首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The conserved leucine residues at the 9′ positions in the M2 segments of α1 (L264) and β1 (L259) subunits of the human GABAA receptor were replaced with threonine. Normal or mutant α1 subunits were co-expressed with normal or mutant β1 subunits in Sf9 cells using the baculovirus/Sf9 expression system. Cells in which one or both subunits were mutated had a higher ``resting' chloride conductance than cells expressing wild-type α1β1 receptors. This chloride conductance was blocked by 10 mm penicillin, a recognized blocker of GABAA channels, but not by bicuculline (100 μm) or picrotoxin (100 μm) which normally inhibit the chloride current activated by GABA: nor was it potentiated by pentobarbitone (100 μm). In cells expressing wild-type β1 with mutated α1 subunits, an additional chloride current could be elicited by GABA but the rise time and decay were slower than for wild-type α1β1 receptors. In cells expressing mutated β1 subunits with wild-type or mutated α1 subunits (αβ(L9′T) and α(L9′T)β(L9′T)), no response to GABA could be elicited: this was not due to an absence of GABAA receptors in the plasmalemma because the cells bound [3H]-muscimol. It was concluded that in GABAA channels containing the L9′T mutation in the β1 subunit, GABA-binding does not cause opening of channels, and that the L9′T mutation in either or both subunits gives an open-channel state of the GABAA receptor in the absence of ligand. Received: 17 April 1996/Revised: 5 July 1996  相似文献   

2.
Spontaneous, single channel, chloride currents were recorded in 48% of cell-attached patches on neurones in the CA1 region of rat hippocampal slices. In some patches, there was more than 1 channel active. They showed outward rectification: both channel conductance and open probability were greater at depolarized than at hyperpolarized potentials. Channels activated by γ-aminobutyric acid (GABA) in silent patches on the same neurones had similar conductance and outward rectification. The spontaneous currents were inhibited by bicuculline and potentiated by diazepam. It was concluded that the spontaneously opening channels were constitutively active, nonsynaptic GABAA channels. Such spontaneously opening GABAA channels may provide a tonic inhibitory mechanism in these cells and perhaps in other cells that have GABAA receptors although not having a GABAA synaptic input. They may also be a target for clinically useful drugs such as the benzodiazepines. Received: 31 August 1999/Revised: 2 November 1999  相似文献   

3.
A voltage-activated Ca++ channel has been identified in the apical membranes of cultured rabbit proximal tubule cells using the patch-clamp technique. With 105 mm CaCl2 solution in the pipette and 180 NaAsp in the bath, the channel had a conductance of 10.4 ± 1.0 pS (n= 8) in on-cell patches, and 9.8 ± 1.1 pS (n= 8) in inside-out patches. In both on-cell and inside-out patches, the channel is active by membrane depolarization. For this channel, the permeation to Ba++ and Ca++ is highly selective over Na+ and K+ (PCa(Ba):PNa(K) >200:1). The sensitivity to dihydropyridines is similar to that for L-type channels where the channel was blocked by nifedipine (10 μm), and activated by Bay K 8644 (5 μm). When activated by Bay K 8644, the channel showed subconductance levels. Treatment with forskolin (12.5 μm), phorbol ester (1 μm), or stretching (40 cm water) did not activate this channel. These results indicate that this Ca++ channel is mostly regulated by membrane voltage, and appears to be an epithelial class of L-type Ca++ channel. As such, it may participate in calcium reabsorption during periods of enhanced sodium reabsorption, or calcium signaling in volume regulation, where membrane depolarization occurs for prolonged periods. Received: 1 April 1996/Revised: 5 August 1996  相似文献   

