首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various mechanisms have been proposed for the pathogenesis of postischemic hepatic injury, including the generation of reactive oxygen metabolites. Oxytocin (OT) possesses antisecretory, antiulcer effects, facilitates wound healing and has anti-inflammatory properties. Hepatic ischemia-reperfusion (I/R)-injury was induced by inflow occlusion to median and left liver lobes ( approximately 70%) for 30 min of ischemia followed by 1h reperfusion in female Sprague-Dawley rats under anesthesia. I/R group (n=8) was administered intraperitoneally either OT (500 microg/kg) or saline at 24 and 12 h before I/R and immediately before reperfusion. Sham-operated group that underwent laparotomy without hepatic ischemia served as the control. Rats were decapitated at the end of reperfusion period. Hepatic samples were obtained for the measurement of myeloperoxidase (MPO) activity, malondialdehyde (MDA), glutathione (GSH) and collagen levels and histopathological analysis. Tumor necrosis factor-alfa (TNF-alpha) and transaminases (SGOT, SGPT) were assayed in serum samples. I/R injury caused significant increases in hepatic microscopic damage scores, MPO activity, collagen levels, transaminase, serum TNF-alpha levels. Oxytocin treatment significantly reversed the I/R-induced elevations in serum transaminase and TNF-alpha levels and in hepatic MPO and collagen levels, and reduced the hepatic damage scores. OT treatment had tendency to abolish I/R-induced increase in MDA levels, while GSH levels were not altered. These results suggest that OT has a protective role in hepatic I/R injury and its protective effect in the liver appears to be dependent on its inhibitory effect on neutrophil infiltration.  相似文献   

2.
The aim of this study was to evaluate the effect of ( - )-epigallocatechin-3-gallate (EGCG), a natural antioxidant, on liver and lungs after warm intestinal ischemia/reperfusion (I/R). Thirty male Wistar rats were equally divided into a sham-operation group, an intestinal I/R group and an intestinal I/R group pretreated with EGCG intraperitoneally. Intestinal ischemia was induced by occlusion of the superior mesenteric artery for 60 min followed by reperfusion for 120 min. Immediately after reperfusion, liver, lung and blood samples were collected and analyzed. Results showed that intestinal I/R increased the levels of aspartate (AST) and alanine (ALT) transaminase in serum to 987 and 752 IU/l, respectively. Malondialdehyde (MDA) increased in liver to 1.524 nmol/g in the group subjected to intestinal I/R compared to 0.995 nmol/g in the sham operation group. MDA was also increased in lungs to 1.581 nmol/g compared to 0.896 nmol/g in the sham operation group. Myeloperoxidase (MPO) increased in liver, after intestinal I/R, to 5.16 U/g compared to 1.59 U/g in the sham operation group. MPO was also increased in lungs to 3.89 U/g compared to 1.65 U/g in the sham operation group. Pretreatment with EGCG decreased serum levels of AST and ALT to 236 and 178 IU/l, respectively. It also decreased mean MDA levels in liver and lungs to 1.061 and 1.008 nmol/g, respectively, and mean MPO levels in liver and lungs to 1.88 and 1.71 U/g, respectively. Light microscopy and transmission electron microscopy examinations showed significant alteration in liver and lungs and protection of liver and lung parenchyma in the animals treated with EGCG.  相似文献   

3.
将SD大鼠分组 ,先制作空肠袋 ,分别向袋内注射不同营养物 :10mmol/L丙氨酸 ,10mmol/L葡萄糖 ,10mmol/L甘露醇或 5mmol/L丙氨酸 +5mmol/L葡萄糖的混合液 ,用动脉夹阻断肠系膜上动脉血流 6 0min后 ,再恢复灌流 6 0min。分别于阻断血流 6 0min和恢复灌注 6 0min测定肠粘膜ATP含量。研究结果显示 ,缺血再灌注能显著降低肠粘膜ATP含量 ,给予丙氨酸或葡萄糖 /丙氨酸混合液使肠粘膜ATP含量进一步降低 (P <0 .0 1) ,而给予葡萄糖能显著增加肠粘膜ATP含量 (P <0 .0 1)。结论 :缺血再灌注过程中 ,肠内给予葡萄糖能改善肠粘膜ATP含量 ,对缺血再灌注损伤的肠道提供保护作用  相似文献   

