首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
DNA damage triggers multiple checkpoint pathways to arrest cell cycle progression. Polo-like kinase 1 (Plk1) is an important regulator of several events during mitosis. In addition to Plk1 functions in cell cycle, Plk1 is involved in DNA damage check-point in G2 phase. Normally, ataxia telangiectasia-mutated kinase (ATM) is a key enzyme involved in G2 phase cell cycle arrest following DNA damage, and inhibition of Plk1 by DNA damage during G2 occurs in a ATM/ATR-dependent manner. However, it is still unclear how Plk1 is regulated in response to DNA damage in mitosis in which Plk1 is already activated. Here, we show that treatment of mitotic cells with doxorubicin and gamma-irradiation inhibits Plk1 activity through dephosphorylation of Plk1, and cells were arrested in G2 phase. Treatments of the phosphatase inhibitors and siRNA experiments suggested that PP2A pathway might be involved in regulating mitotic Plk1 activity in mitotic DNA damage. Finally, we propose a novel pathway, which is connected between ATM/ATR/Chk and protein phosphatase-Plk1 in DNA damage response in mitosis.  相似文献   

2.
We previously reported the phenotype of depletion of polo-like kinase 1 (Plk1) using RNA interference (RNAi) and showed that p53 is stabilized in Plk1-depleted cancer cells. In this study, we further analyzed the Plk1 depletion-induced phenotype in both cancer cells and primary cells. The vector-based RNAi approach was used to evaluate the role of the p53 pathway in Plk1 depletion-induced apoptosis in cancer cells with different p53 backgrounds. Although DNA damage and cell death can occur independently of p53, p53-deficient cancer cells were much more sensitive to Plk1 depletion than cancer cells with functional p53. Next, the lentivirus-based RNAi approach was used to generate a series of Plk1 hypomorphs. In HeLa cells, two weak hypomorphs showed only slight G2/M arrest, a medium hypomorph arrested with 4N DNA content, followed later by apoptosis, and a strong Plk1 hypomorph underwent serious mitotic catastrophe. In well-synchronized HeLa cells, a medium level of Plk1 depletion caused a 2-h delay of mitotic progression, and a high degree of Plk1 depletion significantly delayed mitotic entry and completely blocked cells at mitosis. In striking contrast, normal hTERT-RPE1 and MCF10A cells were much less sensitive to Plk1 depletion than HeLa cells; no apparent cell proliferation defect or cell cycle arrest was observed after Plk1 depletion in these cells. Therefore, these data further support suggestions that Plk1 may be a feasible cancer therapy target.  相似文献   

3.
Polo-like kinase 1 (Plk1) is an important regulator of several events during mitosis. Recent reports show that Plk1 is involved in both G2 and mitotic DNA damage checkpoints. Ataxia telangiectasia mutated kinase (ATM) is an important enzyme involved in G2 phase cell cycle arrest following interphase DNA damage, and inhibition of Plk1 by DNA damage during G2 occurs in an ATM-/ATM-Rad3-related kinase (ATR)-dependent fashion. However, it is unclear how Plk1 is regulated in response to M phase DNA damage. We found that treatment of mitotic cells with DNA damaging agents inhibits Plk1 activity primarily through dephosphorylation of Plk1, which occurred in both p53 wild-type and mutant cells. Inhibition of Plk1 is not prevented by caffeine pretreatment that inhibits ATM activity and also occurs in ATM mutant cell lines. Furthermore, ATM mutant cell lines, unlike wild-type cells, fail to arrest after mitotic DNA damaging treatments. The phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002, reduces Plk1 dephosphorylation following mitotic DNA damaging treatments, suggesting that the PI3K pathway may be involved in regulating Plk1 activity. Earlier studies showed that inhibition of Plk1 by G2 DNA damage occurs in an ATM-dependent fashion. Our results extend the previous studies by showing that ATM is not required for dephosphorylation and inhibition of Plk1 activity following mitotic DNA damage, and also suggest that Plk1 is not a principal regulator or mediator of the mitotic DNA damage response.  相似文献   

