首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Addition of bovine serum albumin (BSA) as a proteic feeder facilitates obtaining cross-linked enzyme aggregates (CLEAs) in cases where the protein concentration in the enzyme preparation is low and/or the enzyme activity is vulnerable to the high concentration of glutaraldehyde required to obtain aggregates. CLEAs of Pseudomonas cepacia lipase and penicillin acylase were prepared. CLEA of lipase prepared in the presence of BSA retained 100% activity whereas CLEA prepared without BSA retained only 0.4% activity of the starting enzyme preparation. Lipase CLEA showed 12-fold increase in activity over free enzyme powder when the CLEA was used in transesterification of tributyrin. For the transesterification of Jatropha oil, while free enzyme powder required 8 h and 50 mg lipase to obtain 77% conversion, CLEA required only 6 h and 6.25 mg lipase to obtain 90% conversion. In the case of penicillin acylase, 86% activity could be retained in CLEA prepared with BSA whereas CLEA made without BSA retained only 50% activity. CLEA prepared without BSA lost 20% activity after 8 h at 45 degrees C whereas CLEA with BSA retained full activity. CLEA prepared with BSA showed Vmax/Km of 36.3 min-1 whereas CLEA prepared without BSA had Vmax/Km of 17.4 min-1 only. Scanning electron microscopy analysis showed that CLEAs prepared in the presence of BSA were less amorphous and closer in morphology to CLEAs of other enzymes described in the literature.  相似文献   

2.
Cross-linked enzyme aggregates (CLEAs) are prepared by precipitation of an enzyme and then chemical cross-linking the precipitate. Three CLEAs of lipase with glutaraldehyde concentrations of 10 mM (CLEA A), 40 mM (CLEA B) and 60 mM (CLEA C) were prepared. Studies show that there is a trade-off between thermal stability vs transesterification/hydrolysis rate vs enantioselectivity. The initial rates for transesterification of β-citronellol for the uncross-linked enzyme and CLEAs A, B and C were 243, 167, 102 and 40 µmol mg-1 h-1, respectively. Their thermal stabilities in aqueous media, as reflected by their half-life values at 55°C, were 6, 9, 13 and 16 h, respectively. The enantioselectivity, E values (for kinetic resolution of β-citronellol by transesterification) were 19, 74, 11 and 6, respectively. These results show that CLEA C was the most thermostable; the uncross-linked enzyme was best at obtaining the highest transesterification rate; and CLEA A was best suited for the enantioselective synthesis. Scanning electron microscopy (SEM) showed that the morphology of CLEA was dependent upon the extent of cross-linking.  相似文献   

3.
Lipase from Rhizopus oryzae (ROL) was immobilized as crosslinked enzyme aggregate (CLEA) via precipitation with ammonium sulfate and simultaneous crosslinking with glutaraldehyde. The optimum conditions of the immobilization process were determined. Lipase CLEAs showed a twofold increase in activity when Tween 80‐pretreated lipase was used for CLEA preparation. CLEAs were shown to have several advantages compared to free lipase. CLEAs were more stable at 50°C and 60°C as well as for a wide range of pH. After incubation at 50°C, CLEA showed 74% of initial activity whereas free enzyme was totally inactivated. Reduction of Schiff bases has been performed for the first time in the CLEA preparation process significantly improving the chemically modified CLEAs' reusability, thus providing an enzyme with high potential for recycling even under aqueous reaction conditions where enzyme leakage is, in general, one of the major problems. The CLEA retained 91% activity after 10 cycles in aqueous medium. The immobilized enzyme was used for kinetic resolution reactions. Results showed that immobilization had an enhancing effect on the conversion (c) as well as on the enantiomeric ratio (E). ROL CLEA displayed five times higher enantioselectivity for the hydrolysis of (R,S)‐1‐phenylethyl acetate and likewise 1.5 times higher enantioselectivity for the transesterification of racemic (RS)‐1‐phenylethanol with vinylacetate. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 28: 937–945, 2012 This article was published online on June 26, 2012. An edit was subsequently requested. This notice is included in the online and print versions to indicate that both have been corrected [27 June 2012].  相似文献   