4.
Hepatic ischemia reperfusion (HIR) not only results in liver injury, but also leads to endotoxemia, which aggravates HIR-induced liver injury and dysfunction, or even causes liver failure. Taurine has been shown to protect organs from ischemia reperfusion or endotoxin by its anti-oxidant and anti-inflammatory activities. The aim of this study was to investigate whether taurine could attenuate endotoxin-induced acute liver injury after HIR. Wistar rats subjected to 30 min of hepatic ischemia followed by reperfusion and lipopolysaccharide (LPS) (0.5 mg/kg) administration, exhibited liver dysfunction (elevated serum levels of ALT, AST and LDH) and hepatic histopathological alteration. The serum levels of TNF-α and production of myeloperoxidase (MPO) and malondialdehyde (MDA) in liver tissues and apoptosis of hepatocytes were also increased after the combination of HIR and LPS. However, pre-administration of taurine protected livers from injury induced by the combination of HIR + LPS as the histological score, apoptotic index, MPO activity and production of MDA in liver tissues, and serum levels of AST, ALT, LDH and TNF-α, were significantly reduced. The expression of caspase-3, Fas and Fas ligand was upregulated in homogenates of livers from rats subjected to HIR and LPS, and this elevated expression could be inhibited by taurine. In summary, the results further emphasize the potential utilization of taurine in protecting livers against endotoxin-induced injury especially after HIR, by its anti-inflammatory, anti-oxidative and anti-apoptotic activities.  相似文献   

5.
This study examined the effects of 1 degrees C hypo- or hyperthermia on in vivo liver ischemia and reperfusion (I/R) injury in 15 fasted male Wistar rats. Rats were ventilated, and rectal temperature was maintained at 36, 37 (normothermic), or 38 degrees C. In all rats, 70% liver ischemia was induced by clamping the afferent vessels to the median and left lateral lobes for 60 min, and reperfusion was allowed for 90 min. Changes in plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alpha-glutathione S-transferase (alpha-GST) levels were measured, hemodynamics and bile secretion were monitored, and arterial blood-gas analysis was performed. All ventilated rats showed a normal pH, arterial PCO(2), and arterial PO(2). AST, ALT, and alpha-GST levels were significantly higher in the 38 degrees C group when compared with the 36 and 37 degrees C groups after ischemia. No differences in bile secretion were found between all groups. Histopathological alterations were in agreement with AST, ALT, and alpha-GST levels in plasma. We conclude that a decrease of only 1 degrees C in body temperature significantly attenuates liver I/R injury, whereas an increase of 1 degrees C significantly increases liver I/R injury.  相似文献   

6.
7.
Free radicals, calcium overloading and loss of membrane phospholipids play an important role in the development of ischemia/reperfusion (I/R) injury. Melatonin is a well-known antioxidant and free radical scavenger. Melatonin may also reduce the intracellular calcium overloading and inhibit lipid peroxidation. This study was designed to investigate the effects of melatonin on the I/R-induced cardiac infarct size in an in vivo rat model. We also investigated glutathione (GSH) levels, an antioxidant the levels of which are influenced by oxidative stress, and malondialdehyde (MDA) levels, which is an index of lipid peroxidation. To produce cardiac damage, the left main coronary artery was occluded for 30 min, followed by 120 min reperfusion, in anesthetized rats. Melatonin (10 mg/kg) or vehicle was given 10 min before ischemia via the jugular vein. Infarct size, expressed as the percentage of the risk zone, was found significantly greater in I/R group than in the melatonin-treated I/R group. MDA levels were significantly higher, but GSH levels were lower in the I/R group than in the control group. Melatonin significantly reduced the MDA values and increased the GSH levels. These results suggest that oxidative stress contributes to myocardial I/R injury and melatonin administration exerts a mitigating effect on infarct size. Furthermore, the results indicated that melatonin improves the antioxidant capacity of the heart and attenuates the degree of lipid peroxidation after I/R.  相似文献   

