首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used envelope recombinant viruses generated between two molecular clones of human immunodeficiency virus type 1 (HIV-1), T-cell-tropic HIV-1SF2 and macrophage-tropic HIV-1SF162, to assess pathogenic potential in the human peripheral blood leukocyte-reconstituted severe combined immune deficiency mouse model. Recombinant HIV-1SF2 viruses expressing the envelope gp120 gene of HIV-ISF162 caused as rapid a CD4+ T-cell depletion as did HIV-1SF162. The reciprocal HIV-1SF162 recombinant virus with the HIV-1SF2 envelope caused slower CD4+ T-cell loss. Although changing the V3 loop sequence of HIV-1SF162 to that of HIV-1SF2 did not change the rate of CD4+ T-cell depletion, replacing the V3 of HIV-1SF2 with the sequence of HIV-1SF162 resulted in virus that was poorly infectious in vivo but not in vitro. These studies suggest that the envelope gene determines properties important for pathogenesis in vivo as well as for cell tropism in vitro. HIV-1 infection in vivo may have more stringent requirements for envelope conformation.  相似文献   

2.
We have examined the influence of the V1/V2 region of the human immunodeficiency virus type 1 (HIV-1) gp120 on certain biologic properties of the virus. We observed that on the genomic background of the T-cell-line-tropic strain, HIV-1SF2mc, both the V1 and V2 domains of the macrophage-tropic strain, HIV-1SF162mc, in addition to the required V3 domain, are necessary to attain full macrophage tropism. Furthermore, the V2 domain modulates the sensitivity of HIV-1 to soluble CD4 neutralization. Structural studies of recombinant and mutant envelope glycoproteins suggest that the function of the V1/V2 region is to interact with the V3 domain and confer on the envelope gp120 of HIV-1SF2mc a conformation more similar to that of the macrophage-tropic strain HIV-1SF162mc. The conformation of the envelope gp120 appears to be strain specific and plays an important role in determining HIV-1 tissue tropism and sensitivity to soluble CD4 neutralization.  相似文献   

3.
Human immunodeficiency virus type 1 (HIV-1), the agent of AIDS, frequently infects the central nervous system. We inoculated adult human brain cultures with chimeric viruses containing parts of the env gene of a cloned primary isolate from brain tissue, HIV-1 JRFl, inserted into the cloned DNA of a T-cell-tropic strain. A chimeric virus containing the carboxy-terminal portion of HIV-1 JRFl env did not replicate in these brain tissue cultures, while a chimera expressing an env-encoded protein containing 158 amino acids of HIV-1 JRFl gp120, including the V3 loop, replicated well in brain microglial cells, as it does in blood macrophages. Infection of brain microglial cells with such a chimera was blocked by an antibody to the V3 loop of gp 120. Thus, env determinants in the region of gp120, outside the CD4-binding site and comprising the V3 loop, are critical for efficient viral binding to and/or entry into human brain microglia.  相似文献   

4.
Multiple targets for immune recognition and cellular tropism are localized to the V1 and V2 hypervariable regions in the amino portion of human immunodeficiency virus type 1 (HIV-1) gp120env. We have assessed genetic diversity in env V1 and V2 hypervariable domains in vivo within epidemiologically related strains of HIV-1. Our strategy was to analyze longitudinal samples from two seropositive mothers and multiple children infected by perinatal transmission. Although the V1 and V2 domains are closely linked in the HIV-1 genome, nucleotide sequences in V1 and in V2 evolved independently in maternal-infant viruses in vivo. A high proportion of the nucleotide substitutions would introduce amino acid diversity in V1 and in V2. A significant excess of nonsynonymous over synonymous substitutions was identified in HIV-1 env V1 and V2 peptides in the mothers and in two older children but was not generally apparent in HIV-1 sequences in infants. An excess of nonsynonymous over synonymous substitutions indicated that there is positive selection for independent genetic variation in the V1 and V2 domains in vivo. It is likely that there are host responses to complex determinants in the V1 or V2 hypervariable domain of HIV-1 gp120.  相似文献   

