首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Chu XP  Li P  Xu NS 《生理学报》1998,50(5):483-489
在73张脑片上观察了γ-氨基丁酸(GABA)对106个延髓头端腹外侧区(RVLM)神经元单位放电的影响。外源性的GABA(0.1 ̄3.0mmol/L)抑制了106神经元中的84个神经元的电活动,这些抑制效应呈剂量-反应关系。GABA的抑制效应大部分可被GABAA受体选择性拮抗剂荷苞牡丹碱甲基碘化物(BMI)和Cl^-通道阻断剂印防己毒素(PTX)所阻断,而单独灌流BMI和PTX对RVLM神经元主要  相似文献   

2.
Cerebellar GABAB receptors modulate function of GABAA receptors.   总被引:3,自引:0,他引:3  
Interactions between GABAA and GABAB receptors were studied using muscimol-stimulated uptake of 36Cl- by membrane vesicles from mouse cerebellum. Baclofen inhibited muscimol-stimulated 36Cl- uptake and this action was more pronounced with longer flux times (30 vs. 3 s) and after predesensitization of GABAA receptors. Baclofen also inhibited 36Cl- flux by cortical membranes but was more effective with cerebellar preparations. The action of baclofen was stereoselective, calcium-dependent, and blocked by the GABAB receptor antagonist 2-OH-saclofen. It was mimicked by GTP-gamma-S but not by GDP-beta-S, which suggests that baclofen may be acting via a G protein. The action of baclofen was inhibited by U73122, an inhibitor of phospholipase C. However, the potassium channel blockers tetraethylammonium or Ba2+ did not affect the action of baclofen. The results show that activation of GABAB receptors can inhibit the function of GABAA receptors and suggest that this action involves either a nondesensitizing subtype of GABAA receptor or the rate or recycling of desensitized to nondesensitized receptors. We speculate that this action of baclofen results from activation of phospholipase C and phosphorylation of a subtype of GABAA receptor by protein kinase C.  相似文献   

3.
GABAergic drugs and lordosis behavior in the female rat   总被引:1,自引:0,他引:1  
Agents modifying GABAergic neurotransmission were administered to ovariectomized rats treated with different doses of estradiol benzoate (EB) + progesterone (P) or with EB alone. Hormone treatments were designed to induce an intermediate level of receptivity in order to be able to observe both stimulatory and inhibitory effects on lordosis behavior. Both the GABAA receptor agonist THIP and the GABAB receptor agonist baclofen inhibited lordosis behavior at doses from 20 and 5 mg/kg, respectively. The GABA transaminase inhibitor gamma-acetylen GABA (GAG) and the GABA agonist 3-aminopropanesulfonic acid had no effects, even when high doses were administered. The GABAA receptor antagonist bicuculline had no effect by itself nor did it block the effects of THIP. It is therefore suggested that the GABAA receptor is of slight importance in the control of lordosis behavior. No evidence could be found supporting the hypothesis that an interaction between P and GABA is important for hormone-induced receptivity. It does not appear likely that motor disturbances are responsible for the inhibitory effects of baclofen and THIP. The exact mechanism by which these drugs inhibit lordosis behavior is not clear at present.  相似文献   

4.
鲫鱼脑氨基酸类神经递质受体在两栖类卵母细胞中的表达   总被引:1,自引:1,他引:0  
朱辉  朱幸 《生理学报》1995,47(1):1-10
两栖类卵母细胞表达系统经注射鲫鱼脑mRNA后可表达多种神经递质受体和某些离子通道。本工作利用电压箝方法结合药理学手段对GABA受体和谷氨酸离子型受体作了较详细的研究。结果表明,由GABA诱发的电流反应中,约90%由GABAA受体介导,乘余约10%的成分对GABAA受体的专一性拮抗剂Bicuculline不敏感,而GABAB受体的专一性激动剂Baclofen不能引进电流反应,因此这部分受体特性与GA  相似文献   