8.
目的:探讨给予牛磺酸预处理对肢体缺血/再灌注(limb ischemia-reperfusion,H/R)后大鼠肝脏损伤及,INn、NF—KB表达的影响及意义。方法:采用Wistar大鼠建立LI/R损伤模型,随机分为4组(n=10):对照(C)组,缺血/再灌注(I/R)组,牛磺酸(T)组和牛磺酸+缺血/再灌注(TR)组。比色法测定动物血浆ALT、AST、MDA,肝组织MDA、MPO、DNA裂解率和钙含量,放免法检测血浆及肝组织TNF-α水平;HE染色观察肝脏组织形态改变;免疫组化法观察NF-κB蛋白表达。结果:与C组比较,I/R和TR组各损伤性指标、TNF-α水平均升高,NF-κB蛋白表达增高(P〈0.01);但TR组上述各项指标较I/R组显著降低。结论:牛磺酸预处理可减轻大鼠LI/R所致肝脏损伤,降低TNF-α、NF-κB表达。  相似文献   

9.
Lee WY  Koh EJ  Lee SM 《Nitric oxide》2012,26(1):1-8
This study examined the cytoprotective mechanisms of a combination of ischemic preconditioning (IPC) and allopurinol against liver injury caused by ischemia/reperfusion (I/R). Allopurinol (50 mg/kg) was intraperitoneally administered 18 and 1 h before sustained ischemia. A rat liver was preconditioned by 10 min of ischemia, followed by 10 min of reperfusion, and then subjected to 90 min of ischemia, followed by 5 h of reperfusion. Rats were pretreated with adenosine deaminase (ADA), 3,7-dimethyl-1-[2-propargyl]-xanthine (DMPX), and N-nitro-l-arginine methyl ester (l-NAME) before IPC. Hepatic nitrite and nitrate and eNOS protein expression levels were increased by the combination of IPC and allopurinol. This increase was attenuated by ADA, DMPX, and l-NAME. I/R induced an increase in alanine aminotransferase activity, whereas it decreased the hepatic glutathione level. A combination of IPC and allopurinol attenuated these changes, which were abolished by ADA, DMPX, and l-NAME. The increase in the liver wet weight-to-dry weight ratio after I/R was attenuated by the combination of IPC and allopurinol. In contrast, hepatic bile flow was decreased after I/R, which was attenuated by the combination of IPC and allopurinol. These changes were restored by l-NAME. I/R induced a decrease in the level of mitochondrial dehydrogenase, whereas it increased mitochondrial swelling. A combination of IPC and allopurinol attenuated these changes, which were restored by ADA, DMPX, and l-NAME. Our findings suggest that a combination of IPC and allopurinol reduces post-ischemic hepatic injury by enhancing NO generation.  相似文献   

10.
Stable nitroxyl radicals (nitroxides) are potential antioxidant drugs, and we have previously reported that linking nitroxide to biological macromolecules can improve therapeutic activity in at least two ways. First, polynitroxylated compounds such as polynitroxyl human serum albumin (PNA) are a novel class of high molecular weight, extracellular antioxidants. Second, compounds such as PNA can prolong the half-life of free (unbound, low molecular weight) nitroxides such as 4-hydroxy-2,2,6, 6-tetramethylpiperidine-N-oxyl (Tempol) in vivo. Unlike PNA, Tempol can readily access the intracellular compartment. Thus PNA can act alone in the extracellular compartment, or in concert with Tempol, to provide additional antioxidant protection within cells. In this study, we compared the abilities of PNA, Tempol, and the combination of PNA + Tempol to prevent lung microvascular injury secondary to prolonged gut ischemia (I, 120 min) and reperfusion (R, 20 min) in the rat. Pulmonary capillary filtration coefficient (K(f,c)) and lung neutrophil retention (tissue myeloperoxidase activity, MPO) were measured in normal, isolated rat lungs perfused with blood harvested from I/R rats. Blood donor rats were treated with drug during ischemia. Gut I/R resulted in a marked increase in pulmonary capillary coefficient and lung MPO. PNA + Tempol, but not PNA alone or Tempol alone, at the doses used, prevented the development of lung leak. None of the treatments had an effect on lung neutrophil retention. Anti-inflammatory therapeutic activity appeared to correlate with blood Tempol level: in the presence of PNA, blood Tempol levels were maintained in the 50-100 microM range vs. essentially undetectable levels shortly after Tempol was administered alone. In this model of lung injury secondary to prolonged gut I/R, lung capillary leak was prevented when the membrane-permeable compound Tempol was maintained in its active, free radical state by PNA.  相似文献   

