an innovative interdisciplinary approach for the understandingof fish larvae ecology. The Bray–Curtis Index definedtwo larval fish assemblages with spatial–temporal variations:coastal assemblage dominated by epipelagic coastal species (e.g.Sardinops caeruleus) and oceanic assemblages—oceanic andtransitional oceanic assemblages both dominated by mesopelagicspecies (e.g. Vinciguerria lucetia and Benthosema panamense)but with different larval abundance. The assemblage variationsappear to be related to water exchange between the bay and theGulf through the North Mouth. During July–October, thegeostrophic flow through the entrance is strong, and the oceanicassemblages spread in the whole bay, whereas during February–Maywhen the geostrophic transport is weak, the coastal assemblageis distributed over the whole bay. The strong summer–autumnwater interchange between bay and gulf is in agreement withthe annual evolution of the surface water properties insidethe bay, from high-salinity Gulf of California Water duringwinter–spring to fresher Tropical Surface Water duringsummer–autumn, when the highest species number was recorded.  相似文献   

15.
ABSTRACT: BACKGROUND: The patterns and drivers of species assemblages represent the core of community ecology.We focus on the assemblages of a single family of ubiquitous lotic insects, the Simuliidae(black flies), of which the larvae play a critical role in resource turnover in steams. We useMantel tests and null models to tease out the potential influence of abiotic stream conditions,species interactions, and dispersal on the assemblage patterns of larval black flies over twospatial scales (within and across ecoregions) and two seasons (spring and summer). RESULTS: When stream sites were considered across ecoregions in the spring, stream conditions anddispersal were correlated significantly with species similarity; however, within ecoregions inthe spring, dispersal was important only in the Piedmont and Sandhills and abiotic factorsonly in the Mountains. In contrast, results of the summer analyses within and acrossecoregions were congruent; assemblage similarity was significantly correlated with streamconditions both across and within ecoregions. Null models suggested that patterns of speciessegregation in the spring were consistent with a community structured by competition,whereas patterns in the summer were consistent with species assemblages influenced byabiotic factors. CONCLUSIONS: Species composition of black flies at streams sites is correlated with dispersal factors andstream conditions, but results vary over spatial and temporal scales. Communities of blackflies can be viewed within a metacommunity context; local assemblages are consistent withspecies sorting and mass effects. Given that black flies have a terrestrial stage, with femalesdeciding where to place the eggs, a full understanding of the processes that determine local aquatic assemblages will require integration of the dynamics of the aquatic immature stagesand the terrestrial adults.  相似文献   

16.
Population connectivity for most marine species is dictated by dispersal during the pelagic larval stage. Although reef fish larvae are known to display behavioral adaptations that influence settlement site selection, little is known about the development of behavioral preferences throughout the larval phase. Whether larvae are attracted to the same sensory cues throughout their larval phase, or exhibit distinct ontogenetic shifts in sensory preference is unknown. Here, we demonstrate an ontogenetic shift in olfactory cue preferences for two species of anemonefish, a process that could aid in understanding both patterns of dispersal and settlement. Aquarium-bred na?ve Amphiprion percula and A. melanopus larvae were tested for olfactory preference of relevant reef-associated chemical cues throughout the 11-day pelagic larval stage. Age posthatching had a significant effect on the preference for olfactory cues from host anemones and live corals for both species. Preferences of olfactory cues from tropical plants of A. percula, increased by approximately ninefold between hatching and settlement, with A. percula larvae showing a fivefold increase in preference for the olfactory cue produced by the grass species. Larval age had no effect on the olfactory preference for untreated seawater over the swamp-based tree Melaleuca nervosa, which was always avoided compared with blank seawater. These results indicate that reef fish larvae are capable of utilizing olfactory cues early in the larval stage and may be predisposed to disperse away from reefs, with innate olfactory preferences drawing newly hatched larvae into the pelagic environment. Toward the end of the larval phase, larvae become attracted to the olfactory cues of appropriate habitats, which may assist them in identification of and navigation toward suitable settlement sites.  相似文献   

17.
The influence of wind and wave exposure on larval fish assemblages within a large bay system was investigated. Larval fishes were sampled from two areas with vastly different exposure to waves and wind, namely the windward and leeward sectors of Algoa Bay. In total, 5702 larval fishes were collected using a modified larval seine. Of these, 4391 were collected in the leeward and 1311 in the windward sector of the bay, representing a total of 23 families and 57 species. Dominant fish families included Clinidae, Engraulidae, Kyphosidae, Mugilidae, Soleidae and Sparidae, similar to the situation elsewhere, highlighting continuity in the composition of larval fish assemblages and the utilization of surf zones by a specific group of larval fishes. Nineteen estuary‐associated marine species occurred within the surf zones of Algoa Bay and dominated catches (86·7%) in terms of abundance. Postflexion larvae comprised > 80% of the catch, indicating the importance of the seemingly inhospitable surf zone environment for the early life stages of many fish species. The greatest species diversity was observed within the windward sector of the bay. Distance‐based linear modelling identified wave period as the environmental variable explaining the largest proportion of the significant variation in the larval fish assemblage. The physical disturbance generated by breaking waves could create a suitable environment for fish larvae, sheltered from predators and with an abundance of food resources.  相似文献   

