首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 705 毫秒
1.
Excitatory synaptic currents in Purkinje cells   总被引:13,自引:0,他引:13  
The N-methyl-D-aspartate (NMDA) and non-NMDA classes of glutamate receptor combine in many regions of the central nervous system to form a dual-component excitatory postsynaptic current. Non-NMDA receptors mediate synaptic transmission at the resting potential, whereas NMDA receptors contribute during periods of postsynaptic depolarization and play a role in the generation of long-term synaptic potentiation. To investigate the receptor types underlying excitatory synaptic transmission in the cerebellum, we have recorded excitatory postsynaptic currents (EPSCS), by using whole-cell techniques, from Purkinje cells in adult rat cerebellar slices. Stimulation in the white matter or granule-cell layer resulted in an all-or-none synaptic current as a result of climbing-fibre activation. Stimulation in the molecular layer caused a graded synaptic current, as expected for activation of parallel fibres. When the parallel fibres were stimulated twice at an interval of 40 ms, the second EPSC was facilitated; similar paired-pulse stimulation of the climbing fibre resulted in a depression of the second EPSC. Both parallel-fibre and climbing-fibre responses exhibited linear current-voltage relations. At a holding potential of -40 mV or in the nominal absence of Mg2+ these synaptic responses were unaffected by the NMDA receptor antagonist 2-amino-5-phosphonovaleric acid (APV), but were blocked by the non-NMDA receptor antagonist 6-cyano-2,3-dihydro-7-nitroquinoxalinedione (CNQX). NMDA applied to the bath failed to evoke an inward current, whereas aspartate or glutamate induced a substantial current; this current was, however, largely reduced by CNQX, indicating that non-NMDA receptors mediate this response. These results indicate that both types of excitatory input to adult Purkinje cells are mediated exclusively by glutamate receptors of the non-NMDA type, and that these cells entirely lack NMDA receptors.  相似文献   

2.
The expression of a receptor subtype for one type of excitatory amino acid agonist, t-ACPD, was examined in developing Purkinje cells of cerebellar slices. The t-ACPD-induced responses were compared with those induced by QA in current response, single cell Ca2+ imaging and changes in the miniature currents in the same preparation. It was found that t-ACPD induced a single component of inward current, and an increase in the frequency of miniature currents associated with the presence of external Ca2+, but was ineffective at mobilizing intracellular Ca2+ even in the presence of external Ca2+. The present study suggests the expression of at least two types of metabotropic receptors in the Purkinje cell region, one of which, expressed in the Purkinje cell dendrites, is highly sensitive to QA, but relatively insensitive to t-ACPD, and the other of which is a t-ACPD-sensitive receptor expressed on the presynaptic terminals of the neurons making synapses onto Purkinje cells.  相似文献   

3.
In the mammalian central nervous system, slow synaptic excitation involves the activation of metabotropic glutamate receptors (mGluRs). It has been proposed that C1-type transient receptor potential (TRPC1) channels underlie this synaptic excitation, but our analysis of TRPC1-deficient mice does not support this hypothesis. Here, we show unambiguously that it is TRPC3 that is needed for mGluR-dependent synaptic signaling in mouse cerebellar Purkinje cells. TRPC3 is the most abundantly expressed TRPC subunit in Purkinje cells. In mutant mice lacking TRPC3, both slow synaptic potentials and mGluR-mediated inward currents are completely absent, while the synaptically mediated Ca2+ release signals from intracellular stores are unchanged. Importantly, TRPC3 knockout mice exhibit an impaired walking behavior. Taken together, our results establish TRPC3 as a new type of postsynaptic channel that mediates mGluR-dependent synaptic transmission in cerebellar Purkinje cells and is crucial for motor coordination.  相似文献   