4.
These experiments were conducted to determine the membrane K+ currents and channels in human urinary bladder (HTB-9) carcinoma cells in vitro. K+ currents and channel activity were assessed by the whole-cell voltage clamp and by either inside-out or outside-out patch clamp recordings. Cell depolarization resulted in activation of a Ca2+-dependent outward K+ current, 0.57 ± 0.13 nS/pF at −70 mV holding potential and 3.10 ± 0.15 nS/pF at 30 mV holding potential. Corresponding patch clamp measurements demonstrated a Ca2+-activated, voltage-dependent K+ channel (KCa) of 214 ± 3.0 pS. Scorpion venom peptides, charybdotoxin (ChTx) and iberiotoxin (IbTx), inhibited both the activated current and the KCa activity. In addition, on-cell patch recordings demonstrated an inwardly rectifying K+ channel, 21 ± 1 pS at positive transmembrane potential (V m ) and 145 ± 13 pS at negative V m . Glibenclamide (50 μm), Ba2+ (1 mm) and quinine (100 μm) each inhibited the corresponding nonactivated, basal whole-cell current. Moreover, glibenclamide inhibited K+ channels in inside/out patches in a dose-dependent manner, and the IC50= 46 μm. The identity of this K+ channel with an ATP-sensitive K+ channel (KATP) was confirmed by its inhibition with ATP (2 mm) and by its activation with diazoxide (100 μm). We conclude that plasma membranes of HTB-9 cells contain the KCa and a lower conductance K+ channel with properties consistent with a sulfonylurea receptor-linked KATP. Received: 12 June 1997/Revised: 21 October 1997  相似文献   

5.
A large-conductance (or maxi-) chloride channel was identified in bovine pigmented ciliary epithelial (PCE) cells using inside-out excised patch clamp recording. The channel had a mean conductance of 293 pS when excised patches were bathed in symmetrical 130 mm NaCl although the conductance decreased to 209 pS when the solution bathing the cytoplasmic face of the patch contained only 33 mm NaCl. The channel was highly selective for chloride, with a P Cl/P Na= 24. A flickery, reversible block was produced by the diuretic stilbene 4-acetamido-4′-isothiocyanatostilbene-2,2′-disulfonic acid (SITS), while 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS) produced a permanent block. The channel was rarely active in cell-attached patches and usually required several minutes of polarization before activity could be detected in excised patches, a process known as metagenesis. Once activated, the channel was voltage-dependent and was mainly open within the voltage range −30 to +30 mV closing when the membrane was polarized to larger values. GTPγS (100 μm) activated the channel with a latency of 170 sec when applied to the cytoplasmic face of patches. This activation was not reversible upon return to control solution within the duration of the experiment. We assess the available evidence and suggest a role for this channel in volume regulation. Received: 24 June 1996/Revised: 18 February 1997  相似文献   

6.
A K+ channel with a main conductance of 29 pS was recorded after the incorporation of coronary artery membrane vesicles into lipid bilayers. This channel was identified as an ATP-sensitive K+ channel (KATP) because its activity was diminished by the internal application of 50–250 μm ATP-Na2. Moreover, it was opened when 10–50 μm pinacidil was externally applied. Single-channel records revealed the existence of several (sub)conductance states. At 0 mV and with a 5/250 KCl gradient, the main conductance of the KATP channel was 29 pS. The other (sub)conductance states were less frequent and had discrete values of 12, 17 and 22 pS. Pinacidil stabilized the channel open state primarily in the 29 pS conductance level; whereas ATP inhibited all the conductance levels. In general, KATP channels were characterized by brief openings followed by long closings (open probability, P o ≈ 0.02); only occasionally (3 out of 12 experiments) did the KATP channels have a high open probability (P o ≥ 0.7). Channel activity could be increased or rescued by adding 2.5–10 mm UDP-TRIS and 0.5–2 mm MgCl2 to the internal side of the channel. Received: 7 November 1995/Revised: 10 June 1996  相似文献   

7.
Muscarinic m3 receptor-mediated changes in cytosolic Ca2+ concentration ([Ca2+]l) occur by activation of Ca2+ release channels present in the endoplasmic reticulum membrane and Ca2+ entry pathways across the plasma membrane. In this report we demonstrate the coupling of m3 muscarinic receptors to the activation of a voltage-insensitive, cation-selective channel of low conductance (3.2 ± 0.6 pS; 25 mm Ca2+ as charge carrier) in a fibroblast cell line expressing m3 muscarinic receptor clone (A9m3 cells). Carbachol (CCh)-induced activation of the cation-selective channel occurred both in whole cell and excised membrane patches (CCh on the external side), suggesting that the underlying mechanism involves receptor-channel coupling independent of intracellular messengers. In excised inside-out membrane patches from nonstimulated A9m3 cells GTP (10 μm) and GDP (10 μm) activated cation-selective channels with conductances of approximately 4.3 and 3.3 pS, (25 mm Ca2+ as charge carrier) respectively. In contrast, ATP (10 μm), UTP (10 μm) or CTP (10 μm) failed to activate the channel. Taken together, these results suggest that carbachol and guanine nucleotides regulate the activation of a cation channel that conducts calcium. Received: 14 November 1996/Revised: 4 April 1997  相似文献   