18.
The purpose of this paper was to study the spatial distribution, abundance and composition of fish larvae in the northern Ionian Sea. Samples were collected to the 600 m depth with an electronic multinet BIONESS during the “INTERREG Italia-Grecia” oceanographic cruise carried out in March 2000 off the Apulian Italian coast. A total of 46 species of teleost early stages were collected, belonging to 38 genera and 22 families. Over 52% of the larvae identified were mesopelagic species, almost 27% were demersal and about 21% pelagic. A total of 307 myctophids, 69 clupeids and 61 gadid post-larvae dominated the community. Benthosema glaciale (mean 6.1 mm SL) was the most abundant species (21.6%), the most frequent in the samples (28.8%), and dominant in the whole study area (mean 1.4 ind/100 m3). Particular attention was given to the horizontal and vertical distribution and abundance of the three dominant post-larval species: Benthosema glaciale, Sprattus sprattus sprattus and Notoscopelus elongatus. The Pearson coefficient (R = 0.734) showed a high correlation between total zooplankton and fish larval assemblages in terms of spatial distribution abundance values. Regarding the vertical distribution of fish larvae, Sorensen’s index (S = 0.69) showed that fish larvae and total zooplankton abundance peaks co-occurred along the water column.  相似文献   

19.
樊紫薇  蒋日进  李哲  李鹏飞  梁君  张琳琳  印瑞 《生态学报》2020,40(13):4392-4403
为了解中街山列岛海域鱼卵仔稚鱼空间分布、种类组成及与环境因子的关系,于2010年5月—2012年2月在中街山列岛海域利用水平和垂直拖网开展了8个航次的鱼卵、仔稚鱼调查。运用非度量多维标度排序、聚类分析和典范对应分析(CCA)等方法对该海域鱼卵、仔稚鱼的空间分布进行了综合分析。结果表明:两年水平拖网共采集到鱼卵1783粒,仔稚鱼67尾;垂直拖网共采集到鱼卵576粒,仔稚鱼59尾。2010年平拖优势种为短吻红舌鳎(Cynoglossus joyneri),垂拖重要种为鲉形目未定种(Scorpaeniformes sp.)和扁舵鰹(Auxis thazard)。2011年平拖重要种为短吻红舌鳎、鰏属未定种(Leiognathuss sp.)、龙头鱼(Harpodon nehereus)和鳀(Engraulis japonicus);垂拖重要种为短吻红舌鳎、龙头鱼和中华小公鱼(Stolephorus chinensis)。经单因子相似性分析(ANOSIM),鱼卵仔稚鱼的优势种和重要种群落物种组成存在显著差异(P0.01)。研究结果表明,温度和盐度对鱼卵仔稚鱼的影响较大,夏季是中街山列岛海域鱼类产卵的重要时期。该海域以恋礁的小型底层鱼类为主,是褐菖鲉(Sebastiscus marmoratus)、龙头鱼等小型底层经济鱼类的重要产卵场和育幼场。  相似文献   

20.
The study of spatial and temporal distribution and diversity of ichthyoplankton (fish eggs and larvae) can provide fisheries-independent information on the population dynamics and recruitment processes of marine fish species. Ichthyoplankton studies in the Southern Ocean have to date been largely constrained to the summer months. We analysed ichthyoplankton data collected from a year round, long term (2002–2008), plankton trawl sampling programme in a large fjord system (Cumberland Bay) at South Georgia, sub-Antarctic (54.25°S, 36.5°W) to assess temporal changes in larval fish diversity and abundance. Larvae of 22 species, representing nine families, were identified although three, Krefftichthys anderssoni (Myctophidae), Lepidonotothen nudifrons/Trematomus hansoni (Nototheniidae) and Champsocephalus gunnari (Channichthyidae), dominated abundance in all years. Significant seasonal and interannual differences in the larval fish assemblage were revealed by multivariate analyses. Estimates of larval growth are provided for five abundant species. Considerable inter-specific differences in relative larval growth rate were recorded but interannual variability within species was small. However, in the commercially important C. gunnari, multiple larval cohorts, representing a protracted spawning season, were observed to grow at different rates, and this may be related to temperature and/or food availability. A comparison with historical growth data from South Georgia suggests there has been little change in growth rate for the main species over the last three decades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号