4.
The accurate division of duplicated DNA is essential for maintenance of genomic stability in proliferating eukaryotic cells. Errors in DNA replication and chromosomal segregation may lead to cell death or genomic mutations that lead to oncogenic properties. Thus, tight regulation of DNA replication and mitosis is essential for maintaining genomic integrity. Cell division cycle 6 (Cdc6) is an essential factor for initiating DNA replication. Recent work shows that phosphorylation of Cdc6 by pololike kinase 1 (Plk1), one of the essential mitotic kinases, regulates mitotic exit mediated by Cdk1 and separase. Here we discuss how pre-replicative complex factors are connected with Plk1 and affect mitotic exit.Key words: Plk1, Cdc6, DNA replication, mitotic exit, chromosomal segregation  相似文献   

5.
Bipolar mitotic spindle organization is fundamental to faithful chromosome segregation. Furry (Fry) is an evolutionarily conserved protein implicated in cell division and morphology. In human cells, Fry localizes to centrosomes and spindle microtubules in early mitosis, and depletion of Fry causes multipolar spindle formation. However, it remains unknown how Fry controls bipolar spindle organization. This study demonstrates that Fry binds to polo-like kinase 1 (Plk1) through the polo-box domain of Plk1 in a manner dependent on the cyclin-dependent kinase 1-mediated Fry phosphorylation at Thr-2516. Fry also binds to Aurora A and promotes Plk1 activity by binding to the polo-box domain of Plk1 and by facilitating Aurora A-mediated Plk1 phosphorylation at Thr-210. Depletion of Fry causes centrosome and centriole splitting in mitotic spindles and reduces the kinase activity of Plk1 in mitotic cells and the accumulation of Thr-210-phosphorylated Plk1 at the spindle poles. Our results suggest that Fry plays a crucial role in the structural integrity of mitotic centrosomes and in the maintenance of spindle bipolarity by promoting Plk1 activity at the spindle poles in early mitosis.  相似文献   

6.
Polo-like kinase 1 (Plk1) plays several roles in mitosis, and it has been suggested to have a role in tumorigenesis. We have previously reported that Plk1 depletion results in cell death in cancer cells, whereas normal cells survive similar depletion. However, Plk1 depletion together with p53 depletion induces cell death in normal cells as well. This communication presents evidence on the sequence of events that leads to cell death in cancer cells. DNA damage is detected at the first S phase following Plk1 depletion and is more severe in Plk1-depleted p53-null cancer cells. As a consequence of Plk1 depletion using lentivirus-based small interfering RNA techniques, prereplicative complex (pre-RC) formation is disrupted at the G1/S transition, and DNA synthesis is reduced during S phase of the first cycle after depletion. The levels of geminin, an inhibitor of DNA pre-RC, and Emi1, an inhibitor of anaphase-promoting complex/cyclosome, are elevated in Plk1-depleted cells. The rate of cell cycling is slower in Plk1-depleted cells than in control cells when synchronized by serum starvation. Plk1 depletion results in disrupted DNA pre-RC formation, reduced DNA synthesis, and DNA damage before cells display severe mitotic catastrophe or apoptosis. Our data suggest that Plk1 is required for cell cycle progression not only in mitosis but also for DNA synthesis, maintenance of DNA integrity, and prevention of cell death.Progression of the cell cycle is tightly regulated in eukaryotic cells by coordinated control of phosphorylation and proteolytic events. Duplication of genetic information for the next cell generation requires the precise coordination of numerous proteins (2). To ensure the accurate division of duplicated DNA, cells require condensed chromosomes, a mitotic spindle, and correct attachment of duplicated chromosomes to the spindle. Errors in DNA replication and mitosis may lead to cell death through apoptosis or result in mutations that lead to cancer (3). Polo-like kinase 1 (Plk1) is essential for several steps in mitosis and is highly expressed in proliferating cells. Expression of Plk1 increases in S phase and peaks during M phase (8). In addition, at the G2/M boundary, Plk1 is activated by phosphorylation and promotes mitotic entry. Its primary role in mammalian cells appears to be control of mitotic progression, particularly in the metaphase/anaphase transition, and mitotic exit (37). At the G2/M transition, Plx1, a counterpart of Plk1 in Xenopus, activates cyclin B1/Cdk1 by phosphorylation of Cdc25C (14) or of cyclin B1 (29). During mitotic entry, Plk1 is required for recruitment of the γ-tubulin ring complex (7). Phosphorylation of Emi1 by Plk1 leads to its destruction, release of Cdc20, and activation of the anaphase-promoting complex/cyclosome (APC/C) (10, 22, 26). Active APC/C mediates the degradation of proteins such as cyclin A, cyclin B1, securin, and geminin to promote exit from mitosis (6, 26). The multiple roles of Plk1 from the entry to and exit from mitosis indicate its importance as a regulator of these events.Recently, several reports suggest that Plk1 may play a role in other phases of the cell cycle. Plk1 interacts with prereplicative complex (pre-RC) proteins, such as Mcm2 and Orc2, in yeast two-hybrid studies (32), and coimmunoprecipitates with Mcm2 to Mcm7 and Orc2 (32, 35). Orc2, Mcm4, Mcm6, and Mcm7 proteins colocalize in the centrosome with Plk1 (25, 32). In addition, ectopic expression of Plk1-S137D arrests HeLa cells at the G1/S boundary (12). Moreover, microinjection of in vitro-transcribed sense mRNA of Plk1 into serum-starved NIH 3T3 cells induced thymidine incorporation, whereas microinjection of antisense mRNA into growing NIH 3T3 cells that were stimulated with serum blocked thymidine incorporation (9). This observation suggests that Plk1 is required for DNA synthesis and that overexpression of Plk1 appears to be sufficient for induction of DNA synthesis. These data raise the possibility that Plk1 might have a required function in DNA replication.Depletion of Plk1 activity by microinjection of neutralizing anti-Plk1 antibody impairs centrosome maturation in HeLa cells (15). When Plk1 function is blocked by dominant-negative Plk1, several human tumor cells undergo mitotic catastrophe independent of Cdc25C (1). In Plk1-deficient human cancer cells, centrosomes do not separate to form bipolar spindles. The cells undergo prometaphase arrest and cell death caused by mitotic catastrophe (18, 33, 38). These effects are more severe in p53-deficient cancer cells. Cells codepleted for p53 and Plk1 undergo cell death as a consequence of mitotic defects (17). However, it is unclear how Plk1 depletion induces cell death or what the sequence of events is prior to cell death.Here, we provide evidence that Plk1 depletion induces DNA damage at G1/S before cell death responses, such as caspase activation, are initiated.  相似文献   