5.
The pharmacology of a gamma-aminobutyric acid (GABA) receptor on the cell body of an identified motor neuron of the cockroach (Periplaneta americana) was investigated by current-clamp and voltage-clamp methods. Iontophoretic application of GABA increased membrane conductance to chloride ions, and prolonged application resulted in desensitization. Hill coefficients, determined from dose-response data, indicated that binding of at least two GABA molecules was required to activate the chloride channel. Differences between vertebrate GABAA receptors and insect neuronal GABA receptors were detected. For the GABA receptor of motor neuron Df, the following rank order of potency was observed: isoguvacine greater than muscimol greater than or equal to GABA greater than 3-aminopropanesulphonic acid. The GABAB receptor agonist baclofen was inactive. Of the potent vertebrate GABA receptor antagonists (bicuculline, pitrazepin, RU5135 and picrotoxin), only picrotoxin (10(-7) M) produced a potent, reversible block of the response to GABA of motor neuron Df. Both picrotoxinin and picrotin also blocked GABA-induced currents. Bicuculline hydrochloride (10(-4) M) and bicuculline methiodide (10(-4) M) were both ineffective when applied at resting membrane potential (-65 mV), although at hyperpolarized levels partial block of GABA-induced current was sometimes observed. Pitrazepin (10(-4) M) caused a partial, voltage-independent block of GABA-induced current. The steroid derivative RU5135 was inactive at 10(-5) M. In contrast to the potent competitive blockade of vertebrate GABAA receptors by bicuculline, pitrazepin and RU5135, none of the weak antagonism caused by these drugs on the insect GABA receptor was competitive. Flunitrazepam (10(-6) M) potentiated GABA responses, providing evidence for a benzodiazepine site on an insect GABA-receptor-chloride-channel complex.  相似文献   

6.
Up to 60% of gamma-[3H]aminobutyric acid ([3H]GABA) bound specifically to rat cerebellar membranes in the absence of Ca2+ was insensitive to the GABAA antagonist bicuculline and to the GABAB agonist baclofen. This indicates that a significant component of specifically bound [3H]GABA is associated with non-GABAA, non-GABAB binding sites. The presence of this binding component appeared seasonal, peaking in the month of September (early spring) each year over a 4-year period. The calcium independence and bicuculline and baclofen insensitivity of the binding indicate that this binding is not to the classical GABAA and GABAB binding sites. High concentrations of muscimol and isoguvacine inhibited non-GABAA, non-GABAB binding. Scatchard analysis of the non-GABAA, non-GABAB binding sites indicated two kinetic components: KD1 = 42 nM and KD2 = 9.2 microM; Bmax1 = 1.6 pmol/mg of protein and Bmax2 = 28 pmol/mg of protein.  相似文献   

7.
Modulation of the GABAA receptor by progesterone metabolites   总被引:12,自引:0,他引:12  
The naturally occurring progesterone metabolites 5 beta-pregnan-3 alpha-ol-20-one and 5 beta-pregnane-3,20-dione reversibly enhance membrane currents elicited by locally applied GABA in bovine adrenomedullary chromaffin cells. Such potentiation was not influenced by the benzodiazepine antagonist Ro 15-1788. At concentrations in excess of those necessary to evoke potentiation of GABA currents, 5 beta-pregnan-3 alpha-ol-20-one and 5 beta-pregane-3,20-dione directly activated a membrane conductance. The resulting currents were potentiated by phenobarbitone and diazepam, and abolished by the GABAA-receptor antagonist, bicuculline. On outside-out membrane patches, 5 beta-pregnan-3 alpha-ol-20-one and 5 beta-pregnane-3,20-dione activated single channel currents of similar amplitude to those evoked by GABA. The results suggest that certain naturally occurring steroids potentiate the actions of GABA and, additionally, directly activate the GABAA receptor.  相似文献   

8.
1. The effects of baclofen and GABA on rat piriform cortex neurons were investigated electrophysiologically using a brain slice preparation. 2. At resting potential GABA depolarized and baclofen hyperpolarized the cell, probably through activation of Cl and K conductances acting at GABAA and GABAB receptors, respectively. 3. The GABAA receptors were concentrated on the apical and basal dendrites near the cell body, while the baclofen-sensitive GABA receptors were concentrated particularly on the basal dendrites. 4. The different distributions of receptor localization must have functional consequences which remain to be elucidated.  相似文献   