11.
Reoxygenation of the ischemic tissue promotes the generation of various reactive oxygen metabolites (ROM) which are known to have deleterious effects on various cellular functions. This study was designed to determine the possible protective effect of mesna (2-Mercaptoethane Sulfonate) on renal ischemia/reperfusion (I/R) injury. Wistar albino rats were unilaterally nephrectomized, and 15 days later they were subjected to 45 min of renal pedicle occlusion followed by 6 h of reperfusion. Mesna (MESNA, 150 mg/kg, i.p.; an effective dose against I/R injury) or vehicle was administered twice, 15 min prior to ischemia and immediately before the reperfusion period. At the end of the reperfusion period, rats were killed by decapitation. Kidney samples were taken for histological examination or determination of the free radicals, renal malondialdehyde (MDA) and glutathione (GSH) levels, and myeloperoxidase (MPO) activity. Renal tissue collagen content, as a fibrosis marker was also determined. Creatinine and urea concentrations in blood were measured for the evaluation of renal function. The results demonstrated that renal I/R caused nephrotoxicity, as evidenced by increases in blood urea and creatinine levels, which was reversed by MESNA treatment. Increased free radical levels, as assessed by nitroblue-tetrazolium test were reduced with MESNA. Moreover, the decrease in GSH and increases in MDA levels, and MPO activity induced by I/R indicated that renal injury involves free radical formation. Treatment of rats with MESNA restored the reduced GSH levels while it decreased MDA levels as well as MPO activity. Increased collagen contents of the kidney tissues by I/R were reversed back to the control levels by MESNA treatment. Since MESNA administration reversed these oxidant responses, improved renal function and microscopic damage, it seems likely that MESNA protects kidney tissue against I/R induced oxidative damage.  相似文献   

12.
The aim of this study was to determine whether phalloidin (1 microM) or antamanide (1 microM), cyclic peptides that stabilize dense peripheral band and stress fiber F-actin in endothelium, would attenuate the increase in microvascular permeability induced by 4 h of ischemia and 30 min of reperfusion (I/R) in the isolated canine gracilis muscle. Changes in microvascular permeability (1 - sigma) were assessed by determining the solvent drag reflection coefficient for total plasma proteins (sigma) in muscles subjected to 4.5 h of continuous perfusion (nonischemic controls), I/R alone, I/R + phalloidin, or I/R + antamanide. Muscle neutrophil content was assessed by determination of myeloperoxidase (MPO) activity in tissue samples obtained at the end of the experiments. Fluorescent detection of nitrobenzoxadiazole-phallicidin in endothelial cell monolayers confirmed that phalloidin enters these cells. I/R was associated with marked increases in microvascular permeability and muscle neutrophil content (1 - sigma = 0.45 +/- 0.07; MPO = 8.9 +/- 0.5 units/g) relative to control (4.5 h continuous perfusion) preparations (1 - sigma = 0.12 +/- 0.03; MPO = 0.5 +/- 0.8 unit/g). These I/R-induced changes were largely prevented by administration of phalloidin (1 - sigma = 0.19 +/- 0.02; MPO = 0.8 +/- 0.4 U/g) or antamanide (1 - sigma = 0.07 +/- 0.11; MPO = 0.9 +/- 0.3 unit/g) at reperfusion. Similar results were obtained when phalloidin was administered before ischemia (1 - sigma = 0.24 +/- 0.04; MPO = 1.2 +/- 1.0 units/g). Although antamanide decreased superoxide production (by approximately 60%) and adherence to plastic (by approximately 75%) by activated neutrophils in vitro, phalloidin failed to alter these aspects of granulocyte function.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
HS Ding  J Yang  FL Gong  J Yang  JW Ding  S Li  YR Jiang 《Gene》2012,509(1):149-153
This study aimed to explore the role of high mobility box 1 (HMGB1) and its receptor toll like receptor 4 (TLR4) on neutrophils in myocardial ischemia reperfusion (I/R) injury. We constructed TLR4-mutant (C3H/HeJ) and control (C3H/HeN) mouse models of myocardial I/R injury and subjected the mice to 30min of ischemia and 6h of reperfusion. Light microscope was used to observe structural changes in the myocardium. HMGB1 levels were measured using quantitative real-time PCR and immunohistochemistry. Neutrophil accumulation, TNF-a expression and IL-8 levels were analyzed via myeloperoxidase (MPO) biochemical studies, quantitative real-time PCR and ELISA, respectively. The results demonstrated that fewer neutrophils infiltrated in the myocardium of TLR4-mutant mice after myocardial I/R and that TLR4 deficiency markedly decreased the ischemic injury caused by ischemia/reperfusion, and inhibited the expression of HMGB1, TNF-a, and IL-8, all of which were up-regulated by ischemia/reperfusion. These findings suggest that HMGB1 plays a central role in recruiting neutrophils during myocardial I/R leading to worsened myocardial I/R injury. This recruitment mechanism is possibly due to its inflammatory and chemokine functions based on the TLR4-dependent pathway.  相似文献   