8.
The giant marine alga Valonia utricularis is a classical model system for studying the electrophysiology and water relations of plant cells by using microelectrode and pressure probe techniques. The recent finding that protoplasts can be prepared from the giant ``mother cells' (Wang, J., Sukhorukov, V.L., Djuzenova, C.S., Zimmermann, U., Müller, T., Fuhr, G., 1997, Protoplasma 196:123–134) allowed the use of the patch-clamp technique to examine ion channel activity in the plasmalemma of this species. Outside-out and cell-attached experiments displayed three different types of voltage-gated Cl channels (VAC1, VAC2, VAC3, Valonia Anion Channel 1,2,3), one voltage-gated K+ channel (VKC1, Valonia K + Channel 1) as well as stretch-activated channels. In symmetrical 150 mm Cl media, VAC1 was most frequently observed and had a single channel conductance of 36 ± 7 pS (n= 4) in the outside-out and 33 ± 5 pS (n= 10) in the cell-attached configuration. The reversal potential of the corresponding current-voltage curves was within 0 ± 4 mV (n= 4, outside-out) and 9 ± 7 mV (n= 10, cell-attached) close to the Nernst potential of Cl and shifted towards more negative values when cell-attached experiments were performed in asymmetrical 50:150 mm Cl media (bath/pipette; E Cl− −20 ± 7 mV (n= 4); Nernst potential −28 mV). Consistent with a selectivity for Cl, VAC1 was inhibited by 100 μM DIDS (4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid). VAC1 was activated by a hyperpolarization of the patch. Boltzmann fits of the channel activity under symmetrical 150 mm Cl conditions yielded a midpoint potential of −12 ± 5 mV (n= 4, outside-out) and −3 ± 6 mV (n= 9, cell-attached) and corresponding apparent minimum gating charges of 15 ± 3 (n= 4) and 18 ± 5 (n= 9). The midpoint potential shifted to more negative values in the presence of a Cl gradient. VAC2 was activated by voltages more negative than E Cl− and was always observed together with VAC1, but less frequently. It showed a ``flickering' gating. The single channel conductance was 99 ± 10 pS (n= 6). VAC3 was activated by membrane depolarization and frequently exhibited several subconductance states. The single channel conductance of the main conductance state was 36 ± 5 pS (n= 5). VKC1 was also activated by positive clamped voltages. Up to three conductance states occurred whereby the main conductance state had a single channel conductance of 124 ± 27 pS (n= 6). In the light of the above results it seems to be likely that VAC1 contributes mainly to the Cl conductance of the plasmalemma of the turgescent ``mother cells' and that this channel (as well as VAC2) can operate in the physiological membrane potential range. The physiological significance of VAC3 and VKC1 is unknown, but may be related (as the stretch-activated channels) to processes involved in turgor regulation. Received: 24 June 1999/Revised: 2 September 1999  相似文献   

9.
We identified a Ca2+-sensitive cation channel in acutely dissociated epithelial cells from the endolymphatic sac (ES) of guinea pigs using the patch-clamp technique. Single-channel recordings showed that the cation channel had a conductance of 24.0 ± 1.3 pS (n= 8) in our standard solution. The relative ionic permeability of the channel was in the order K+= Na+ > Ca2+≫ Cl. This channel was weakly voltage-dependent but was strongly activated by Ca2+ on the cytosolic side at a concentration of around 1 mm in inside-out excised patches. With cell-attached patches, however, the channel was activated by much lower Ca2+ concentrations. Treatment of the cells, under cell-attached configuration, with ionomycin (10 μm), carbonyl cyanide 3-chlorophenylhydrazone (CCCP, 20 μm), or ATP (1 mm), which increased intracellular Ca2+ concentration ([Ca2+]i), activated the channel at an estimated [Ca2+]i from 0.6 μm to 10 μm. It is suggested that some activators of the channel were deteriorated or washed out during the formation of excised patches. Based on this Ca2+ sensitivity, we speculated that the channel contributes to the regulation of ionic balance and volume of the ES by absorbing Na+ under certain pathological conditions that will increase [Ca2+]i. This is the first report of single-channel recordings in endolymphatic sac epithelial cells. Received: 24 October 2000/Revised: 10 April 2001  相似文献   

