首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
2.
The adenovirus type 5 (Ad5) early 1B (E1B) 55-kDa (E1B-55kDa)-E4orf6 protein complex has been implicated in the selective modulation of nucleocytoplasmic mRNA transport at late times after infection. Using a combined immunoprecipitation-immunoblotting assay, we mapped the domains in E1B-55kDa required for the interaction with the E4orf6 protein in lytically infected A549 cells. Several domains in the 496-residue 55-kDa polypeptide contributed to a stable association with the E4orf6 protein in E1B mutant virus-infected cells. Linker insertion mutations at amino acids 180 and 224 caused reduced binding of the E4orf6 protein, whereas linker insertion mutations at amino acid 143 and in the central domain of E1B-55kDa eliminated the binding of the E4orf6 protein. Earlier work showing that the central domain of E1B-55kDa is required for binding to p53 and the recent observation that the E4orf6 protein also interacts with the tumor suppressor protein led us to suspect that p53 might play a role in the E1B-E4 protein interaction. However, coimmunoprecipitation assays with extracts prepared from infected p53-negative H1299 cells established that p53 is not needed for the E1B-E4 protein interaction in adenovirus-infected cells. Using two different protein-protein interaction assays, we also mapped the region in the E4orf6 protein required for E1B-55kDa interaction to the amino-terminal 55 amino acid residues. Interestingly, both binding assays established that the same region in the E4orf6/7 protein can potentially interact with E1B-55kDa. Our results demonstrate that two distinct segments in the 55-kDa protein encoding the transformation and late lytic functions independently interact with p53 and the E4orf6 protein in vivo and provide further insight by which the multifunctional 55-kDa EIB protein can exert its multiple activities in lytically infected cells and in adenovirus transformation.  相似文献   

3.
4.
The E1B-55K protein plays an important role during human adenovirus type 5 productive infection. In the early phase of the viral infection, E1B-55K binds to and inactivates the tumor suppressor protein p53, allowing efficient replication of the virus. During the late phase of infection, E1B-55K is required for efficient nucleocytoplasmic transport and translation of late viral mRNAs, as well as for host cell shutoff. In an effort to separate the p53 binding and inactivation function and the late functions of the E1B-55K protein, we have generated 26 single-amino-acid mutations in the E1B-55K protein. These mutants were characterized for their ability to modulate the p53 level, interact with the E4orf6 protein, mediate viral late-gene expression, and support virus replication in human cancer cells. Of the 26 mutants, 24 can mediate p53 degradation as efficiently as the wild-type protein. Two mutants, R240A (ONYX-051) and H260A (ONYX-053), failed to degrade p53 in the infected cells. In vitro binding assays indicated that R240A and H260A bound p53 poorly compared to the wild-type protein. When interaction with another viral protein, E4orf6, was examined, H260A significantly lost its ability to bind E4orf6, while R240A was fully functional in this interaction. Another mutant, T255A, lost the ability to bind E4orf6, but unexpectedly, viral late-gene expression was not affected. This raised the possibility that the interaction between E1B-55K and E4orf6 was not required for efficient viral mRNA transport. Both R240A and H260A have retained, at least partially, the late functions of wild-type E1B-55K, as determined by the expression of viral late proteins, host cell shutoff, and lack of a cold-sensitive phenotype. Virus expressing R240A (ONYX-051) replicated very efficiently in human cancer cells, while virus expressing H260A (ONYX-053) was attenuated compared to wild-type virus dl309 but was more active than ONYX-015. The ability to separate the p53-inactivation activity and the late functions of E1B-55K raises the possibility of generating adenovirus variants that retain the tumor selectivity of ONYX-015 but can replicate more efficiently than ONYX-015 in a broad spectrum of cell types.  相似文献   