14.
The protective role of etanercept in myocardial ischemia/reperfusion is not well understood. The aim of this study was to investigate whether etanercept modulates neutrophil accumulation, TNF-α induction and oxidative stress in an ischemia/reperfusion injured rat heart model. Rats were randomly exposed to sham operation, myocardial ischemia/reperfusion (MI/R) alone, MI/R+ etanercept. The results demonstrated that compared to MI/R, etanercept reduced myocardial infarction area, myocardial myeloperoxidase (MPO) levels, serum creatinine kinase (CK) and lactate dehydrogenase (LDH) levels, and both serum and myocardial TNF-α production. Etanercept also markedly enhanced the activities of antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), and reduced the level of malondialdehyde (MDA) in MI/R rats. In summary, our data suggested that etanercept has protective effects against MI/R injury in rats, which may be attributed to attenuating inflammation and oxidative stress.  相似文献   

15.
The aim of the present study was to evaluate the effects of phosphodiesterase type 5 (PDE5) inhibitory drugs, Tadalafil and Sildenafil, on inducible NOS (iNOS), endothelial NOS (eNOS) and p53 genes expressions and apoptosis in ischemia/reperfusion (I/R) induced oxidative injury in rat renal tissue. Eighty Sprague-Dawley rats (300-350?g) were divided into four groups. In ischemia/reperfusion group, rats were subjected to renal ischemia by clamping the left pedicle for 60?min, and then reperfused for 90?min. On the other hand, in other two groups the rats were individually pretreated with Tadalafil and Sildenafil 1?h before the induction of ischemia. Malondialdehyde (MDA) is determined in renal tissue homogenates by high-performance liquid chromatography, the number of apoptotic cell were calculated by TUNEL method and p53 and eNOS expression were detected with immunohistochemistry. On the other hand, myeloperoxidase (MPO) levels were measured by spectrophotometric method and the mRNA level of iNOS in renal tissue was determined by Real-time PCR (RT-PCR). Our results indicate that MDA and MPO levels were increased in the I/R group than those in the control group. Both Tadalafil and Sildenafil treatment decreased the MDA levels in ischemia/reperfusion group, whereas this effect was more potent with Sildenafil. RT-PCR results showed that, iNOS gen expression increased in the I/R group, but decreased in the PDE5 inhibitory drugs treated group. Apoptotic cells, eNOS levels and p53 positive cells were also decreased in PDE5 inhibitory drugs treated group. We suggest that Tadalafil and Sildenafil have beneficial effects against I/R related renal tissue injury and this protective effect is clearer for Sildenafil than Tadalafil.  相似文献   