10.
ATP-sensitive K+ (KATP) channels have been characterized in pituitary GH3 cells with the aid of the patch-clamp technique. In the cell-attached configuration, the presence of diazoxide (100 μm) revealed the presence of glibenclamide-sensitive KATP channel exhibiting a unitary conductance of 74 pS. Metabolic inhibition induced by 2,4-dinitrophenol (1 mm) or sodium cyanide (300 μm) increased KATP channel activity, while nicorandil (100 μm) had no effect on it. In the inside-out configuration, Mg-ATP applied intracellularly suppressed the activity of KATP channels in a concentration-dependent manner with an IC50 value of 30 μm. The activation of phospholipase A2 caused by mellitin (1 μm) was found to enhance KATP channel activity and further application of aristolochic acid (30 μm) reduced the mellitin-induced increase in channel activity. The challenging of cells with 4,4′-dithiodipyridine (100 μm) also induced KATP channel activity. Diazoxide, mellitin and 4,4′-dithiodipyridine activated the KATP channels that exhibited similar channel-opening kinetics. In addition, under current-clamp conditions, the application of diazoxide (100 μm) hyperpolarized the membrane potential and reduced the firing rate of spontaneous action potentials. The present study clearly indicates that KATP channels similar to those seen in pancreatic β cells are functionally expressed in GH3 cells. In addition to the presence of Ca2+-activated K+ channels, KATP channels found in these cells could thus play an important role in controlling hormonal release by regulating the membrane potential. Received: 19 June 2000/Revised: 13 September 2000  相似文献   

11.
Patch clamp experiments were performed on two human osteosarcoma cell lines (MG-63 and SaOS-2 cells) that show an osteoblasticlike phenotype to identify and characterize the specific K channels present in these cells. In case of MG-63 cells, in the cell-attached patch configuration (CAP) no channel activity was observed in 2 mm Ca Ringer (control condition) at resting potential. In contrast, a maxi-K channel was observed in previously silent CAP upon addition of 50 nm parathyroid hormone (PTH), 5 nm prostaglandin E2 (PGE2) or 0.1 mm dibutyryl cAMP + 1 μm forskolin to the bath solution. However, maxi-K channels were present in excised patches from both stimulated and nonstimulated cells in 50% of total patches tested. A similar K channel was also observed in SaOS-2 cells. Characterization of this maxi-K channel showed that in symmetrical solutions (140 mm K) the channel has a conductance of 246 ± 4.5 pS (n = 7 patches) and, when Na was added to the bath solution, the permeability ratio (PK/PNa) was 10 and 11 for MG-63 and SaOS-2 cells respectively. In excised patches from MG-63 cells, the channel open probability (P o ) is both voltage- (channel opening with depolarization) and Ca-dependent; the presence of Ca shifts the P o vs. voltage curve toward negative membrane potential. Direct modulation of this maxi-K channel via protein kinase A (PKA) is very unlikely since in excised patches the activity of this channel is not sensitive to the addition of 1 mm ATP + 20 U/ml catalytic subunit of PKA. We next evaluated the possibility that PGE2 or PTH stimulated the channel through a rise in intracellular calcium. First, calcium uptake (45Ca++) by MG-63 cells was stimulated in the presence of PTH and PGE2, an effect inhibited by Nitrendipine (10 μm). Second, whereas PGE2 stimulated the calcium-activated maxi-K channel in 2 mm Ca Ringer in 60% of patches studied, in Ca-free Ringer bath solution, PGE2 did not open any channels (n = 10 patches) nor did cAMP + forskolin (n = 3 patches), although K channels were present under the patch upon excision. In addition, in the presence of 2 mm Ca Ringer and 10 μm Nitrendipine in CAP configuration, PGE2 (n = 5 patches) and cAMP + forskolin (n = 2 patches) failed to open K channels present under the patch. As channel activation by phosphorylation with the catalytic subunit of PKA was not observed, and Nitrendipine addition to the bath or the absence of calcium prevented the opening of this channel, it is concluded that activation of this channel by PTH, PGE2 or dibutyryl cAMP + forskolin is due to an increase in intracellular calcium concentration via Ca influx. Received: 17 September 1995/Revised: 7 December 1995  相似文献   