4.
Cross-linked enzyme aggregates (CLEAs) are prepared by precipitation of an enzyme and then chemical cross-linking the precipitate. Three CLEAs of lipase with glutaraldehyde concentrations of 10 mM (CLEA A), 40 mM (CLEA B) and 60 mM (CLEA C) were prepared. Studies show that there is a trade-off between thermal stability vs transesterification/hydrolysis rate vs enantioselectivity. The initial rates for transesterification of β-citronellol for the uncross-linked enzyme and CLEAs A, B and C were 243, 167, 102 and 40 µmol mg?1 h?1, respectively. Their thermal stabilities in aqueous media, as reflected by their half-life values at 55°C, were 6, 9, 13 and 16 h, respectively. The enantioselectivity, E values (for kinetic resolution of β-citronellol by transesterification) were 19, 74, 11 and 6, respectively. These results show that CLEA C was the most thermostable; the uncross-linked enzyme was best at obtaining the highest transesterification rate; and CLEA A was best suited for the enantioselective synthesis. Scanning electron microscopy (SEM) showed that the morphology of CLEA was dependent upon the extent of cross-linking.  相似文献   

5.
韩笑奇  白姝  史清洪 《生物工程学报》2016,32(12):1676-1684
以葡萄糖氧化酶(GOx)为研究对象,系统地研究了钙离子对交联酶聚集体(CLEA)粒子尺寸和微观结构的调控作用以及酶催化性能和实用性的影响。研究结果表明,GOx酶沉淀过程中引入钙离子可显著降低CLEA粒子尺寸并导致粒子内纳米孔道结构逐步消失。在0.1 mmol/L钙离子浓度下,GOx酶的CLEA仍保有清晰的纳米孔道结构。以葡萄糖为底物的GOx酶CLEA催化结果显示,该CLEA粒子的酶活性为对照CLEA粒子的2.69倍。即便1.0 mmol/L钙离子浓度下制备的CLEA粒子的GOx酶活性仍高出对照CLEA粒子约42%。此外,0.1 mmol/L钙离子浓度下制备的CLEA不仅具有更高的底物转化速率和很好的操作稳定性,而且CLEA中GOx酶的最大反应速度显著提高。这些实验结果明确了钙离子对CLEA粒子尺寸和微观结构的调控作用,为制备具有高效生物催化活性的CLEA粒子奠定了基础。  相似文献   

6.
We employed a cross-linked enzyme aggregate (CLEA) method to immobilize formate dehydrogenase (FDH) from Candida boidinii. The optimal conditions for the preparation of CLEAs were determined by examining effects of various parameters: the nature and amount of cross-linking reagent, additive concentration, cross-linking time, and pH during CLEA preparation. The recovered activities of CLEAs were significantly dependent on the concentration of glutaraldehyde; however, the recovered activity was not severely influenced by the content of dextran polyaldehyde as a mild cross-linker. Bovine serum albumin (BSA) was also used as a proteic feeder and enhanced the activity recovery by 130%. The highest recovered activity of CLEA was 18% for formate oxidation reaction and 25% for CO2 reduction reaction. The residual activity of CLEA prepared with dextran polyaldehyde (Dex-CLEA) was over 95% after 10 cycles of reuse. The thermal stability of Dex-CLEA was increased by a factor of 3.6 more than that of the free enzyme. CLEAs of FDH could be utilized efficiently for both NADH regeneration and CO2 reduction.  相似文献   

7.
《Process Biochemistry》2008,43(2):125-131
Tyrosinase from mushroom was immobilized as a cross-linked enzyme aggregate (CLEA) via precipitation with ammonium sulfate and cross-linking with glutaraldehyde. The effects of precipitation and cross-linking on CLEA activity were investigated and the immobilized tyrosinase was characterized. Sixty percent ammonium sulfate saturation and 2% glutaraldehyde were used; a 3-h cross-linking reaction at room temperature, at pH 7.0 was performed; particle sizes of the aggregates were reduced; consequently, 100% activity recovery was achieved in CLEAs with enhanced thermal and storage stabilities. Slight changes in optimum pH and temperature values of the enzyme were recorded after immobilization. Although immobilization did not affect Vmax, substrate affinity of the enzyme increased. Highly stable CLEAs were also prepared from crude mushroom tyrosinase with 100% activity recovery.  相似文献   

8.
Chen L  Hu YD  Li N  Zong MH 《Biotechnology letters》2012,34(9):1673-1678
Cross-linked enzyme aggregates (CLEAs) of β-glucosidase were prepared and characterized. Under the optimum conditions, the activity recovery of CLEAs reached 84?%. The reduction by NaBH(4) resulted in slightly lower activities of CLEAs, while their thermostability was enhanced. CLEAs were more thermally stable than free enzyme (half lives, 973 vs. 518?min at 50?°C), while less stable than seed meal (half life, 1,090?min). In 90?% (v/v) t-butanol, the half lives of CLEAs and free enzyme were 53 and 6.7?h, respectively. Besides, the catalytic efficiency (V (max)/K (m)) of CLEAs was comparable to free enzyme (0.42 vs. 0.47?min(-1) mg(-1)). This carrier-free immobilized enzyme had a network structure with multiple layers. The productivity of salidroside using CLEAs reached 150?g/l?g catalyst, while being 6.3?g/l?g with seed meal.  相似文献   