16.
张勇  鲍红光  尹加林  李玺 《生物磁学》2010,(23):4454-4457
目的:探讨大鼠肝脏缺血再灌注损伤NF-κB和ICAM-1表达情况及NAC的保护作用机制。方法:45只雄性SD大鼠随机分成三组:假手术组(Sham组,n=5);缺血再灌注损伤组(I/R组,n=20)缺血60min后分别再灌注1、3、6、12h;N-乙酰半胱氨酸组(NAC组,n=20):先自阴茎背静脉给大鼠注射溶于生理盐水的NAC,20min后再按I/R组处理。在各规定的再灌注时间点,分别采用western-blot和免疫组化方法测定肝组织中NF-κB和ICAM-1的表达。结果:I/R组和NAC组再灌注1、3、6、12h后,NF-κB的表达均明显高于Sham组(p〈0.01),于再灌注3h达到高峰;ICAM-1的表达均明显高于Sham组(p〈0.01),于再灌注6h达到高峰。NAC组再灌注1、3、6h与I/R组相同时间点比较:NF-κB和ICAM-1的表达均低于I/R组(p〈0.05)。NAC组再灌注12h与I/R组相同时间点比较:NF-κB和ICAM-1的表达虽然在数值上有所减少,但统计学上无差异(p〉0.05)。结论:大鼠肝脏缺血再灌注后NF-κB和ICAM-1表达增加,NAC可抑制NF-κB激活,减少ICAM-1表达减轻大鼠肝脏缺血再灌注损伤。  相似文献   

17.
The contribution of acidosis to the development of reperfusion injury is controversial. In this study, we examined the effects of respiratory acidosis and hypoxia in a frequently used in vivo liver ischemia and reperfusion (I/R) injury rat model. Rats were anesthetized with intraperitoneal anesthetics and subjected to partial liver ischemia (70%) for 60 min and subsequent reperfusion for 90 min under the following conditions: 1) no acidosis and normoxia, maintained by controlled ventilation; 2) acidosis and normoxia, maintained by passive supply with oxygen; 3) no acidosis and hypoxia, maintained by bicarbonate administration without respiratory support; and 4) acidosis and hypoxia, i.e., without respiratory support or pH correction. Changes in plasma aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were measured as parameters of hepatocellular injury, and bile secretion was monitored. AST and ALT levels were lowest in the ventilated rats and highest in the bicarbonate-treated rats. No differences in bile secretion were found between groups. Our results suggest that respiratory acidosis significantly enhanced liver I/R injury under normoxic conditions, whereas respiratory acidosis significantly reduced liver I/R injury under hypoxic conditions.  相似文献   

18.
《Free radical research》2013,47(9):683-691
Abstract

Reactive oxygen metabolites play an important role in the ischemia/reperfusion (I/R)-induced tissue injury. This study was designed to investigate the possible protective effects of quercetin against I/R injury of the rat corpus cavernosum tissue. To induce I/R injury, abdominal aorta was clamped for 30 min and reperfused for 60 min. Quercetin (20 mg/kg) or vehicle was given before ischemia and just after reperfusion in the I/R group and in the sham-operated control group in which clamping was not performed. After decapitation, corpus cavernosum tissues were removed and either placed in organ baths or stored for evaluating biochemical parameters. Oxidative injury was examined by measuring lucigenin chemiluminescence (CL), nitric oxide (NO), malondialdehyde (MDA) and glutathione (GSH) levels, superoxide dismutase (SOD) and myeloperoxidase (MPO) activities and caspase-3 protein levels. In the I/R group, contractile responses to phenylephrine and relaxation responses to carbachol were impaired significantly compared with those in the control groups, while quercetin treatment in I/R group reversed both of the responses. On the other hand, increase in lucigenin CL, NO, MDA levels and MPO and caspase-3 activities and decrease in GSH levels and SOD activity in the cavernosal tissues of the I/R group were also significantly reversed by quercetin treatment. Furthermore, observed distorted morphology with ruptured endothelial cells and vacuolization in the cytoplasm of cavernosal tissues of I/R no longer persisted in the quercetin-treated I/R group. Thus, our results suggested that treatment with quercetin may have some benefits in controlling I/R-induced tissue injury through its anti-inflammatory, anti-apoptotic, and antioxidant effects.  相似文献   