12.
The outer sulcus epithelium was recently shown to absorb cations from the lumen of the gerbil cochlea. Patch clamp recordings of excised apical membrane were made to investigate ion channels that participate in this reabsorptive flux. Three types of channel were observed: (i) a nonselective cation (NSC) channel, (ii) a BK (large conductance, maxi K or K Ca ) channel and (iii) a small K+ channel which could not be fully characterized. The NSC channel found in excised insideout patch recordings displayed a linear current-voltage (I-V) relationship (27 pS) and was equally conductive for Na+ and K+, but not permeable to Cl or N-methyl-d-glucamine. Channel activity required the presence of Ca2+ at the cytosolic face, but was detected at Ca2+ concentrations as low as 10−7 m (open probability (P o ) = 0.11 ± 0.03, n= 8). Gadolinium decreased P o of the NSC channel from both the external and cytosolic side (IC50∼ 0.6 μm). NSC currents were decreased by amiloride (10 μm− 1 mm) and flufenamic acid (0.1 mm). The BK channel was also frequently (38%) observed in excised patches. In symmetrical 150 mm KCl conditions, the I-V relationship was linear with a conductance of 268 pS. The Goldman-Hodgkin-Katz equation for current carried solely by K+ could be fitted to the I-V relationship in asymmetrical K+ and Na+ solutions. The channel was impermeable to Cl and N-methyl-d-glucamine. P o of the BK channel increased with depolarization of the membrane potential and with increasing cytosolic Ca2+. TEA (20 mm), charybdotoxin (100 nm) and Ba2+ (1 mm) but not amiloride (1 mm) reduced P o from the extracellular side. In contrast, external flufenamic acid (100 μm) increased P o and this effect was inhibited by charybdotoxin (100 nm). Flufenamic acid inhibited the inward short-circuit current measured by the vibrating probe and caused a transient outward current. We conclude that the NSC channel is Ca2+ activated, voltage-insensitive and involved in both constitutive K+ and Na+ reabsorption from endolymph while the BK channel might participate in the K+ pathway under stimulated conditions that produce an elevated intracellular Ca2+ or depolarized membrane potential. Received: 14 October 1999/Revised: 10 December 1999  相似文献   

13.
The lipid bilayer technique was used to examine the effects of the ATP-sensitive K+ channel inhibitor (glibenclamide) and openers (diazoxide, minoxidil and cromakalim) and Cl channel activators (GABA and diazepam) on two types of chloride channels in the sarcoplasmic reticulum (SR) from rabbit skeletal muscle. Neither diazepam at 100 μm nor GABA at 150 μm had any significant effect on the conductance and kinetics of the 75 pS small chloride (SCl) channel. Unlike the 150 pS channel, the SCl channel is sensitive to cytoplasmic glibenclamide with K i ∼ 30 μm. Glibenclamide induced reversible decline in the values of current (maximal current amplitude, I max and average mean current, I′) and kinetic parameters (frequency of opening F o , probability of the channel being open P o and mean open time, T o , of the SCl channel. Glibenclamide increased mean closed time, T c , and was a more potent blocker from the cytoplasmic side (cis) than from the luminal side (trans) of the channel. Diazoxide increased I′, P o , and T o in the absence of ATP and Mg2+ but it had no effect on I max and also failed to activate or remove the glibenclamide- and ATP-induced inhibition of the SCl channel. Minoxidil induced a transient increase in I′ followed by an inhibition of I max, whereas cromakalim reduced P o and I′ by increasing channel transitions to the closed state and reducing T o without affecting I max. The presence of diazoxide, minoxidil or cromakalim on the cytoplasmic side of the channel did not prevent [ATP] cis or [glibenclamide] cis from blocking the channel. The data suggest that the action(s) of these drugs are not due to their effects on the phosphorylation of the channel protein. The glibenclamide- and cromakalim-induced effects on the SCl channel are mediated via a ``flicker' type block mechanism. Modulation of the SCl channel by [diazoxide] cis and [glibenclamide] cis highlights the therapeutic potential of these drugs in regulating the Ca2+-counter current through this channel. Received: 2 September 1997/Revised: 20 March 1998  相似文献   