7.
During mitosis, chromosomes undergo dynamic structural changes that include condensation of chromosomes – the formation of individual compact chromosomes necessary for faithful segregation of sister chromatids in anaphase. Polo-like kinase 1 (Plk1) regulates multiple mitotic events by binding to targeting factors at different mitotic structures in a phosphorylation dependent manner. In this study, we report the identification of a putative ATPase that targets Plk1 to chromosome arms during mitosis. PICH (Plk1-interacting checkpoint “helicase”) displays a temporal localization on chromosome arms and kinetochores during early mitosis. Interaction with PICH recruits Plk1 to chromosome arms and disruption of this interaction abolishes Plk1 localization on chromosome arms. Moreover, depletion of PICH or overexpression of PICH mutant that is defective in Plk1 binding or ATP binding causes defects in mitotic chromosome compaction, formation of anaphase bridge and cytokinesis failure. We provide data to show that both PICH phosphorylation and its ATPase activity are required for mitotic chromosome compaction. Our study provides a mechanism for targeting Plk1 to chromosome arms and suggests that the PICH ATPase activity is important for the regulation of mitotic chromosome architecture.  相似文献   

8.
Plk1 (Polo-like kinase 1) has been documented as a critical regulator of many mitotic events. However, increasing evidence supports the notion that Plk1 might also have functions outside of mitosis. Using biochemical fractionation and RNA interference approaches, we found that Plk1 was required for both G(1)/S and G(2)/M phases and that DNA topoisomerase IIalpha (topoIIalpha) was a potential target for Plk1 in both interphase and mitosis. Plk1 phosphorylates Ser(1337) and Ser(1524) of topoIIalpha. Overexpression of an unphosphorylatable topoIIalpha mutant led to S phase arrest, suggesting that Plk1-associated phosphorylation first occurs in S phase. Moreover, overexpression of the unphosphorylatable topoIIalpha mutant activated the ATM/R-dependent DNA damage checkpoint, probably due to reduced catalytic activity of topoIIalpha, and resulted in accumulation of catenated DNA. Finally, we showed that wild type topoIIalpha, but not the unphosphorylatable mutant, was able to rescue topoIIalpha depletion-induced defects in sister chromatid segregation, indicating that Plk1-associated phosphorylation is essential for the functions of topoIIalpha in mitosis.  相似文献   