5.
6.
Host cell range, or tropism, combined with coreceptor usage defines viral phenotypes as macrophage tropic using CCR5 (M-R5), T-cell-line tropic using CXCR4 (T-X4), or dually lymphocyte and macrophage tropic using CXCR4 alone or in combination with CCR5 (D-X4 or D-R5X4). Although envelope gp120 V3 is necessary and sufficient for M-R5 and T-X4 phenotypes, the clarity of V3 as a dominant phenotypic determinant diminishes in the case of dualtropic viruses. We evaluated D-X4 phenotype, pathogenesis, and emergence of D-X4 viruses in vivo and mapped genetic determinants in gp120 that mediate use of CXCR4 on macrophages ex vivo. Viral quasispecies with D-X4 phenotypes were associated significantly with advanced CD4+-T-cell attrition and commingled with M-R5 or T-X4 viruses in postmortem thymic tissue and peripheral blood. A D-X4 phenotype required complex discontinuous genetic determinants in gp120, including charged and uncharged amino acids in V3, the V5 hypervariable domain, and novel V1/V2 regions distinct from prototypic M-R5 or T-X4 viruses. The D-X4 phenotype was associated with efficient use of CXCR4 and CD4 for fusion and entry but unrelated to levels of virion-associated gp120, indicating that gp120 conformation contributes to cell-specific tropism. The D-X4 phenotype describes a complex and heterogeneous class of envelopes that accumulate multiple amino acid changes along an evolutionary continuum. Unique gp120 determinants required for the use of CXCR4 on macrophages, in contrast to cells of lymphocytic lineage, can provide targets for development of novel strategies to block emergence of X4 quasispecies of human immunodeficiency virus type 1.  相似文献   

7.
The nucleotide sequences of the env genes of eight phenotypically heterogeneous human immunodeficiency virus type 1 (HIV-1) clones recovered from a single individual within a 3-week period were compared. In addition, the accessory gene sequences for four of these clones were obtained. Variation among most accessory genes was limited. In contrast, pronounced phenotype-associated sequence variation was observed in the env gene. At least three of these clones most likely resulted from genetic recombination events in vivo, indicating that this phenomenon may account for the emergence of proviruses with novel phenotypic properties. Within the env genes of the eight clones, four domains could be defined, the sequence of each of which clustered in two groups with high internal homology but 11 to 30% cluster variation. The extensive env gene variation among these eight clones could largely be explained by the unique manner in which the alleles of these four domains were combined in each clone. Experiments with chimeric proviruses demonstrated that the HIV-1 env gene determined the capacity to induce syncytia and tropism for T-cell lines. Amino acids previously shown to be involved in gp120-CD4 and gp120-gp41 interaction were completely conserved among these eight clones. The finding of identical V3 sequences in clones differing in tropism for primary monocytes and T-cell lines demonstrated the existence of determinants of tropism outside the env V3 region.  相似文献   