9.
Cross-linked enzyme aggregates (CLEAs) have emerged as an interesting biocatalyst design for immobilization. Using this approach, a 1,3 regiospecific, alkaline and thermostable lipase from Thermomyces lanuginosa was immobilized. Efficient cross-linking was observed when ammonium sulphate was used as precipitant along with a two fold increase in activity in presence of SDS. The TEM and SEM microphotographs of the CLEAs formed reveal that the enzyme aggregates are larger in size as compared to the free lipase due to the cross-linking of enzyme aggregates with glutaraldehyde. The stability and reusability of the CLEA with respect to olive oil hydrolysis was evaluated. The CLEA showed more than 90% residual activity even after 10 cycles of repeated use.  相似文献   

10.
Cross-linked tyrosinase aggregates were prepared by precipitating the enzyme with ammonium sulfate and subsequent cross-linking with glutaraldehyde. Both activity and stability of these cross-linked enzyme aggregates (CLEAs) in aqueous solution, organic solvents, and ionic liquids have been investigated. Immobilization effectively improved the stability of the enzyme in aqueous solution against various deactivating conditions such as pH, temperature, denaturants, inhibitors, and organic solvents. The stability of the CLEAs in various organic solvents such as tert-butanol (t(1/2)=326.7h at 40°C) was significantly enhanced relative to that in aqueous solution (t(1/2)=5.5h). The effect of thermodynamic water activity (a(w)) on the CLEA activity in organic media was examined, demonstrating that the enzyme incorporated into CLEAs required an extensive hydration (with an a(w) approaching 1.0) for optimizing its activity. The impact of ionic liquids on the CLEA activity in aqueous solution was also assessed.  相似文献   

11.
The combination of Deep-eutectic-solvents (DES) with water as “co-solvent” enables a low-viscous reaction medium that keeps its “non-conventional” nature and thus enables synthetic lyophilization reactions (e.g. esterification) catalyzed by hydrolases. Substrates with different polarity may be employed. This paper shows how the enzyme immobilization with cross-linking aggregates (CLEA) leads to highly stable and active immobilized catalysts in different DES. As a remarkable case, when choline chloride-glycerol DES is used, CLEA derivatives of Candida antarctica lipase B (CLEA-CALB) are stable for at least 14?days without any loss of activity. The immobilized biocatalysts are applied in non-viscous DES-water blends (8% v/v) to catalyze the esterification of benzoic acid and glycerol to furnish glyceryl monobenzoate (α-MBG) in productivities of ~35?g α-MBG L?1d?1. Compared to other commercial immobilized CALB, the CLEA-CALB derivatives rendered more product (higher conversions by 30%). Moreover, CLEA derivatives were successfully reused for six times without any loss of activity. Given the ease of immobilization (CLEA), their excellent performance in DES and the low viscosity of the DES-water blends, the reported approach may be useful for many synthetic procedures and even for continuous processes with largely optimized outcomes.  相似文献   

12.
Lipases from two different sources Candida rugosa (CRL) and Burkholderia cepacia (BCL) were formulated as enzyme precipitated and rinsed with organic solvents, organic solvent rinsed enzyme preparation, cross-linked enzyme aggregates (CLEAs) and protein coated micro-crystals (PCMCs). These various enzyme formulates were evaluated for the kinetic resolution of (+/-)-1-phenylethanol in ionic liquid [Bmim][PF(6)] by transesterification with vinyl acetate. Of all the enzyme forms evaluated EPRP and PCMC in the case of CRL showed the best results with 26 % (E value=153) and 53% (E value=79) conversion, respectively, at 35 degrees C in 24h. Carrying out this conversion with PCMC at lower temperature of 25 degrees C further improved the E value to 453 (with 44% conversion in 12h). For BCL the acetone-rinsed enzyme preparation (AREP), CLEA and PCMC performed equally well with % conversion of 50 and 99 ee(p) (%) (E value >1000) in just 2h, whereas, the free lipase gave only 8% conversion.  相似文献   