4.
N-methyl-D-aspartate (NMDA) receptors are associated with many forms of synaptic plasticity. Their expression level and subunit composition undergo developmental changes in several brain regions. In the mouse cerebellum, beside a developmental switch between NR2B and NR2A/C subunits in granule cells, functional postsynaptic NMDA receptors are seen in Purkinje cells of neonate and adult but not juvenile rat and mice. A presynaptic effect of NMDA on GABA release by cerebellar interneurons was identified recently. Nevertheless whereas NMDA receptor subunits are detected on parallel fiber terminals, a presynaptic effect of NMDA on spontaneous release of glutamate has not been demonstrated. Using mouse cerebellar cultures and patch-clamp recordings we show that NMDA facilitates glutamate release onto Purkinje cells in young cultures via a presynaptic mechanism, whereas NMDA activates extrasynaptic receptors in Purkinje cells recorded in old cultures. The presynaptic effect of NMDA on glutamate release is also observed in Purkinje cells recorded in acute slices prepared from juvenile but not from adult mice and requires a specific protocol of NMDA application.  相似文献   

5.
The effect of L-glutamate, kainate and N-methyl-D-aspartate (NMDA) on membrane currents of astrocytes, oligodendrocytes and their respective precursors was studied in acute spinal cord slices of rats between the ages of postnatal days 5 and 13 using the whole-cell patch-clamp technique. L-glutamate (10(-3) M), kainate (10(-3) M), and NMDA (2x10(-3) M) evoked inward currents in all glial cells. Kainate evoked larger currents in precursors than in astrocytes and oligodendrocytes, while NMDA induced larger currents in astrocytes and oligodendrocytes than in precursors. Kainate-evoked currents were blocked by the AMPA/kainate receptor antagonist CNQX (10(-4) M) and were, with the exception of the precursors, larger in dorsal than in ventral horns, as were NMDA-evoked currents. Currents evoked by NMDA were unaffected by CNQX and, in contrast to those seen in neurones, were not sensitive to Mg2+. In addition, they significantly decreased during development and were present when synaptic transmission was blocked in a Ca2+-free solution. NMDA-evoked currents were not abolished during the block of K+ inward currents in glial cells by Ba2+; thus they are unlikely to be mediated by an increase in extracellular K+ during neuronal activity. We provide evidence that spinal cord glial cells are sensitive to the application of L-glutamate, kainate and transiently, during postnatal development, to NMDA.  相似文献   

6.
It is known from the experimental data that at different cerebellar neurons there are voltage-dependent Ca2+ channels, NMDA receptors, metabotropic glutamate and GABAB receptors. This receptor arrangement ensures that activation of excitatory and inhibitory input results in changes in activity of protein kinases and phosphatases and subsequent modification of synaptic efficacy. The mechanism of synaptic plasticity is advanced that in accordance with the known experimental data concerning the modification of excitatory and inhibitory inputs to Purkinje cells, granule cells, and deep cerebellar nuclei cells. The mechanism is based on a postulate that phosphorylation/dephosphorylation of AMPA (GABAA) receptors on cerebellar cells causes the LTP/LTD of excitatory (LTD/LTP of inhibitory) transmission. It is assumed that modification rules for Purkinje cells, granule cells, and deep cerebellar nuclei cells, wherein cGMP-dependent protein kinase G is involved in synaptic plasticity, are distinct from those of hippocampal/neocortical cells, wherein cAMP-dependent protein kinase A is involved in synaptic plasticity, since cGMP (cAMP) concentration decreases (increases) with Ca2+ rise.  相似文献   

7.
K A Jones  R W Baughman 《Neuron》1991,7(4):593-603
N-methyl-D-aspartate (NMDA) and non-NMDA receptors play a key role in synaptic transmission and plasticity in the vertebrate central nervous system. Previous studies have suggested that although both receptor types are present at synapses, the NMDA receptors may be relatively uniformly distributed. We have combined iontophoretic mapping of NMDA and non-NMDA receptors with immunohistochemical localization of synaptic vesicles along dendrites of single neocortical neurons to determine the relationship between NMDA and non-NMDA receptor distribution and the location of synapses. We find that when corrections for glutamate diffusion are made, NMDA responses are concentrated at focal "hot spots" that coincide with non-NMDA hot spots and that there is an excellent correlation between these hot spots and synapses.  相似文献   