8.
Human immunodeficiency virus type 1 (HIV-1) isolates derived directly from clinical samples are usually unable to grow in cytokine-independent continuous cell lines, thus hindering the study of their biological features and their sensitivity to humoral and cellular protective immunity. To overcome these limitations, we have derived from the Hut78 T-cell line a CD4+ clone (PM1) characterized by a unique susceptibility to a wide range of HIV-1 isolates, including primary and biologically pure macrophage (M phi)-tropic isolates (e.g., HIV-1BaL), which are unable to infect other human T- or promonocytic cell lines. Both primary and M phi-tropic HIV-1 establish persistent infection in PM1, with sustained levels of virus replication for prolonged periods. Experiments with chimeric viruses containing envelope fragments of HIV-1BAL inserted into the genetic framework of HXB2, a molecular clone derived from the cell-line-tropic isolate HIV-1IIIB, showed the third hypervariable domain (V3) of gp120 to be a critical determinant of the cell line tropism of HIV-1. Nevertheless, the V3 loop of HIV-1BaL was not sufficient to confer on the chimeras a bona fide M phi tropism. The biological characteristics of HIV-1BaL and of a primary isolate (HIV-1(573)) were investigated by using the PM1 clone. Infection of PM1 by HIV-1BaL was critically dependent on the CD4 receptor, as shown by competition experiments with an anti-CD4 monoclonal antibody (OKT4a) or with soluble CD4. However, the amount of soluble CD4 required for inhibition of HIV-1BaL was approximately 100-fold higher than for HIV-1IIIB, suggesting that the affinity of HIV-1BaL for CD4 is significantly lower. Infection of PM1 with either HIV-1BaL or HIV-1(573) failed to induce downregulation of surface CD4 expression and syncytium formation. Analogous results were obtained with a chimeric virus (HXB2[BaL PvuII-BamHI]) encompassing a large portion of gp120 and gp41 of HIV-1BaL, indicating that the env genes contain critical determinants for CD4 downregulation and syncytium formation. Consistent with the lack of CD4 downregulation, persistent infection of PM1 by HIV-1BaL or HIV-1(573) failed to interfere with HIV-1IIIB superinfection, as revealed by the expression of a type-specific V3 loop epitope (M77) and by the induction of extensive syncytium formation. This lack of interference suggests that a direct viral interaction may occur in vivo between biologically diverse HIV-1 strains.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Neutralization of human immunodeficiency virus type 1 (HIV-1) infection with soluble CD4 (sCD4) can be achieved over a broad range of concentrations for different virus strains. Laboratory virus strains passaged in transformed T-cell lines are typically sensitive to sCD4 neutralization, whereas primary virus isolates require over 100-fold-higher sCD4 concentrations. Using recombinant viruses generated from a laboratory strain, HIV-1NL4-3, and a primary macrophagetropic strain, HIV-1JR-FL, we mapped a region of gp120 important for determining sensitivity to sCD4 neutralization. This same region has previously been defined as important for macrophage and transformed T-cell line tropism and includes the V3 neutralization domain but does not include regions of gp120 that have been shown to be most important for CD4 binding.  相似文献   

10.
The molecular mechanism of human immunodeficiency virus type 1 (HIV-1) entry into cells involves specific interactions between the viral envelope glycoprotein gp120 and two target cell proteins, CD4 and either CCR5 or CXCR4 chemokine receptors. In order to delineate the functional role of HIV-1 gp120 subdomains of dualtropic strains in CCR5 coreceptor usage, we used a panel of chimeric viruses in which the V1/V2 and V3 domains of gp120 from the dualtropic HIV-1(KMT) isolate were introduced either alone or in combination into the T-tropic HIV-1(NL4-3) background. These chimeric constructs were employed in cell-cell fusion and cell-free virus infectivity assays using cell lines expressing CD4 and the CCR5 chemokine receptor. In both assays, the V3 domain of HIV-1(KMT) but not the V1/V2 domain proved to be the principal determinant of CCR5 coreceptor usage. However, in the cell-free viral infectivity assay although a chimeric virus with a combined V1/V2 and V3 domains of HIV-1(KMT) efficiently fused with coreceptor expressing cells, yet its infectivity was markedly diminished in CCR5 as well as CXCR4 expressing cells. Restoring a comparable level of infection of such chimeric virus required the C3-V5 domain from HIV-1(KMT) to be introduced. Our present findings confirmed that the V3 domain is the major determinant of fusion activity and cellular tropism, and demonstrated a dispensable role for the V1/V2 domain. In addition the C3-V5 domain appeared to play an important role in viral infectivity when the corresponding V1/V2 and V3 domains are present.  相似文献   

11.
Three closely related molecular human immunodeficiency virus type 1 (HIV-1) clones, with differential neutralization phenotypes, were generated by cloning of an NcoI-BamHI envelope (env) gene fragment (HXB2R nucleotide positions 5221 to 8021) into the full-length HXB2 molecular clone of HIV-1 IIIB. These env gene fragments, containing the complete gp120 coding region and a major part of gp41, were obtained from three different biological clones derived from a chimpanzee-passaged HIV-1 IIIB isolate. Two of the viruses thus obtained (4.4 and 5.1) were strongly resistant to neutralization by infection-induced chimpanzee and human polyclonal antibodies and by HIV-1 IIIB V3-specific monoclonal antibodies and weakly resistant to soluble CD4 and a CD4-binding-site-specific monoclonal antibody. The third virus (6.8) was sensitive to neutralization by the same reagents. The V3 coding sequence and the gp120 amino acid residues important for the discontinuous neutralization epitope overlapping the CD4-binding site were completely conserved among the clones. However, the neutralization-resistant clones 4.4 and 5.1 differed from neutralization-sensitive clone 6.8 by two mutations in gp41. Exchange experiments confirmed that the 3' end of clone 6.8 (nucleotides 6806 to 8021; amino acids 346 to 752) conferred a neutralization-sensitive phenotype to both of the neutralization-resistant clones 4.4 and 5.1. From our study, we conclude that mutations in the extracellular portion of gp41 may affect neutralization sensitivity to gp120 antibodies.  相似文献   