13.
脂肪酶协同催化猪油合成生物柴油工艺研究   总被引:1,自引:0,他引:1  
探讨了以乙酸甲酯为酰基受体两种脂肪酶协同催化猪油转酯合成生物柴油的工艺条件。首先利用单因子试验确定2种固定化脂肪酶Novozym435、Lipozyme TLIM单独作为催化剂时的最佳酶用量为40%,反应温度为50℃,乙酸甲酯用量为14(相对于油的摩尔比)。在此基础上,采用3因素5水平和3个中心点的中心组分旋转设计法研究了上述2种脂肪酶协同使用时脂肪酶用量(g/g)、混合酶的配比(%/%)以及乙酸甲酯用量诸因素共同作用对转酯反应转化率的影响。优化后的反应条件为:总酶用量为40%,混合酶配比为50/50,乙酸甲酯用量为14,在该条件下甲酯得率可达97.6%,比同质量的Novozym435、Lipozyme TLIM的催化活性分别高出7.6%、22.3%。表明脂肪酶协同催化猪油合成生物柴油工艺可以较好地提高甲酯得率,并且节约生产成本。  相似文献   

14.
Biodiesel is methyl and ethyl esters of long-chain fatty acids produced from vegetable oils or animal fats. Lipase enzymes have occasionally been used for the production of this biofuel. Recently, biodiesel production using immobilized lipase has received increased attention. Through enhanced stability and reusability, immobilized lipase can contribute to the reduction of the costs inherent to biodiesel production. In this study, methanol-tolerant lipase M37 from Photobacterium lipolyticum was immobilized using the cross-linked enzyme aggregate (CLEA) method. Lipase M37 has a high lysine content (9.7%) in its protein sequence. Most lysine residues are located evenly over the surface of the protein, except for the lid structure region, which makes the CLEA preparation yield quite high (~93%). CLEA M37 evidences an optimal temperature of 30oC, and an optimal pH of 9-10. It was stable up to 50°C and in a pH range of 4.0-11.0. Both soluble M37 and CLEA M37 were stable in the presence of high concentrations of methanol, ethanol, 1-propanol, and nbutanol. That is, their activities were maintained at solvent concentrations above 10% (v/v). CLEA M37 could produce biodiesel from olive oil and alcohols such as methanol and ethanol. Additionally, CLEA M37 generated biodiesel via both 2-step methanol feeding procedures. Considering its physical stability and reusability, CLEA M37 may potentially be used as a catalyst in organic synthesis, including the biodiesel production reaction.  相似文献   

15.
The preparation of crosslinked aggregates of pancreatic porcine lipase (PPL‐CLEA) was systematically studied, evaluating the influence of three precipitants and two crosslinking agents, as well as the use of soy protein as an alternative feeder protein on the catalytic properties and stability of the immobilized PPL. Standard CLEAs showed a global yield (CLEA’ observed activity/offered total activity) of less than 4%, whereas with the addition of soy protein (PPL:soy protein mass ratio of 1:3) the global yield was approximately fivefold higher. The CLEA of PPL prepared with soy protein as feeder (PPL:soy protein mass ratio of 1:3) and glutaraldehyde as crosslinking reagent (10 μmol of aldehyde groups/mg of total protein) was more active mainly because of the reduced enzyme leaching in the washing step. This CLEA, named PPL‐SOY‐CLEA, had an immobilization yield around 60% and an expressed activity around 40%. In the ethanolysis of soybean oil, the PPL‐SOY‐CLEA yielded maximum fatty acid ethyl ester (FAEE) concentration around 12‐fold higher than that achieved using soluble PPL (34 h reaction at 30°C, 300 rpm stirring, soybean oil/ethanol molar ratio of 1:5) with an enzyme load around 2‐fold lower (very likely due to free enzyme inactivation). The operational stability of the PPL‐SOY‐CLEA in the ethanolysis of soybean oil in a vortex flow type reactor showed that FAEE yield was higher than 50% during ten reaction cycles of 24 h. This reactor configuration may be an attractive alternative to the conventional stirred reactors for biotransformations in industrial plants using carrier‐free biocatalysts. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:910–920, 2018  相似文献   

16.
Sucrose-6-acetate is an important intermediate in the preparation of sucralose (a finest sweetener). In our study, Candida rugosa lipase coated with surfactant was firstly immobilized on sol–gel supports. Then, the immobilized enzyme was used in the regioselective synthesis of sucrose-6-acetate by transesterification of sucrose and vinyl acetate. The screening results revealed that Tween 80 was an ideal surfactant to coat lipase immobilized in sol–gel and exhibited the highest yield of sucrose-6-acetate. Other factors that influenced the yield during the preparation process were also studied. Under optimal conditions, the yield of sucrose-6-acetate could reach up to 78.68 %, while free lipase was easily inactivated in polar solvent. Thermal and operational stabilities were also improved significantly. Surfactant-coated lipase immobilized in sol–gel remained stable when the temperature was higher than 60 °C. Moreover, they could maintain high catalytic activity after six recycles. This strategy is economical, convenient and promising for the food industry.  相似文献   

