首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Signal transduction during cold, salt, and drought stresses in plants   总被引:14,自引:0,他引:14  
Abiotic stresses, especially cold, salinity and drought, are the primary causes of crop loss worldwide. Plant adaptation to environmental stresses is dependent upon the activation of cascades of molecular networks involved in stress perception, signal transduction, and the expression of specific stress-related genes and metabolites. Plants have stress-specific adaptive responses as well as responses which protect the plants from more than one environmental stress. There are multiple stress perception and signaling pathways, some of which are specific, but others may cross-talk at various steps. In this review article, we first expound the general stress signal transduction pathways, and then highlight various aspects of biotic stresses signal transduction networks. On the genetic analysis, many cold induced pathways are activated to protect plants from deleterious effects of cold stress, but till date, most studied pathway is ICE-CBF-COR signaling pathway. The Salt-Overly-Sensitive (SOS) pathway, identified through isolation and study of the sos1, sos2, and sos3 mutants, is essential for maintaining favorable ion ratios in the cytoplasm and for tolerance of salt stress. Both ABA-dependent and -independent signaling pathways appear to be involved in osmotic stress tolerance. ROS play a dual role in the response of plants to abiotic stresses functioning as toxic by-products of stress metabolism, as well as important signal transduction molecules and the ROS signaling networks can control growth, development, and stress response. Finally, we talk about the common regulatory system and cross-talk among biotic stresses, with particular emphasis on the MAPK cascades and the cross-talk between ABA signaling and biotic signaling.  相似文献   

2.
3.
低温胁迫(冷害和冻害)严重影响植物的生长发育和地理分布, 是制约作物产量和品质的主要因素之一。在自然界, 植物通过感知低温信号并启动一系列响应机制来抵御冷冻伤害。MAP蛋白激酶家族在植物响应逆境胁迫信号过程中发挥重要作用, 但其是否参与冷冻胁迫信号传递仍不清楚。最近, 朱健康、杨淑华和种康研究团队先后报道了拟南芥(Arabidopsis thaliana)和水稻(Oryza sativa)通过MAPK级联反应途径参与冷冻胁迫应答反应, 通过磷酸化ICE1来调控其稳定性, 并阐明了ICE1提高植物抗冷冻能力的分子机制。他们的研究完善了ICE1介导的低温应答网络, 是植物低温应答研究领域的重要突破, 并为未来的作物分子设计育种提供了强有力的理论依据。  相似文献   

4.
5.
Protein kinases are major players in various signal transduction pathways. Understanding the molecular mechanisms behind plant responses to biotic and abiotic stresses has become critical for developing and breeding climate-resilient crops. In this review,we summarize recent progress on understanding plant drought, salt, and cold stress responses, with a focus on signal perception and transduction by different protein kinases, especially sucrose nonfermenting1(SNF1)-related protein kinases(Sn RKs),mitogen-activated protein kinase(MAPK) cascades,calcium-dependent protein kinases(CDPKs/CPKs),and receptor-like kinases(RLKs). We also discuss future challenges in these research fields.  相似文献   

6.
To understand the cross-talk and specificity of the early responses of plants to salt and drought, we performed physiological and proteome analyses of Brassica napus seedlings pretreated with 245 mM NaCl or 25% polyethylene glycol (PEG) 6000 under identical osmotic pressure (-1.0 MPa). Significant decreases in water content and photosynthetic rate and excessive accumulation of compatible osmolytes and oxidative damage were observed in response to both stresses. Unexpectedly, the drought response was more severe than the salt response. We further identified 45 common differentially expressed proteins (DEPs), 143 salt-specific DEPs and 160 drought-specific DEPs by isobaric tags for relative and absolute quantitation (iTRAQ) analysis. The proteome quantitative data were then confirmed by multiple reaction monitoring (MRM). The differences in the proteomic profiles between drought-treated and salt-treated seedlings exceeded the similarities in the early stress responses. Signal perception and transduction, transport and membrane trafficking, and photosynthesis-related proteins were enriched as part of the molecular cross-talk and specificity mechanism in the early responses to the two abiotic stresses. The Ca2+ signaling, G protein-related signaling, 14-3-3 signaling pathway and phosphorylation cascades were the common signal transduction pathways shared by both salt and drought stress responses; however, the proteins with executive functions varied. These results indicate functional specialization of family proteins in response to different stresses, i.e., CDPK21, TPR, and CTR1 specific to phosphorylation cascades under early salt stress, whereas STN7 and BSL were specific to phosphorylation cascades under early drought stress. Only the calcium-binding EF-hand family protein and ZKT were clearly identified as signaling proteins that acted as cross-talk nodes for salt and drought signaling pathways. Our study provides new clues and insights for developing strategies to improve the tolerance of crops to complex, multiple environmental stresses.  相似文献   