12.
To assess the role of naturally occurring basic amino acid substitutions in the V3 loop of human immunodeficiency virus type 1 (HIV-1) subtype E on viral coreceptor usage and cell tropism, we have constructed a panel of chimeric viruses with mutant V3 loops of HIV-1 subtype E in the genetic background of HIV-1LAI. The arginine substitutions naturally occurring at positions 8, 11, and 18 of the V3 loop in an HIV-1 subtype E X4 strain were systematically introduced into that of an R5 strain to generate a series of V3 loop mutant chimera. These chimeric viruses were employed in virus infectivity assays using HOS-CD4 cells expressing either CCR5 or CXCR4, peripheral blood mononuclear cells, T-cell lines, or macrophages. The arginine substitution at position 11 of the V3 loop uniformly caused the loss of infectivity in HOS-CD4-CCR5 cells, indicating that position 11 is critical for utilization of CCR5. CXCR4 usage was conferred by a minimum of two arginine substitutions, regardless of combination, whereas arginine substitutions at position 8 and 11 were required for T-cell line tropism. Nonetheless, macrophage tropism was not conferred by the V3 loop of subtype E R5 strain per se. We found that the specific combinations of amino acid changes in HIV-1 subtype E env V3 loop are critical for determining viral coreceptor usage and cell tropism. However, the ability to infect HOS-CD4 cells through either CXCR4 or CCR5 is not necessarily correlated with T-cell or macrophage tropism, suggesting that cellular tropism is not dictated solely by viral coreceptor utilization.  相似文献   

13.
Human immunodeficiency virus type 1 (HIV-1) is a difficult target for vaccine development, in part because of its ever-expanding genetic diversity and attendant capacity to escape immunologic recognition. Vaccine efficacy might be improved by maximizing immunogen antigenic similarity to viruses likely to be encountered by vaccinees. To this end, we designed a prototype HIV-1 envelope vaccine using a deduced ancestral state for the env gene. The ancestral state reconstruction method was shown to be >95% accurate by computer simulation and 99.8% accurate when estimating the known inoculum used in an experimental infection study in rhesus macaques. Furthermore, the deduced ancestor gene differed from the set of sequences used to derive the ancestor by an average of 12.3%, while these latter sequences were an average of 17.3% different from each other. A full-length ancestral subtype B HIV-1 env gene was constructed and shown to produce a glycoprotein of 160 kDa that bound and fused with cells expressing the HIV-1 coreceptor CCR5. This Env was also functional in a virus pseudotype assay. When either gp160- or gp140-expressing plasmids and recombinant gp120 were used to immunize rabbits in a DNA prime-protein boost regimen, the artificial gene induced immunoglobulin G antibodies capable of weakly neutralizing heterologous primary HIV-1 strains. The results were similar for rabbits immunized in parallel with a natural isolate, HIV-1 SF162. Further design efforts to better present conserved neutralization determinants are warranted.  相似文献   

14.
Different isolates of human immunodeficiency virus type 1 (HIV-1) vary in the cell tropisms they display, i.e., the range of cell types in which they are able to establish a productive infection. Here, we report on the phenotypes of recombinants between two molecularly cloned strains of HIV-1. Our results prove that the envelope glycoprotein gp120 is solely responsible for the difference in cell tropism between the two parental isolates and that no other genes or sequences are involved in determining the cell tropism of these strains. The region of the envelope involved in the determination of cell tropism includes sequences which encode the V3 loop of gp120. Control of cell tropism by this region of the virus env gene is a general phenomenon which applies to many different HIV-1 isolates.  相似文献   