17.
Carrier free immobilization, especially crosslinked enzyme aggregates (CLEAs), has become an important design for biocatalysis in several areas. Adding amino acids during formation of CLEAs was found to give biocatalysts more stable at 55 °C and in the presence of 60% acetonitrile. The half-lives of CLEAs prepared with and without Arg addition were 21 and 15 h (subtilisin) and 4 and 1.6 h (α-chymotrypsin) at 55 °C, respectively. The corresponding half-lives during acetonitrile presence were 4.1 and 3.0 h (subtilisin) and 39 and 22 min (α-chymotrypsin), respectively. CLEAs made with Arg had higher percentages of alpha helix. CLEAs made by adding Lys, Ala, or Asp also were more stable. In the case of Thermomyces lanuginosus lipase (TLL), CLEA with Ala was even more stable than CLEA with Arg. The addition of a suitable amino acid, thus, enhances CLEA stabilities. The results are discussed in the light of earlier results on chemical modification of proteins and the observation that the Arg/Lys ratio is invariably high in the case of enzymes from thermophiles.  相似文献   

18.
Optimization of lipase-catalyzed biodiesel by response surface methodology   总被引:18,自引:0,他引:18  
Biodiesel prepared by catalyzed mild transesterification has become of much current interest for bioenergy. The ability of a commercial immobilized lipase (Novo Industries--Bagsvaerd, Denmark) from Rhizomucor miehei (Lipozyme IM-77) to catalyze the transesterification of soybean oil and methanol was investigated in this study. Response surface methodology and 5-level-5-factor central composite rotatable design were employed to evaluate the effects on reaction time, temperature, enzyme amount, molar ratio of methanol to soybean oil, and added water content on percentage weight conversion to soybean oil methyl ester by transesterification. Based on ridge max analysis, the optimum synthesis conditions giving 92.2% weight conversion were: reaction time 6.3 h, temperature 36.5 degrees C, enzyme amount 0.9 BAUN (Batch Acidolysis Units NOVO), substrate molar ratio 3.4:1, and added water 5.8%.  相似文献   

19.
The microstructure and the catalytic properties of cross-linked enzyme aggregates (CLEA) of penicillin acylase (PA) obtained under different conditions were investigated. The period of time left between the enzyme precipitation and the cross-linking step was found to influence the structural organization of the resulting enzyme preparation. Confocal fluorescent microscopy of the so-called “fresh” and “mature” CLEAs PA allowed to estimate the “characteristic” diameter of CLEA PA particles, which appeared to be about 1.6 μm, and revealed that the “mature” type was composed of relatively big particles as compared to the “fresh” type. Complementary kinetic studies showed that the “mature” CLEA PA were more effective in both hydrolytic and synthetic reactions. It was suggested that the aggregate size might regulate the extent of covalent modification of PA and thereby influence the catalytic properties of CLEA.  相似文献   

20.
Soybean oil-based caffeoyl lipids are the novel lipophilic derivatives of caffeic acid, which can be used as UV absorbers and antioxidants in the food and cosmetic industries. In the work, the novel lipophilic structured lipids were prepared using soybean oil as the novel caffeoyl acceptor by enzymatic transesterification. The effects of the reaction variables on the transesterification were investigated, and response surface methodology was used to optimize the reaction variables. Reactions were monitored by HPLC-UV. Different enzymes (Novozym 435, Lipozyme RMIM, and Lipozyme TLIM) were used as biocatalysts, and Novozym 435 showed the best performance for the reaction. The results showed that a high lipophilic soybean oil-based caffeoyl lipids yield (73.5 ± 1.2%) was achieved under the optimal conditions (reaction temperature 85°C, substrate molar ratio 1:6 (ethyl caffeate (EC)/soybean oil), enzyme load 25% (w/w), and 60 h at atmosphere pressure). The activation energies of EC conversion, hydrophilic glyceryl caffeates (GC) and lipophilic caffeoylated acylglycerol (CAG) formations were 32.92 kJ/mol, 17.21 kJ/mol and 57.36 kJ/mol, respectively. Km and Vm were 0.022 mol/L and 0.033 × 10-3 mol/(Lmin), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号