7.
8.
Environmental constraints that include abiotic stress factors such as salt, drought, cold and extreme temperatures severely limit crop productivity. Improvement of crop plants with traits that confer tolerance to these stresses was practiced using traditional and modern breeding methods. Molecular breeding and genetic engineering contributed substantially to our understanding of the complexity of stress response. Mechanisms that operate signal perception, transduction and downstream regulatory factors are now being examined and an understanding of cellular pathways involved in abiotic stress responses provide valuable information on such responses. This review presents genomic-assisted methods which have helped to reveal complex regulatory networks controlling abiotic stress tolerance mechanisms by high-throughput expression profiling and gene inactivation techniques. Further, an account of stress-inducible regulatory genes which have been transferred into crop plants to enhance stress tolerance is discussed as possible modes of integrating information gained from functional genomics into knowledge-based breeding programs. In addition, we envision an integrative genomic and breeding approach to reveal developmental programs that enhance yield stability and improve grain quality under unfavorable environmental conditions of abiotic stresses.  相似文献   

9.
? The ability of plants to adapt to multiple stresses imposed by the natural environment requires cross-talk and fine-tuning of stress signalling pathways. The hybrid histidine kinase Arabidopsis histidine kinase 5 (AHK5) is known to mediate stomatal responses to exogenous and endogenous signals in Arabidopsis thaliana. The purpose of this study was to determine whether the function of AHK5 in stress signalling extends beyond stomatal responses. ? Plant growth responses to abiotic stresses, tissue susceptibility to bacterial and fungal pathogens, and hormone production and metabolism of reactive oxygen species were monitored in a T-DNA insertion mutant of AHK5. ? The findings of this study indicate that AHK5 positively regulates salt sensitivity and contributes to resistance to the bacterium Pseudomonas syringae pv. tomato DC3000 and the fungal pathogen Botrytis cinerea. ? This is the first report of a role for AHK5 in the regulation of survival following challenge by a hemi-biotrophic bacterium and a necrotrophic fungus, as well as in the growth response to salt stress. The function of AHK5 in regulating the production of hormones and redox homeostasis is discussed.  相似文献   

10.
11.
12.
13.
14.
The study of abiotic stress response of plants is important because they have to cope with environmental changes to survive. The plant genomes have evolved to meet environmental challenges. Salt, temperature, and drought are the main abiotic stresses. The tolerance and response to stress vary differently in plants. The idea was to analyze the genes showing differential expression under abiotic stresses. There are many pathways connecting the perception of external stimuli to cellular responses. In plants, these pathways play an important role in the transduction of abiotic stresses. In the present study, the gene expression data have been analyzed for their involvement in different steps of signaling pathways. The conserved genes were analyzed for their role in each pathway. The functional annotations of these genes and their response under abiotic stresses in other plant species were also studied. The enzymes of signal pathways, showing similarity with conserved genes, were analyzed for their role in different abiotic stresses. Our findings will help to understand the expression of genes in response to various abiotic stresses. These genes may be used to study the response of different abiotic stresses in other plant species and the molecular basis of stress tolerance.  相似文献   

15.
16.
17.
Plants are autotrophic and photosynthetic organisms that both produce and consume sugars. Soluble sugars are highly sensitive to environmental stresses, which act on the supply of carbohydrates from source organs to sink ones. Sucrose and hexoses both play dual functions in gene regulation as exemplified by the upregulation of growth-related genes and downregulation of stress-related genes. Although coordinately regulated by sugars, these growth- and stress-related genes are upregulated or downregulated through HXK-dependent and/or HXK-independent pathways. Sucrose-non-fermenting-1- (SNF1-) related protein pathway, analogue to the protein kinase (SNF-) yeast-signalling pathway, seems also involved in sugar sensing and transduction in plants. However, even if plants share with yeast some elements involved in sugar sensing, several aspects of sugar perception are likely to be peculiar to higher plants. In this paper, we have reviewed recent evidences how plants sense and respond to environmental factors through sugar-sensing mechanisms. However, we think that forward and reverse genetic analysis in combination with expression profiling must be continued to uncover many signalling components, and a full biochemical characterization of the signalling complexes will be required to determine specificity and cross-talk in abiotic stress signalling pathways.Key words: abiotic stress, gene expression, glucose, metabolism, sucrose, sugar sensing  相似文献   

18.
19.
Cell signaling under salt, water and cold stresses   总被引:27,自引:0,他引:27  
  相似文献   

20.
Role of DREBs in regulation of abiotic stress responses in plants   总被引:8,自引:0,他引:8  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号