8.
Cerebellar long-term depression (LTD) is a model of synaptic plasticity in which conjunctive stimulation of parallel fiber and climbing fiber inputs to a Purkinje neuron induces a persistent depression of the parallel fiber-Purkinje neuron synapse. We report that an analogous phenomenon may be elicited in the cultured mouse Purkinje neuron when iontophoretic glutamate application and depolarization of the Purkinje neurons are substituted for parallel fiber and climbing fiber stimulation, respectively. The induction of LTD in these cerebellar cultures requires activation of both ionotropic (AMPA) and metabotropic quisqualate receptors, together with depolarization in the presence of external Ca2+. This postsynaptic alteration is manifest as a depression of glutamate or AMPA currents, but not aspartate or NMDA currents. These results strengthen the contention that the expression of cerebellar LTD is at least in part postsynaptic and provide evidence that activation of both ionotropic and metabotropic quisqualate receptors are necessary for LTD induction.  相似文献   

9.
The effects of peptide fragments of the beta-amyloid precursor protein (betaAPP) on parallel fiber (PF)-Purkinje cell synaptic transmission in the rat cerebellum were examined. Transient inward currents associated with calcium influx were induced by localized applications of the 105-amino acid carboxy-terminal fragment (CT105) of betaAPP to discrete dendritic regions of intact Purkinje cells. betaAPP and the amyloid beta (Abeta) peptide fragments Abeta1-16, Abeta25-35, and Abeta1-42 had little or no effect. Inward currents were also observed following applications of CT105 to isolated patches of somatic Purkinje cell membrane. All five proteins/peptides induced some depression of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor-mediated synaptic transmission between PFs and Purkinje cells, through a combination of pre- and postsynaptic effects. CT105 induced the greatest depression, which spread to distant synapses following local application and which was prevented by inhibition of nitric oxide synthase. These data indicate that CT fragments of the betaAPP can modulate AMPA-mediated glutamatergic synaptic transmission in the cerebellar cortex. These fragments may therefore be considered alternative candidates for some of the neurotoxic effects of Alzheimer's disease.  相似文献   

10.
At the cerebellar synapses between parallel fibers (PFs) and Purkinje cells (PCs), long-term depression (LTD) of the excitatory synaptic current has been assumed to be independent of the N-methyl-D-aspartate (NMDA) receptor activation because PCs lack NMDA receptors. However, we now report that LTD is suppressed by NMDA receptor antagonists that act on presynaptic NMDA receptors of the PFs. This effect is still observed when the input is restricted to a single fiber. Therefore, LTD does not require the spatial integration of multiple inputs. In contrast, it involves a temporal integration, since reliable LTD induction requires the PFs to fire two action potentials in close succession. This implies that LTD will selectively depress the response to a burst of presynaptic action potentials.  相似文献   

11.
Kondoh T  Nishizaki T  Aihara H  Tamaki N 《Life sciences》2001,68(15):1761-1767
The present study was conducted to assess N-methyl-D-aspartate (NMDA)-responsible receptors in cultured human astrocytes by monitoring whole-cell membrane currents. NMDA generated currents, that are potentiated by glycine and blocked by Mg2+, with the current/voltage relation showing a reversal potential of +/- 0 mV. The currents were not inhibited by either the selective NMDA receptor antagonist, D-2-amino-5-phosphonovaleric acid (APV), or the non-selective ionotropic glutamate receptor antagonist, kynurenic acid. The currents were inhibited only by 19% in Ca2+-free extracellular solution. Furthermore, GDPbetaS, a broad G-protein inhibitor, inhibited NMDA-induced currents to 82% of original levels. The results of the present study thus suggest that an NMDA-responsible, APV-insensitive receptor with low Ca2+ permeability, distinct from the neuronal NMDA receptors, is expressed in human astrocytes and that the receptor is regulated in part by an unknown G-protein-linked receptor.  相似文献   