14.
Properties of large conductance Ca2+-activated K+ channels were studied in the soma of motoneurones visually identified in thin slices of neonatal rat spinal cord. The channels had a conductance of 82 ± 5 pS in external Ringer solution (5.6 mm K+ o //155 mm K+ i ) and 231 ± 4 pS in external high-K o solution (155 mm K+ o //155 mm K+ i ). The channels were activated by depolarization and by an increase in internal Ca2+ concentration. Potentials of half-maximum channel activation (E50) were −13, −34, −64 and −85 mV in the presence of 10−6, 10−5, 10−4 and 10−3 m internal Ca2+, respectively. Using an internal solution containing 10−4 m Ca2+, averaged KCa currents showed fast activation within 2–3 msec after a voltage step to +50 mV. Averaged KCa currents did not inactivate during 400 msec voltage pulses. External TEA reduced the apparent single-channel amplitude with a 50% blocking concentration (IC50) of 0.17 ± 0.02 mm. KCa channels were completely suppressed by externally applied 100 mm charybdotoxin. It is concluded that KCa channels activated by Ca2+ entry during the action potential play an important role in the excitability of motoneurones. Received: 7 November 1996/Revised: 29 October 1997  相似文献   

15.
The present study demonstrates that B-type Ca2+ channels observed in rat ventricular myocytes markedly reacted to agents known to affect the ion-motive plasma membrane Ca2+-ATPase (PMCA) pump. Chlorpromazine (CPZ)-activated B-type Ca2+ channels were completely blocked by internal application of PMCA pump inhibitors, namely La3+ (100 μm), eosin (10 μm) and AIF3 (100 μm). Calmodulin (50 U/ml), the main endogenous positive regulator of PMCA, was unable to activate but significantly reduced CPZ-activated B-type channel activity. In the same manner, ATP (1 and 4 mm), the main energizing substrate of PMCA, was able to reversibly and significantly reduce this activity in a dose-dependent manner. Interestingly, anti-PMCA antibody 5F10, but not anti-Na/K ATPase antibody (used as a negative control) induced a marked Ba2+-conducting channel activity that shared the same characteristics with that of CPZ-activated B-type channels. 5F10-Activated channels were mostly selective towards Ba2+, mainly had three observed conductance levels (23, 47 and 85 pS), were observed with a frequency of about 1 out of 5 membrane patches and were completely blocked by 10 μm eosin. These results suggest that B-type Ca2+ channels are some form of the PMCA pump. Received: 24 July 2000/Revised: 5 October 2000  相似文献   

16.
Large Conductance Ca2+-Activated K+ Channels in Human Meningioma Cells   总被引:2,自引:0,他引:2  
Cells from ten human meningiomas were electrophysiologically characterized in both living tissue slices and primary cultures. In whole cells, depolarization to voltages higher than +80 mV evoked a large K+ outward current, which could be blocked by iberiotoxin (100 nm) and TEA (half blocking concentration IC50= 5.3 mm). Raising the internal Ca2+ from 10 nm to 2 mm shifted the voltage of half-maximum activation (V 1/2) of the K+ current from +106 to +4 mV. Respective inside-out patch recordings showed a voltage- and Ca2+-activated (BK Ca ) K+ channel with a conductance of 296 pS (130 mm K+ at both sides of the patch). V 1/2 of single-channel currents was +6, −12, −46, and −68 mV in the presence of 1, 10, 100, and 1000 μm Ca2+, respectively, at the internal face of the patch. In cell-attached patches the open probability (P o ) of BK Ca channels was nearly zero at potentials below +80 mV, matching the activation threshold for whole-cell K+ currents with 10 nm Ca2+ in the pipette. Application of 20 μm cytochalasin D increased P o of BK Ca channels in cell-attached patches within minutes. These data suggest that the activation of BK Ca channels in meningioma cells does not only depend on voltage and internal Ca2+ but is also controlled by the cytoskeleton. Received 18 June 1999/Revised: 18 January 2000  相似文献   