9.
The effects of the neuroactive steroids alphaxalone and pregnanolone on single GABA(A) receptor channels were tested in cell-attached and inside-out patches from cultured newborn rat hippocampal neurons. The conductance of these single channels ranged between 10 and 80 pS when exposed to low (0.5-3 microM) GABA concentrations. These GABA concentrations activated low-conducting channels (<40 pS) in 78% of the patches, 22% of patches had channels with a maximum conductance above 40 pS. Alphaxalone at concentrations above 1 microM, and pregnanolone at concentrations above 0.1 microM, significantly increased the conductance of initially low-conducting single channels activated by GABA up to seven-fold and at all concentrations tested, both drugs increased open probability and mean open time and decreased closed probability and mean closed time of channels. Both steroids at higher concentrations could directly activate high conductance (>40 pS) chloride channels. Both the directly activated channels and those channels that had been previously affected by alphaxalone were modulated by diazepam, a benzodiazepine drug that is known to specifically modulate GABA(A) channels. The present study is the first one to show that neurosteroids can significantly increase single GABA(A) channel conductance, thus enlarging our current knowledge on the molecular mechanism of action of these compounds.  相似文献   

10.
包永德  朱辉 《生理学报》1996,48(4):401-404
我们以两栖类卵母细胞为功能表达系统,通过注射鲫鱼(Carassiuscarassius)视网膜mRNA,利用电压箝及药物灌流手段,系统地研究了鲫鱼视网膜内氨基酸受体的类型和特征,结果如下:(1)Glu受体:KA可以诱发明显的去极化电流,而且Diazoxide能增强KA诱导的反应,这提示鲫鱼视网膜内某些Clu受体是AMPA选择性亚型(AMPA-preferringsubtype)。(2)CABA受体:GABA能诱发一个快速、光滑的内向电流,绝大部分对GABA的反应可被bicuculline所压抑,而GABA_B受体的激动剂baclofen则无任何作用,这提示,鲫鱼视网膜内大部分是GABA_A受体。  相似文献   

11.
Glutamate receptors of the N-methyl-D-aspartate (NMDA) and non-NMDA type serve different functions during excitatory synaptic transmission. Although many central neurons bear both types of receptor, the evidence concerning the sensitivity of cerebellar Purkinje cells to NMDA is contradictory. To investigate the receptor types present in Purkinje cells, we have used whole-cell and outside-out patch-clamp methods to record from cells in thin cerebellar slices from young rats. At a holding potential of -70 mV (in nominally Mg(2+)-free medium, with added glycine) NMDA caused a whole-cell current response which consisted of a dramatic increase in the frequency of synaptic currents. In the presence of tetrodotoxin (TTX) and the gamma-aminobutyric acidA (GABAA) receptor antagonist bicuculline, spontaneous synaptic currents and responses to NMDA were inhibited. In a proportion of cells a small polysynaptic response to NMDA persisted, which was further reduced by the non-NMDA receptor antagonist 6-cyano-2,3-dihydro-7-nitroquinoxalinedione (CNQX). The non-NMDA glutamate receptor agonists kainate (KA), quisqualate (QA) and s-alpha-amino-3-hydroxy-5-methyl-4-isoazolepropionic acid (s-AMPA), evoked large inward currents due to the direct activation of receptors in Purkinje cells. NMDA applied to excised membrane patches failed to evoke any single-channel currents, whereas s-AMPA and QA caused small inward currents accompanied by marked increases in current noise. Spectral analysis of the s-AMPA noise in patches gave an estimated mean channel conductance of approximately 4 pS.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The present study was undertaken to explore the role of brainstem GABAergic processes in the control of the behavioral states of sleep and wakefulness, and to compare the effects of GABAA agonists and antagonists with those of GABAB agonists and antagonists on these behavioral states. Accordingly, the following drugs were microinjected into the nucleus pontis oralis (NPO) in chronic, unanesthetized cats: muscimol (GABAA agonist), bicuculline (GABAA antagonist), baclofen (GABAB agonist) and phaclofen (GABAB antagonist). The percentage, latency, frequency and duration of each behavioral state were measured in order to quantify the effects of these microinjections on wakefulness and sleep. Microinjections of either muscimol or baclofen immediately induced wakefulness. There was a significant increase in the duration and the percentage of time spent in wakefulness as well as an increase in the latency to active (REM) sleep. These changes were accompanied by a decrease in the percentage of time spent in active and quiet sleep. In contrast, injections of bicuculline or phaclofen produced active sleep. The percentage of time spent in active sleep and the frequency of active sleep increased while the percentage of time spent in wakefulness and the latency to active sleep was significantly reduced. The effects of GABAA receptor agonists and antagonists on wakefulness and active sleep were comparable, but stronger than those of GABAB receptor agonists and antagonists. These data indicate that pontine GABAergic processes acting on both GABAA and GABAB receptors play a critical role in generating and maintaining wakefulness and in controlling the occurrence of state of active sleep.  相似文献   