9.
Polo样激酶1在细胞周期及细胞周期监测点中的功能   总被引:1,自引:0,他引:1  
Plk1(Polo-like kinase 1)是一类从酵母到人类都高度保守的丝氨酸/苏氨酸蛋白激酶,是真核细胞有丝分裂的重要调控因子.Plk1随有丝分裂进程定位于不同位点,调节分裂期进入、纺锤体形成和胞质分裂等过程.Plk1能够与磷酸化的停靠蛋白结合,从而在不同空间被激活以满足其在细胞周期中的不同功能.Plk1还参与G2和M期DNA损伤监测点的调节,对于DNA损伤恢复后重新进入有丝分裂期是必须的.目前,Plk1的重要功能尤其是在DNA损伤监测点中发挥的重要功能正在被广泛研究.Plk1在多种恶性肿瘤中存在过表达且与肿瘤发生密切相关,对于Plk1功能的深入研究为以Plk1为靶的肿瘤治疗提供理论依据  相似文献   

10.
The accurate division of duplicated DNA is essential for maintenance of genomic stability in proliferating eukaryotic cells. Errors in DNA replication and chromosomal segregation may lead to cell death or genomic mutations that lead to oncogenic properties. Thus, tight regulation of DNA replication and mitosis is essential for maintaining genomic integrity. Cell division cycle 6 (Cdc6) is an essential factor for initiating DNA replication. Recent work shows that phosphorylation of Cdc6 by polo-like kinase 1 (Plk1), one of the essential mitotic kinases, regulates mitotic exit mediated by Cdk1 and separase. Here we discuss how pre-replicative complex factors are connected with Plk1 and affect mitotic exit.  相似文献   

11.
Regulation of cell cycle progression is important for the maintenance of genome integrity, and Polo-like kinases (Plks) have been identified as key regulators of this process. It is well established that Polo-like kinase 1 (Plk1) plays critical roles in mitosis but little is known about its functions at other stages of the cell cycle. Here we summarize the functions of Plk1 during DNA replication, focusing on the molecular events related to Origin Recognition Complex (ORC), the complex that is essential for the initiation of DNA replication. Within the context of Plk1 phosphorylation of Orc2, we also emphasize regulation of Orc2 in different organisms. This review is intended to provide some insight into how Plk1 coordinates DNA replication in S phase with chromosome segregation in mitosis, and orchestrates the cell cycle as a whole.  相似文献   

12.
The Epstein-Barr virus (EBV) genome is maintained as an extrachromosomal episome during latent infection of B lymphocytes. Episomal maintenance is conferred by the interaction of the EBV-encoded nuclear antigen 1 (EBNA1) with a tandem array of high-affinity binding sites, referred to as the family of repeats (FR), located within the viral origin of plasmid replication (OriP). How this nucleoprotein array confers episomal maintenance is not completely understood. Previous studies have shown that DNA replication forks pause and terminate with high frequency at OriP. We now show that cellular DNA replication fork pausing and protection factors Timeless (Tim) and Tipin (Timeless-interacting protein) accumulate at OriP during S phase of the cell cycle. Depletion of Tim inhibits OriP-dependent DNA replication and causes a complete loss of the closed-circular form of EBV episomes in latently infected B lymphocytes. Tim depletion also led to the accumulation of double-strand breaks at the OriP region. These findings demonstrate that Tim is essential for sustaining the episomal forms of EBV DNA in latently infected cells and suggest that DNA replication fork protection is integrally linked to the mechanism of plasmid maintenance.  相似文献   

13.
Metazoans limit origin firing to once per cell cycle by oscillations in cyclin-dependent kinases and the replication licensing inhibitor geminin. Geminin inhibits pre-replication complex assembly by preventing Cdt1 from recruiting the minichromosome maintenance proteins to chromatin. Geminin depletion results in genomic over-replication in Drosophila and human cell lines. Here, we show that loss of geminin affects other cell cycle-dependent events in addition to DNA replication. Geminin inactivation causes centrosome overduplication without passage through mitosis in human normal and cancer cells. Centrosomes are microtubule-organizing centres that are duplicated during S phase and have an important role in the fidelity of chromosome transmission by nucleating the mitotic spindle. Consistent with this, geminin-depleted cells show multiple mitotic defects, including multipolar spindles, when driven into mitosis by checkpoint abrogation. These results show that the consequences of geminin loss exceed its immediate role in DNA replication and extend to promoting chromosome mis-segregation in mitosis.  相似文献   