12.
Pugh JR  Raman IM 《Biophysical journal》2005,88(3):1740-1754
Neurons of the cerebellar nuclei receive GABAergic input from Purkinje cells. Purkinje boutons have several closely spaced presynaptic densities without GABA transporters, raising the possibility that neurotransmitter released by one presynaptic site diffuses to multiple postsynaptic sites. To test whether such local spillover may contribute to transmission, we studied gating of GABA(A) receptors at 31-33 degrees C in cerebellar nuclear neurons acutely dissociated from mice. Currents were evoked by rapid application of long steps, brief pulses, and high-frequency trains of GABA to outside-out patches. Receptors desensitized and deactivated rapidly, and dose-response measurements estimated an EC(50) of approximately 30 microM. From these data, a kinetic scheme was developed that replicated the recorded currents. Next, we simulated diffusion of GABA in the synaptic cleft, constrained by previous electron microscopic data, and drove the kinetic GABA(A) receptor model with modeled concentration transients. Simulations predicted receptor occupancies of approximately 100% directly opposite the release site and approximately 50% at distant postsynaptic densities, such that receptors up to 700 nm from a release site opened on the timescale of the inhibitory postsynaptic currents before desensitizing. Further simulations of probabilistic release from multiple-site boutons suggested that local spillover-mediated transmission slows the onset and limits the extent of depression during high-frequency signaling.  相似文献   

13.
Pickford  J.  Apps  R.  Bashir  Z. I. 《Neurochemical research》2019,44(3):627-635

How the cerebellum carries out its functions is not clear, even for its established roles in motor control. In particular, little is known about how the cerebellar nuclei (CN) integrate their synaptic and neuromodulatory inputs to generate cerebellar output. CN neurons receive inhibitory inputs from Purkinje cells, excitatory inputs from mossy fibre and climbing fibre collaterals, as well as a variety of neuromodulatory inputs, including cholinergic inputs. In this study we tested how activation of acetylcholine receptors modulated firing rate, intrinsic properties and synaptic transmission in the CN. Using in vitro whole-cell patch clamp recordings from neurons in the interpositus nucleus, the acetylcholine receptor agonist carbachol was shown to induce a short-term increase in firing rate, increase holding current and decrease input resistance of interpositus CN neurons. Carbachol also induced long-term depression of evoked inhibitory postsynaptic currents and a short-term depression of evoked excitatory postsynaptic currents. All effects were shown to be dependent upon muscarinic acetylcholine receptor activation. Overall, the present study has identified muscarinic receptor activation as a modulator of CN activity.

  相似文献   

14.
The biophysical properties of NMDA receptors are thought to be critical determinants involved in the regulation of long-term synaptic plasticity during neocortical development. NMDA receptor channel properties are strongly dependent on the subunit composition of heteromeric NMDA receptors. During neocortical development in vivo, the expression of the NMDA receptor 2A (NR2A) subunit is up-regulated at the mRNA and protein level correlating with changes in the kinetic and pharmacological properties of functional NMDA receptors. To investigate the developmental regulation of NMDA receptor subunit expression, we studied NR2 mRNA expression in cultured neocortical neurons. With increasing time in culture, they showed a similar up-regulation of NR2A mRNA expression as described in vivo. As demonstrated by chronic blockade of postsynaptic glutamate receptors in vitro, the regulation of NR2A mRNA was strongly dependent on synaptic activity. In contrast, NR2B mRNA expression was not influenced by activity blockade. Moreover, as shown pharmacologically, the regulation of NR2A mRNA expression was mediated by postsynaptic Ca(2+) influx through both NMDA receptors and L-type Ca(2+) channels. It is interesting that even relatively weak expression of NR2A mRNA was correlated with clearly reduced sensitivity of NMDA receptor-mediated whole-cell currents against the NR2B subunit-specific antagonist ifenprodil. Developmental changes in the expression of NR1 mRNA splice variants were also strongly dependent on synaptic activity and thus might, in addition to regulation of NR2 subunit expression, contribute to developmental changes in the properties of functional NMDA receptors. In summary, our results demonstrate that synaptic activity is a key factor in the regulation of NMDA receptor subunit expression during neocortical development.  相似文献   