17.
A large conductance, Ca2+-activated K+ channel of the BK type was examined in cultured pituitary melanotrophs obtained from adult male rats. In cell-attached recordings the slope conductance for the BK channel was ≈190 pS and the probability (P o ) of finding the channel in the open state at the resting membrane potential was low (<<0.1). Channels in inside-out patches and in symmetrical 150 mm K+ had a conductance of ≈260 pS. The lower conductance in the cell-attached recordings is provisionally attributed to an intracellular K+ concentration of ≈113 mm. The permeability sequence, relative to K+, was K+ > Rb+ (0.87) > NH+ 4 (0.17) > Cs+≥ Na+ (≤0.02). The slope conductance for Rb+ was much less than for K+. Neither Na+ nor Cs+ carried measurable currents and 150 mm internal Cs+ caused a flickery block of the channel. Internal tetraethylammonium ions (TEA+) produced a fast block for which the dissociation constant at 0 mV (K D (0 mV)) was 50 mm. The K D (0 mV) for external TEA+ was much lower, 0.25 mm, and the blocking reaction was slower as evidenced by flickery open channel currents. With both internal and external TEA+ the blocking reaction was bimolecular and weakly voltage dependent. External charybdotoxin (40 nm) caused a large and reversible decrease of P o . The P o was increased by depolarization and/or by increasing the concentration of internal Ca2+. In 0.1 μm Ca2+ the half-maximal P o occurred at ≈100 mV; increasing Ca2+ to 1 μm shifted the voltage for the half-maximal P o to −75 mV. The Ca2+ dependence of the gating was approximated by a fourth power relationship suggesting the presence of four Ca2+ binding sites on the BK channel. Received: 23 October/Revised: 15 December 1995  相似文献   

18.
The effects of thyroid status on the properties of ATP-sensitive potassium channels were investigated. Single-channel recordings were made using excised inside-out membrane patches from enzymatically dissociated ventricular myocytes from hearts of control and thyroidectomized rats and each group was studied with and without administration of thyroid hormone. In patches excised from hypothyroid myocytes the IC50 for ATP inhibition of KATP channels was 110 μm. This value was 3-fold higher than the IC50 in control myocytes (43 μm). Treatment of hypothyroid rats to restore physiological levels of thyroid hormone (tri-iodothyronine, T3), resulted in a return to normal ATP-sensitivity (IC50= 46 μm). In patches from animals rendered hyperthyroid, the IC50 for ATP was 50 μm and this value was not significantly different from the control. There was no difference in the cooperativity of ATP-binding (Hill coefficient, nH) among control (nH= 2.2), hypothyroid (nH= 2.1), T3-treated (nH= 2.0) and hyperthyroid groups (nH= 2.4). The unitary conductance was unchanged and there was no apparent change in intraburst kinetics between examples of single KATP channels from control and hypothyroid rats. Action potentials recorded in myocytes from hypothyroid rats were significantly shortened by 50 μm levcromakalim, a KATP channel opener (P < 0.001) but unchanged in control myocytes. We conclude that hypothyroidism significantly decreased the ATP-sensitivity of KATP channels, whereas the induction of hyperthyroid conditions did not alter the ATP-sensitivity of these channels. Thus, hypothyroidism is likely to have important physiological consequences under circumstances in which KATP channels are activated, such as during ischemia. Received: 1 July 1997/Revised: 24 December 1997  相似文献   