15.
Macrophage-tropic virus variants evolved during the course of infection of individual rhesus monkeys with cloned, non-macrophagetropic simian immunodeficiency virus. Specific changes in the envelope gene (env) were found to be primarily responsible for the dramatic increase in the ability of the virus to replicate in macrophages. Cloned viruses differing at nine amino acid positions in env exhibited a more than 100-fold difference in replicative capacity for primary cultures of rhesus monkey alveolar macrophages. At least five of the nine amino acid changes contributed to macrophage tropism. These determinants were distributed across the full length of env, including both the gp120 and gp41 products of the env gene. Furthermore, the emergence of macrophagetropic variants in vivo was associated with specific pathologic manifestations in which the macrophage is the major infected cell type. Thus, major determinants of macrophage tropism reside in env, they can be complex in nature, and the presence of macrophage-tropic virus variants in vivo can influence the disease course and disease manifestations.  相似文献   

16.
Human immunodeficiency virus type 1 (HIV-1) infects and induces syncytium formation in microglial cells from the central nervous system (CNS). A primary isolate (HIV-1(BORI)) was sequentially passaged in cultured microglia, and the isolate recovered (HIV-1(BORI-15)) showed high levels of fusion and replicated more efficiently in microglia (J. M. Strizki, A. V. Albright, H. Sheng, M. O'Connor, L. Perrin, and F. González-Scarano, J. Virol. 70:7654-7662, 1996). The parent and adapted viruses used CCR5 as coreceptor. Recombinant viruses demonstrated that the syncytium-inducing phenotype was associated with four amino acid differences in the V1/V2 region of the viral gp120 (J. T. C. Shieh, J. Martin, G. Baltuch, M. H. Malim, and F. González-Scarano, J. Virol. 74:693-701, 2000). We produced luciferase-reporter, env-pseudotyped viruses using plasmids containing env sequences from HIV-1(BORI), HIV-1(BORI-15), and the V1/V2 region of HIV-1(BORI-15) in the context of HIV-1(BORI) env (named rBORI, rB15, and rV1V2, respectively). The pseudotypes were used to infect cells expressing various amounts of CD4 and CCR5 on the surface. In contrast to the parent recombinant, the rB15 and rV1V2 pseudotypes retained their infectability in cells expressing low levels of CD4 independent of the levels of CCR5, and they infected cells expressing CD4 with a chimeric coreceptor containing the third extracellular loop of CCR2b in the context of CCR5 or a CCR5 Delta4 amino-terminal deletion mutant. The VH-rB15 and VH-rV1V2 recombinant viruses were more sensitive to neutralization by a panel of HIV-positive sera than was VH-rBORI. Interestingly, the CD4-induced 17b epitope on gp120 was more accessible in the rB15 and rV1V2 pseudotypes than in rBORI, even before CD4 binding, and concomitantly, the rB15 and rV1V2 pseudotypes were more sensitive to neutralization with the human 17b monoclonal antibody. Adaptation to growth in microglia--cells that have reduced expression of CD4 in comparison with other cell types--appears to be associated with changes in gp120 that modify its ability to utilize CD4 and CCR5. Changes in the availability of the 17b epitope indicate that these affect conformation. These results imply that the process of adaptation to certain tissue types such as the CNS directly affects the interaction of HIV-1 envelope glycoproteins with cell surface components and with humoral immune responses.  相似文献   

17.
Chimeric simian-human immunodeficiency viruses (SHIV) containing the human immunodeficiency virus type 1 (HIV-1) tat, rev, env, and, in some cases, vpu genes were inoculated into eight cynomolgus monkeys. Viruses could be consistently recovered from the CD8-depleted peripheral blood lymphocytes of all eight animals for at least 2 months. After this time, virus isolation varied among the animals, with viruses continuing to be isolated from some animals beyond 600 days after inoculation. The level of viral RNA in plasma during acute infection and the frequency of virus isolation after the initial 2-month period were higher for the Vpu-positive viruses. All of the animals remained clinically healthy, and the absolute numbers of CD4-positive lymphocytes were stable. Antibodies capable of neutralizing HIV-1 were generated at high titers in animals exhibiting the greatest consistency of virus isolation. Strain-specific HIV-1-neutralizing antibodies were initially elicited, and then more broadly neutralizing antibodies were elicited. env sequences from two viruses isolated more than a year after infection were analyzed. In the Vpu-negative SHIV, for which virus loads were lower, a small amount of env variation, which did not correspond to that found in natural HIV-1 variants, was observed. By contrast, in the Vpu-positive virus, which was consistently isolated from the host animal, extensive variation of the envelope glycoproteins in the defined variable gp120 regions was observed. Escape from neutralization by CD4 binding site monoclonal antibodies was observed for the viruses with the latter envelope glycoproteins, and the mechanism of escape appears to involve decreased binding of the antibody to the monomeric gp120 glycoproteins. The consistency with which SHIV infection of cynomolgus monkeys is initiated and the similarities in the neutralizing antibody response to SHIV and HIV-1 support the utility of this model system for the study of HIV-1 prophylaxis.  相似文献   