14.
Polo-like kinase 1 (Plk1), a well-characterized member of serine/threonine kinases Plk family, has been shown to play pivotal roles in mitosis and cytokinesis in eukaryotic cells. Recent studies suggest that Plk1 not only controls the process of mitosis and cytokinesis, but also, going beyond those previously described functions, plays critical roles in DNA replication and Pten null prostate cancer initiation. In this review, we briefly summarize the functions of Plk1 in mitosis and cytokinesis, and then mainly focus on newly discovered functions of Plk1 in DNA replication and in Ptennull prostate cancer initiation. Furthermore, we briefly introduce the architectures of human and mouse prostate glands and the possible roles of Plk1 in human prostate cancer development. And finally, the newly chemotherapeutic development of small-molecule Plk1 inhibitors to target Plk1 in cancer treatment and their translational studies are also briefly reviewed.  相似文献   

15.
PLK (STPK13) encodes a murine protein kinase closely related to those encoded by the Drosophila melanogaster polo gene and the Saccharomyces cerevisiae CDC5 gene, which are required for normal mitotic and meiotic divisions. Affinity-purified antibody generated against the C-terminal 13 amino acids of Plk specifically recognizes a single polypeptide of 66 kDa in MELC, NIH 3T3, and HeLa cellular extracts. The expression levels of both poly(A)+ PLK mRNA and its encoded protein are most abundant about 17 h after serum stimulation of NIH 3T3 cells. Plk protein begins to accumulate at the S/G2 boundary and reaches the maximum level at the G2/M boundary in continuously cycling cells. Concurrent with cyclin B-associated cdc2 kinase activity, Plk kinase activity sharply peaks at the onset of mitosis. Plk enzymatic activity gradually decreases as M phase proceeds but persists longer than cyclin B-associated cdc2 kinase activity. Plk is localized to the area surrounding the chromosomes in prometaphase, appears condensed as several discrete bands along the spindle axis at the interzone in anaphase, and finally concentrates at the midbody during telophase and cytokinesis. Plk and CHO1/mitotic kinesin-like protein 1 (MKLP-1), which induces microtubule bundling and antiparallel movement in vitro, are colocalized during late M phase. In addition, CHO1/MKLP-1 appears to interact with Plk in vivo and to be phosphorylated by Plk-associated kinase activity in vitro.  相似文献   

16.
Polo-like kinase 1 (Plk1) is central to cell division. Here, we report that Plk1 is critical for mitosis in the embryonic development of zebrafish. Using a combination of several cell biology tools, including single-cell live imaging applied to whole embryos, we show that Plk1 is essential for progression into mitosis during embryonic development. Plk1 morphant cells displayed mitotic infidelity, such as abnormal centrosomes, irregular spindle assembly, hypercondensed chromosomes, and a failure of chromosome arm separation. Consequently, depletion of Plk1 resulted in mitotic arrest and finally death by 6 days post-fertilization. In comparison, Plk2 or Plk3 morphant embryos did not display any significant abnormalities. Treatment of embryos with the Plk1 inhibitor, BI 2536, caused a block in mitosis, which was more severe when used to treat plk1 morphants. Finally, using an assay to rescue the Plk1 morphant phenotype, we found that the kinase domain and PBD domains are both necessary for Plk1 function in zebrafish development. Our studies demonstrate that Plk1 is required for embryonic proliferation because its activity is crucial for mitotic integrity. Furthermore, our study suggests that zebrafish will be an efficient and economical in vivo system for the validation of anti-mitotic drugs.  相似文献   

17.
Polo-like kinase-1 is a target of the DNA damage checkpoint   总被引:1,自引:0,他引:1  
Polo-like kinases (PLKs) have an important role in several stages of mitosis. They contribute to the activation of cyclin B/Cdc2 and are involved in centrosome maturation and bipolar spindle formation at the onset of mitosis. PLKs also control mitotic exit by regulating the anaphase-promoting complex (APC) and have been implicated in the temporal and spatial coordination of cytokinesis. Experiments in budding yeast have shown that the PLK Cdc5 may be controlled by the DNA damage checkpoint. Here we report the effects of DNA damage on Polo-like kinase-1 (Plk1) in a variety of human cell lines. We show that Plk1 is inhibited by DNA damage in G2 and in mitosis. In line with this, we show that DNA damage blocks mitotic exit. DNA damage does not inhibit the kinase activity of Plk1 mutants in which the conserved threonine residue in the T-loop has been changed to aspartic acid, suggesting that DNA damage interferes with the activation of Plk1. Significantly, expression of these mutants can override the G2 arrest induced by DNA damage. On the basis of these data we propose that Plk1 is an important target of the DNA damage checkpoint, enabling cell-cycle arrests at multiple points in G2 and mitosis.  相似文献   