15.
A voltage-dependent but Ca2+-independent regulation of N-methyl-D-aspartate (NMDA) receptor outward activity was studied at the single channel level using outside-out patches of cultured mouse cortical neurons. Unlike the inward activity associated with Ca2+ and Na+ influx, the NMDA receptor outward K+ conductance was unaffected by changes in Ca2+ concentration. Following a depolarizing pre-pulse, the single channel open probability (NP o), amplitude, and open duration of the NMDA inward current decreased, whereas the same pre-depolarization increased those parameters of the NMDA outward current (pre-pulse facilitation). The outward NP o was increased by the pre-pulse facilitation, disregarding Ca2+ changes. The voltage–current relationships of the inward and outward currents were shifted by the pre-depolarization toward opposite directions. The Src family kinase inhibitor, PP1, and the Src kinase antibody, but not the anti-Fyn antibody, blocked the pre-pulse facilitation of the NMDA outward activity. On the other hand, a hyperpolarizing pre-pulse showed no effect on NMDA inward currents but inhibited outward currents (pre-pulse depression). Application of Src kinase, but not Fyn kinase, prevented the pre-pulse depression. We additionally showed that a depolarization pre-pulse potentiated miniature excitatory synaptic currents (mEPSCs). The effect was blocked by application of the NMDA receptor antagonist AP-5 during depolarization. These data suggest a voltage-sensitive regulation of NMDA receptor channels mediated by Src kinase. The selective changes in the NMDA receptor-mediated K+ efflux may represent a physiological and pathophysiological plasticity at the receptor level in response to dynamic changes in the membrane potential of central neurons.  相似文献   

16.
The cerebellar cells that account for glutamate-dependent cyclic GMP (cGMP) production, involving activation of the ionotropic glutamate receptors/nitric oxide synthase/soluble guanylyl cyclase pathway, are not fully established. In the present paper we have searched for the localisation of the cGMP response to the nitric oxide (NO) donor S-nitroso-penicillamine (SNAP 1muM), expected to generate local NO concentrations in the low nanomolar physiological range and evoking a cGMP response dependent on glutamate release and on the consequent activation of ionotropic glutamate NMDA/non-NMDA receptors, in cerebellar slices from adult rat. We have found that low concentration of exogenous NO evoked cGMP accumulation in Purkinje cells in an ionotropic glutamate receptor-dependent and tetrodotoxin-sensitive manner. Such immunocytochemical localisation appears consistent with functional evidence for physiologically relevant glutamate-dependent cGMP production in Purkinje cells in rat cerebellar cortex.  相似文献   

17.
Shen Y  Zhang M  Jin Y  Yang XL 《Neuro-Signals》2006,15(4):174-179
Glutamate works as a major excitatory neurotransmitter in the vertebrate retina. Whole-cell recordings made from isolated carp cone horizontal cells (H1 cells) showed that N-methyl-D-aspartate (NMDA), co-applied with glycine, induced inward currents that were blocked by the NMDA receptor competitive antagonist D-2-amino-5-phosphonopentanoate (D-AP5) and 5,7-dichlorokynurenic acid (DCKA), a selective NMDA receptor antagonist acting at the glycine site on the NMDA receptor complex. Moreover, calcium imaging showed that NMDA caused a significant elevation of intracellular calcium levels ([Ca(2+)](i)) of H1 cells, which was also blocked by D-AP5. In contrast, neither inward currents nor changes in [Ca(2+)](i) could be induced by NMDA in rod horizontal cells (H4 cells). Intracellular recordings made from H1 cells in the isolated retina, superfused with Ringer's containing 1 mM Mg(2+), in the dark demonstrated that NMDA reduced the light-off overshoot of H1 cells. We therefore conclude that the functional NMDA receptor is expressed in carp H1 cells, from which this receptor has been thought to be absent, and this receptor may play a role in modulating cone-driven signal of horizontal cells in the dark.  相似文献   