18.
We isolated and molecularly cloned a human immunodeficiency virus type 1 (HIV-1) strain (89.6) which is unusual because it is both macrophage-tropic and extremely cytopathic in lymphocytes. Moreover, this is the first well-characterized infectious molecularly cloned macrophage-tropic HIV-1 strain derived from peripheral blood. HIV-1 89.6 differs markedly from other macrophage-tropic isolates within the envelope V3 region, which is important in determining cell tropism and cytopathicity. HIV-1 89.6 may thus represent a transitional isolate between noncytopathic macrophage-tropic viruses and cytopathic lymphocyte-tropic viruses.  相似文献   

19.
SF162 is a primary (PR), non-syncytium-inducing, macrophagetropic human immunodeficiency virus type 1 (HIV-1) clade B isolate which is resistant to antibody-mediated neutralization. Deletion of the first or second hypervariable envelope gp120 region (V1 or V2 loop, respectively) of this virus does not abrogate its ability to replicate in peripheral blood mononuclear cells and primary macrophages, nor does it alter its coreceptor usage profile. The mutant virus with the V1 loop deletion, SF162ΔV1, remains as resistant to antibody-mediated neutralization as the wild-type virus SF162. In contrast, the mutant virus with the V2 loop deletion, SF162ΔV2, exhibits enhanced susceptibility to neutralization by certain monoclonal antibodies whose epitopes are located within the CD4-binding site and conserved regions of gp120. More importantly, SF162ΔV2 is now up to 170-fold more susceptible to neutralization than SF162 by sera collected from patients infected with clade B HIV-1 isolates. In addition, it becomes susceptible to neutralization by sera collected from patients infected with clade A, C, D, E, and F HIV-1 isolates. These findings suggest that the V2, but not the V1, loop of SF162 shields an as yet unidentified region of the HIV envelope rich in neutralization epitopes and that the overall structure of this region appears to be conserved among clade B, C, D, E, and F HIV-1 PR isolates.  相似文献   

20.
With the goal of examining the functional diversity of human immunodeficiency virus type 1 (HIV-1) env genes within the peripheral blood mononuclear cells of an asymptomatic individual, we substituted four complete env genes into the replication-competent NL4-3 provirus. Despite encoding full-length open reading frames for gp120 and gp41 and the second coding exon of tat and rev, each chimera was replication defective. Site-directed mutagenesis of codon 78 in the Rev activation domain (from a hitherto unique Ile to the subtype B consensus Leu) partially restored infectivity for two of three chimeras tested. Similarly, mutagenesis of rev codon 78 of NL4-3 from Leu to Ile partially attenuated this virus. Ile-78 was found in all 13 clones examined from samples taken from this asymptomatic subject 4.5 years after infection, including 9 from peripheral blood mononuclear cells and 4 from a virus isolate, as well as 4 additional clones each from peripheral blood mononuclear cells sampled 37 and 51 months later. We next examined conservation of the Rev activation domain within and among long-term survivors (LTS) and patients with AIDS, as well as T-cell-line-adapted strains of HIV-1. Putative attenuating mutations were found in a minority of sequences from all five LTS and two of four patients with AIDS. Of the 11 T-cell-line-adapted viruses examined, none had these changes. Among and within LTS virus population had marginally higher levels of diversity in Rev than in Env; patients with AIDS had similar levels of diversity in the two reading frames; and T-cell-line-adapted viruses had higher levels of diversity in Env. These results are consistent with the hypothesis that asymptomatic individuals harbor attenuated variants of HIV-1 which correlate with and contribute to their lack of disease progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号