18.
《The Journal of cell biology》1995,129(6):1617-1628
Correct assembly and function of the mitotic spindle during cell division is essential for the accurate partitioning of the duplicated genome to daughter cells. Protein phosphorylation has long been implicated in controlling spindle function and chromosome segregation, and genetic studies have identified several protein kinases and phosphatases that are likely to regulate these processes. In particular, mutations in the serine/threonine-specific Drosophila kinase polo, and the structurally related kinase Cdc5p of Saccharomyces cerevisae, result in abnormal mitotic and meiotic divisions. Here, we describe a detailed analysis of the cell cycle-dependent activity and subcellular localization of Plk1, a recently identified human protein kinase with extensive sequence similarity to both Drosophila polo and S. cerevisiae Cdc5p. With the aid of recombinant baculoviruses, we have established a reliable in vitro assay for Plk1 kinase activity. We show that the activity of human Plk1 is cell cycle regulated, Plk1 activity being low during interphase but high during mitosis. We further show, by immunofluorescent confocal laser scanning microscopy, that human Plk1 binds to components of the mitotic spindle at all stages of mitosis, but undergoes a striking redistribution as cells progress from metaphase to anaphase. Specifically, Plk1 associates with spindle poles up to metaphase, but relocalizes to the equatorial plane, where spindle microtubules overlap (the midzone), as cells go through anaphase. These results indicate that the association of Plk1 with the spindle is highly dynamic and that Plk1 may function at multiple stages of mitotic progression. Taken together, our data strengthen the notion that human Plk1 may represent a functional homolog of polo and Cdc5p, and they suggest that this kinase plays an important role in the dynamic function of the mitotic spindle during chromosome segregation.  相似文献   

19.
Interaction of chromatin-associated Plk1 and Mcm7   总被引:3,自引:0,他引:3  
Plk1 is a multifunctional protein kinase involved in regulation of mitotic entry, chromosome segregation, centrosome maturation, and mitotic exit. Plk1 is a target of DNA damage checkpoints and aids resumption of the cell cycle during recovery from G2 arrest. The polo-box domain (PBD) of Plk1 interacts with phosphoproteins and localizes Plk1 to some mitotic structures. In a search for proteins that interact with the PBD of Plk1, we identified two of the minichromosome maintenance (MCM) proteins, Mcm2 and Mcm7. Co-immunoprecipitation and immunoblot analysis showed an interaction between full-length Plk1 and all other members of the MCM2-7 protein complex. Endogenous Plk1 co-immunoprecipitates with basal forms of Mcm7 as well as with slower migrating forms of Mcm7, induced in response to DNA damage. The strongest interaction between endogenous Plk1 and Mcm7 was detected in a soluble chromatin fraction. These findings suggest a new function for Plk1 in coordination of DNA replication and mitotic events.  相似文献   

20.
Chk2 is a protein kinase intermediary in DNA damage checkpoint pathways. DNA damage induces phosphorylation of Chk2 at multiple sites concomitant with activation. Chk2 phosphorylated at Thr-68 is found in nuclear foci at sites of DNA damage (1). We report here that Chk2 phosphorylated at Thr-68 and Thr-26 or Ser-28 is localized to centrosomes and midbodies in the absence of DNA damage. In a search for interactions between Chk2 and proteins with similar subcellular localization patterns, we found that Chk2 coimmunoprecipitates with Polo-like kinase 1, a regulator of chromosome segregation, mitotic entry, and mitotic exit. Plk1 overexpression enhances phosphorylation of Chk2 at Thr-68. Plk1 phosphorylates recombinant Chk2 in vitro. Indirect immunofluorescence (IF) microscopy revealed the co-localization of Chk2 and Plk1 to centrosomes in early mitosis and to the midbody in late mitosis. These findings suggest lateral communication between the DNA damage and mitotic checkpoints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号