13.
Coupled potassium channels induced by arachidonic acid in cultured neurons   总被引:2,自引:0,他引:2  
Exposure of the inside surface of patches of membrane excised from cultured rat hippocampal neurons to arachidonic acid (10-100 microM) caused the appearance of potassium currents of variable amplitude similar to those activated by GABA or baclofen in cell-attached patches. The amplitude of single-channel currents increased with time after exposure to 20 or 50 microM arachidonic acid and also increased when arachidonic acid concentration was increased from 20 to 50 or 100 microM. Current-amplitude probability histograms had peaks at integral multiples of an 'elementary' current. It is proposed that arachidonic acid or its metabolites cause synchronous opening and closing of coupled conducting units (co-channels) in cell membranes.  相似文献   

14.
Neurotransmitters have been implicated in regulating growth cone motility and guidance in the developing nervous system. Anatomical and electrophysiological studies show the presence of functional GABAB receptors on adult olfactory receptor neuron (ORN) nerve terminals. Using antisera against the GABAB R1a/b receptor isoforms we show that developing mouse olfactory receptor neurons express GABAB receptors from embryonic day 14 through to adulthood. GABAB receptors are present on axon growth cones from both dissociated ORNs and olfactory epithelial explants. Neurons in the olfactory bulb begin to express glutamic acid decarboxylase (GAD), the synthetic enzyme for GABA, from E16 through to adulthood. When dissociated ORNs were cultured in the presence of the GABAB receptor agonists, baclofen or SKF97541, neurite outgrowth was significantly reduced. Concurrent treatment of the neurons with baclofen and the GABAB receptor antagonist CGP54626 prevented the inhibitory effects of baclofen on ORN neurite outgrowth. These results show that growing ORN axons express GABAB receptors and are sensitive to the effects of GABAB receptor activation. Thus, ORNs in vivo may detect GABA release from juxtaglomerular cells as they enter the glomerular layer and use this as a signal to limit their outgrowth and find synaptic targets in regeneration and development.  相似文献   

15.
The interaction of isoproterenol with beta-adrenergic receptor (beta AR) binding sites was measured in membranes prepared from rat brain cerebral cortical slices previously incubated in the presence or absence of gamma-aminobutyric acid (GABA) receptor agonists. Both GABA and baclofen, but not isoguvacine, altered beta AR agonist binding by increasing the affinity of both the low- and high-affinity binding sites and by increasing the proportion of low-affinity receptors. The response to baclofen was stereoselective, and the effect of GABA was not inhibited by bicuculline. The results suggest that GABAB, but not GABAA, receptor activation modifies the coupling between beta AR and stimulatory guanine nucleotide-binding protein, which may in part explain the ability of baclofen to augment isoproterenol-stimulated cyclic AMP accumulation in brain slices.  相似文献   

16.
GABAA channels were activated by GABA in outside-out patches from rat cultured hippocampal neurons. They were blocked by bicuculline and potentiated by diazepam. In 109 of 190 outside-out patches, no channels were active before exposure to GABA (silent patches). The other 81 patches showed spontaneous channel activity. In patches containing spontaneous channel activity, rapid application of GABA rapidly activated channels. In 93 of the silent patches, channels could be activated by GABA but only after a delay that was sometimes as long as 10 minutes. The maximum channel conductance of the channels activated after a delay increased with GABA concentration from less than 10 pS (0.5 μm GABA) to more than 100 pS (10 mm GABA). Fitting the data with a Hill-type equation gave an EC 50 value of 33 μm and a Hill coefficient of 0.6. The channels showed outward rectification and were chloride selective. In the presence of 1 μm diazepam, the GABA EC 50 decreased to 0.2 μm but the maximum conductance was unchanged. Diazepam decreased the average latency for channel opening. Bicuculline, a GABA antagonist, caused a concentration-dependent decrease in channel conductance. In channels activated with 100 μm GABA the bicuculline IC 50 was 19 μm. The effect of GABA on channel conductance shows that the role of the ligand in GABAA receptor channel function is more complex than previously thought. Received: 23 October 2000/Revised: 27 February 2001  相似文献   