18.
Abstract: The participation of NMDA and non-NMDA receptors in domoic acid-induced neurotoxicity was investigated in cultured rat cerebellar granule cells (CGCs). Neurons were exposed to 300 µMl -glutamate or 10 µM domoate for 2 h in physiologic buffer at 22°C followed by a 22-h incubation in 37°C conditioned growth media. Excitotoxic injury was monitored as a function of time by measurement of lactate dehydrogenase (LDH) activity in both the exposure buffer and the conditioned media. Glutamate and domoate evoked, respectively, 50 and 65% of the total 24-h increment in LDH efflux after 2 h. Hyperosmolar conditions prevented this early response but did not significantly alter the extent of neuronal injury observed at 24 h. The competitive NMDA receptor antagonist d (?)-2-amino-5-phosphonopentanoic acid and the non-NMDA receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline (NBQX) reduced glutamate-induced LDH efflux totals by 73 and 27%, respectively, whereas, together, these glutamate receptor antagonists completely prevented neuronal injury. Domoate toxicity was reduced 65–77% when CGCs were treated with competitive and noncompetitive NMDA receptor antagonists. Unlike the effect on glutamate toxicity, NBQX completely prevented domoate-mediated injury. HPLC analysis of the exposure buffer revealed that domoate stimulates the release of excitatory amino acids (EAAs) and adenosine from neurons. Domoate-stimulated EAA release occurred almost exclusively through mechanisms related to cell swelling and reversal of the glutamate transporter. Thus, whereas glutamate-induced injury is mediated primarily through NMDA receptors, the full extent of neurodegeneration is produced by the coactivation of both NMDA and non-NMDA receptors. Domoate-induced neuronal injury is also mediated primarily through NMDA receptors, which are activated secondarily as a consequence of α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/kainate receptor-mediated stimulation of EAA efflux.  相似文献   

19.
The molecular layer of the cerebellar cortex is populated by glial progenitors that express ionotropic glutamate receptors and extend numerous processes among Purkinje cell dendrites. Here, we show that release of glutamate from climbing fiber (CF) axons produces AMPA receptor currents with rapid kinetics in these NG2-immunoreactive glial cells (NG2+ cells) in cerebellar slices. NG2+ cells may receive up to 70 discrete inputs from one CF and, unlike mature Purkinje cells, are often innervated by multiple CFs. Paired Purkinje cell-NG2+ cell recordings show that one CF can innervate both cell types. CF boutons make direct synaptic junctions with NG2+ cell processes, indicating that this rapid neuron-glia signaling occurs at discrete sites rather than through ectopic release at CF-Purkinje cell synapses. This robust activation of Ca2+-permeable AMPA receptors in NG2+ cells expands the influence of the olivocerebellar projection to this abundant class of glial progenitors.  相似文献   

20.
Young A  Sun QQ 《Chemical senses》2007,32(8):783-794
Afferent olfactory information, in vivo and in vitro, can be rapidly adapted to through a metabotropic glutamate receptor (mGluR)-mediated attenuation of synaptic strength. Specific cellular and synaptic mechanisms underlying olfactory learning and habituation at the cortical level remain unclear. Through whole-cell recording, excitatory postsynaptic currents (EPSCs) were obtained from piriform cortex (PC) principal cells. Using a coincidental, pre- and postsynaptic stimulation protocol, long-term depression (LTD) in synaptic strength was induced at associative, excitatory synapses onto layer II pyramidal neurons of the mouse (P15-27) PC. LTD was mimicked and occluded by mGluR agonists and blocked by nonselective mGluR antagonist (RS)-alpha-methyl-4-sulfonophenylglycine (MSPG) but not by N-methyl-D-aspartic acid (NMDA) receptor antagonist 2-amino-5-phosphonovaleric acid (APV). Analysis of the paired-pulse ratio, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/NMDA current ratio, and spontaneous EPSCs indicate that electrically induced LTD was mediated predominantly by postsynaptic mechanisms. Additionally, presynaptic mGluRs were involved in agonist-mediated synaptic depression. Immunohistochemical analysis supports the presence of multiple subclasses of mGluRs throughout the PC, with large concentrations of several receptors present in layer II. These observations provide further evidence of activity-dependent, long-term modification of associative inputs and its underlying mechanisms. Cortical adaptation at associative synapses provides an additional link between cortical olfactory processing and subcortical centers that influence behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号