19.
It has been known that many immediately early genes are expressed during ischemia/reperfusion (I/R) injury. Here, employing a model of hepatic I/R, we show that inducible nitric oxide synthase (iNOS) is induced via the activation of nuclear factor kappaB (NF-kappaB) after I/R in rat liver. When liver was subjected to ischemia followed by reperfusion, but not ischemia alone, an NF-kappaB complex composed of p50/p65 heterodimer and p50 homodimer was rapidly activated within 1 h and remained elevated for up to 3 h, and then tended to decline after 5 h of reperfusion. Also, the expression of iNOS mRNA was initiated after 1 h and continued to increase after 5 h of reperfusion during the time course studied. This upregulated iNOS mRNA expression coincides with increased iNOS enzyme activity and NF-kappaB binding activity after hepatic I/R. Administration of N-acetylcysteine (NAC, 20 mg/kg i.v. 10 min before reperfusion), an antioxidant, not only significantly inhibited the expression of iNOS mRNA but also blocked upregulated NF-kappaB binding activity after reperfused liver. These results suggest that NF-kappaB is activated by oxidative stress during hepatic I/R and may play a significant role in the induction of the iNOS gene.  相似文献   

20.
Previous studies have shown that erythropoietin (EPO) has protective effects against ischemia/reperfusion (I/R) injury in several tissues. The aim of this study was to determine whether EPO could prevent intestinal tissue injury induced by I/R. Wistar rats were subjected to intestinal ischemia (30 min) and reperfusion (60 min). A single dose of EPO (5000 U/kg) was administered intraperitoneally at two different time points: either at five minutes before the onset of ischemia or at the onset of reperfusion. At the end of the reperfusion period, jejunum was removed for examinations. Myeloperoxidase (MPO), malondialdehyde (MDA), and antioxidant defense system were assessed by biochemical analyses. Histological evaluation was performed according to the Chiu scoring method. Endothelial nitric oxide synthase (eNOS) was demonstrated by immunohistochemistry. Apoptotic cells were determined by TUNEL staining. Compared with the sham, I/R caused intestinal tissue injury (Chiu score, 3+/-0.36 vs 0.4+/-0.24, P<0.01) and was accompanied by increases in MDA levels (0.747+/-0.076 vs 0.492+/-0.033, P<0.05), MPO activity (10.51+/-1.87 vs 4.3+/-0.45, P<0.05), intensity of eNOS immunolabelling (3+/-0.4 vs 1.3+/-0.33, P<0.05), the number of TUNEL-positive cells (20.4+/-2.6 vs 4.6+/-1.2, P<0.001), and a decrease in catalase activity (16.83+/-2.6 vs 43.15+/-4.7, P<0.01). Compared with the vehicle-treated I/R, EPO improved tissue injury; decreased the intensity of eNOS immunolabelling (1.6+/-0.24 vs 3+/-0.4, P<0.05), the number of TUNEL-positive cells (9.2+/-2.7 vs 20.4+/-2.6, P<0.01), and the high histological scores (1+/-0.51 vs 3+/-0.36, P<0.01), and increased catalase activity (42.85+/-6 vs 16.83+/-2.6, P<0.01) when given before ischemia, while it was found to have decreased the levels of MDA (0.483+/-0.025 vs 0.747+/-0.076, P<0.05) and MPO activity (3.86+/-0.76 vs 10.51+/-1.87, P<0.05), intensity of eNOS immunolabelling (1.4+/-0.24 vs 3+/-0.4, P<0.01), the number of TUNEL-positive cells (9.1+/-3 vs 20.4+/-2.6, P<0.01), and the number of high histological scores (1.16+/-0.4 vs 3+/-0.36, P<0.05) when given at the onset of reperfusion. These results demonstrate that EPO protects against intestinal I/R injury in rats by reducing oxidative stress and apoptosis. We attributed this beneficial effect to the antioxidative properties of EPO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号