17.
The dependence of activation and blockade of GABA receptors influences on extinction of passive avoidance response from a type of receptors and initial psychoemotional state of mice is shown. The activation of GABAA receptors by muscimol disrupted extinction in norm and did not influence on delay of this process at mice with "behavioral despair". The activation of GABAB receptors by baclofen accelerated extinction of fair memory at mice with depressive-like state. The blockade of GABAA receptors by bicuculline was ineffective in modification of extinction. The blockade of GABAB receptors by phaclofen promoted retention of fear expression at intact mice and facilitation of extinction at "depressive" mice.  相似文献   

18.
The single channel properties of recombinant gamma-aminobutyric acid type A (GABA(A))alphabetagamma receptors co-expressed with the trafficking protein GABARAP were investigated using membrane patches in the outside-out patch clamp configuration from transiently transfected L929 cells. In control cells expressing alphabetagamma receptors alone, GABA activated single channels whose main conductance was 30 picosiemens (pS) with a subconductance state of 20 pS, and increasing the GABA concentration did not alter their conductance. In contrast, when GABA(A) receptors were co-expressed with GABARAP, the GABA-activated single channels displayed multiple, high conductances (> or =40 pS), and GABA (> or =10 microM) was able to increase their conductance, up to a maximum of 60 pS. The mean open time of GABA-activated channels in control cells expressing alphabetagamma receptors alone was 2.3 +/- 0.1 ms for the main 30-pS channel and shorter for the subconductance state (20 pS, 0.8 +/- 0.1 ms). Similar values were measured for the 30- and 20-pS channels active in patches from cells co-expressing GABARAP. However higher conductance channels (> or =40 pS) remained open longer, irrespective of whether GABA or GABA plus diazepam activated them. Plotting mean open times against mean conductances revealed a linear relationship between these two parameters. Since high GABA concentrations increase both the maximum single channel conductance and mean open time of GABA(A) channels co-expressed with GABARAP, trafficking processes must influence ion channel properties. This suggests that the organization of extrasynaptic GABA(A) receptors may provide a range of distinct inhibitory currents in the brain and, further, provide differential drug responses.  相似文献   

19.
The ocellar L-neurons of cockroach Periplaneta americana were used in the present study as model systems to investigate the pharmacological properties of the GABA receptors. To do so, a glass microelectrode was impaled into the axon of the L-neurons to record the membrane potential intracellularly and to monitor membrane response to GABA treatment and cercal stimulation by air puff. The traditional GABA and their receptor agonists were introduced through perfusion and/or iontophoresis to monitor their effects on the L-neurons. The GABA receptor antagonists were administered by perfusion to examine if the response of the L-neurons to GABA and/or cercal stimulation was changed. The results revealed that administration of GABA, muscimol and imidazole acetic acid, two GABAA agonists, produced depolarization on the L-neurons. However, treatment of 3-APS and guanidine acetic acid, another two GABAA agonists, evoked hyperpolarization on the L-neurons. Among those tested antagonists, only picrotoxin, GABAA antagonist, antagonize the depolarization induced by GABA and/or cercal stimulation. More interestingly, administration of strychnine, glycine receptor antagonist, largely attenuated the depolarization response of the L-neurons to cercal stimulation. This attenuation caused by strychnine was even stronger than that initiated by varied GABA antagonists. In addition, phaclofen, a GABAB receptor antagonist, showed no antagonistic effect. These results strongly suggest that the characteristics of GABA receptors of the ocellar L-neurons may differ from those in vertebrates. It may be more likely to be a novel GABA receptor.  相似文献   

20.
Y J Li  S P Duckles 《Life sciences》1991,48(24):2331-2339
The modulatory actions of gamma-aminobutyric acid (GABA) receptor agonists and omega-conotoxin GVIA (CTX) on sympathetic and sensory nerves were examined on contractile responses of the perfused rat mesentery to transmural nerve stimulation (TNS). GABA and baclofen, a selective GABAB receptor agonist, significantly inhibited vasoconstrictor responses to TNS, while muscimol, a selective GABAA receptor agonist, had no effect. In the guanethidine treated and methoxamine-contracted mesentery, TNS caused a vasodilator response which was unaffected by GABA. CTX (10(-8) M) markedly suppressed the vasoconstrictor response to TNS, but did not affect vasodilator responses. These findings suggest that in the rat mesentery: (1) GABA receptors modulate the activity of sympathetic nerves via prejunctional GABAB receptors, but do not influence sensory nerves, and (2) calcium channels which participate in sympathetic nerve activation have different properties than calcium channels in capsaicin-sensitive sensory nerves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号