19.
Muscarinic receptor-linked G protein, G i , can directely activate the specific K+ channel (I K(ACh)) in the atrium and in pacemaker tissues in the heart. Coupling of G i to the K+ channel in the ventricle has not been well defined. G protein regulation of K+ channels in isolated human ventricular myocytes was examined using the patch-clamp technique. Bath application of 1 μm acetylcholine (ACh) reversibly shortened the action potential duration to 74.4 ± 12.1% of control (at 90% repolarization, mean ±sd, n= 8) and increased the whole-cell membrane current conductance without prior β-adrenergic stimulation in human ventricular myocytes. The ACh effect was reversed by atropine (1 μm). In excised inside-out patch configurations, application of GTPγS (100 μm) to the bath solution (internal surface) caused activation of I K(ACh) and/or the background inwardly-rectifying K+ channel (I K1) in ventricular cell membranes. I K(ACh) exhibited rapid gating behavior with a slope conductance of 44 ± 2 pS (n= 25) and a mean open lifetime of 1.8 ± 0.3 msec (n= 21). Single channel activity of GTPγS-activated I K1 demonstrated long-lasting bursts with a slope conductance of 30 ± 2 pS (n= 16) and a mean open lifetime of 36.4 ± 4.1 msec (n= 12). Unlike I K(ACh), G protein-activated I K1 did not require GTP to maintain channel activity, suggesting that these two channels may be controlled by G proteins with different underlying mechanisms. The concentration of GTP at half-maximal channel activation was 0.22 μm in I K(ACh) and 1.2 μm in I K1. Myocytes pretreated with pertussis toxin (PTX) prevented GTP from activating these channels, indicating that muscarinic receptor-linked PTX-sensitive G protein, G i , is essential for activation of both channels. G protein-activated channel characteristics from patients with terminal heart failure did not differ from those without heart failure or guinea pig. These results suggest that ACh can shorten the action potential by activating I K(ACh) and I K1 via muscarinic receptor-linked G i proteins in human ventricular myocytes. Received: 23 September 1996/Revised: 18 December 1996  相似文献   

20.
Increasing evidence is now accumulating for the involvement of the cystic fibrosis transmembrane conductance regulator (CFTR) in the control of the outwardly rectifying chloride channel (ORCC). We have examined the sensitivity of ORCC to the sulfonylurea drug glibenclamide in Hi-5 (Trichoplusia ni) insect cells infected with recombinant baculovirus expressing either wild-type CFTR, ΔF508-CFTR or E. coliβ galactosidase cDNA and in control cells either infected with virus alone or uninfected. Iodide efflux and single channel patch-clamp experiments confirmed that forskolin and 1-methyl-3-isobutyl xanthine (IBMX) or 7-methyl-1,3 dipropyl xanthine (DPMX) activate CFTR channels (unitary conductance: 9.1 ± 1.6 pS) only in cells expressing CFTR. In contrast, we identified 4-acetamido-4′-isothiocyanatostilbene-2,2′-disulfonic acid (SITS)-sensitive ORCC in excised membrane patches in any of the cells studied, with similar conductance (22 ± 2.5 pS at −80 mV; 55 ± 4.1 pS at +80 mV) and properties. In the presence of 500 μm SITS, channel open probability (P o ) of ORCC was reversibly reduced to 0.05 ± 0.01 in CFTR-cells, to 0.07 ± 0.02 in non-CFTR expressing cells and to 0.05 ± 0.02 in ΔF508-cells. In Hi-5 cells that did not express CFTR, glibenclamide failed to inhibit ORCC activity even at high concentrations (100 μm), whereas 500 μm SITS reversibly inhibited ORCC. In contrast in cells expressing CFTR or ΔF508, glibenclamide dose dependently (IC50= 17 μm, Hill coefficient 1.2) and reversibly inhibited ORCC. Cytoplasmic application of 100 μm glibenclamide reversibly reduced P o from 0.88 ± 0.03 to 0.09 ± 0.02 (wash: P o = 0.85 ± 0.1) in CFTR cells and from 0.89 ± 0.05 to 0.08 ± 0.05 (wash: P o = 0.87 ± 0.1) in ΔF508 cells. In non-CFTR expressing cells, glibenclamide (100 μm) was without effect on P o (control: P o = 0.89 ± 0.09, glib.: P o = 0.86 ± 0.02; wash: P o = 0.87 ± 0.05). These data strongly suggest that the expression of CFTR confers glibenclamide sensitivity to the ORCC in Hi-5 cells. Received: 23 October 1998/Revised: 29 December 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号