5.
The adenovirus type 5 243R E1A protein induces p53-dependent apoptosis in the absence of the 19- and 55-kDa E1B polypeptides. This effect appears to result from an accumulation of p53 protein and is unrelated to expression of E1B products. We now report that in the presence of the E1B 55-kDa polypeptide, the 289R E1A protein does not induce such p53 accumulation and, in fact, is able to block that induced by E1A 243R. This inhibition also requires the 289R-dependent transactivation of E4orf6 expression. E4orf6 is known to form complexes with the E1B 55-kDa protein and to function both in the transport and stabilization of viral mRNA and in shutoff of host cell protein synthesis. We demonstrated that the block in p53 accumulation is not due to the generalized shutoff of host cell metabolism. Rather, it appears to result from a mechanism targeted specifically to p53, most likely involving a decrease in the stability of p53 protein. The E1B 55-kDa protein is known to interact with both E4orf6 and p53, and as demonstrated recently by others, we showed that E4orf6 also binds directly to p53. Thus, multiple interactions between all three proteins may regulate p53 stability, resulting in the maintenance of low levels of p53 following virus infection.  相似文献   

6.
During the late phase of adenovirus infection, viral mRNA is efficiently transported from the nucleus to the cytoplasm while most cellular mRNA species are retained in the nucleus. Two viral proteins, E1B-55 kDa and E4orf6, are both necessary for these effects. The E4orf6 protein of adenovirus type 5 binds and relocalizes E1B-55 kDa, and the complex of the two proteins was previously shown to shuttle continuously between the nucleus and cytoplasm. Nucleocytoplasmic transport of the complex is achieved by a nuclear export signal (NES) within E4orf6. Mutation of this signal sequence severely reduces the ability of the E1B-55 kDa-E4orf6 complex to leave the nucleus. Here, we examined the role of functional domains within E4orf6 during virus infection. E4orf6 or mutants derived from it were transiently expressed, followed by infection with recombinant adenovirus lacking the E4 region and determination of virus yield. An arginine-rich putative alpha helix near the carboxy terminus of E4orf6 contributes to E1B-55 kDa binding and relocalization as well as to the synthesis of viral DNA, mRNA, and proteins. Further mutational analysis revealed that mutation of the NES within E4orf6 considerably reduces its ability to support virus production. The same effect was observed when nuclear export was blocked with a competitor. Further, a functional NES within E4orf6 contributed to the efficiency of late virus protein synthesis and viral DNA replication, as well as total and cytoplasmic accumulation of viral late mRNA. Our data support the view that NES-mediated nucleocytoplasmic shuttling strongly enhances most, if not all, intracellular activities of E4orf6 during the late phase of adenovirus infection.  相似文献   

7.
Theadenovirus type 5 (Ad5) E1B-55K and E4orf6 proteins are required together to stimulate viral late nuclear mRNA export to the cytoplasm and to restrict host cell nuclear mRNA export during the late phase of infection. Previous studies have shown that these two viral proteins interact with the cellular proteins elongins B and C, cullin 5, RBX1, and additional cellular proteins to form an E3 ubiquitin-protein ligase that polyubiquitinates p53 and probably one or more subunits of the MRE11-RAD50-NBS1 (MRN) complex, directing their proteasomal degradation. The MRN complex is required for cellular DNA double-strand break repair and induction of the DNA damage response by adenovirus infection. To determine if the ability of E1B-55K and E4orf6 to stimulate viral late mRNA nuclear export requires the ubiquitin-protein ligase activity of this viral ubiquitin-protein ligase complex, we designed and expressed a dominant-negative mutant form of cullin 5 in HeLa cells before infection with wild-type Ad5 or the E1B-55K null mutant dl1520. The dominant-negative cullin 5 protein stabilized p53 and the MRN complex, indicating that it inhibited the viral ubiquitin-protein ligase but had no effect on viral early mRNA synthesis, early protein synthesis, or viral DNA replication. However, expression of the dominant-negative cullin 5 protein caused a decrease in viral late protein synthesis and viral nuclear mRNA export similar to the phenotype produced by mutations in E1B-55K. We conclude that the stimulation of adenovirus late mRNA nuclear export by E1B-55K and E4orf6 results from the ubiquitin-protein ligase activity of the adenovirus ubiquitin-protein ligase complex.  相似文献   

8.
The adenovirus type 5 (Ad5) E1B-55K and E4orf6 (E1B-55K/E4orf6) proteins are multifunctional regulators of Ad5 replication, participating in many processes required for virus growth. A complex containing the two proteins mediates the degradation of cellular proteins through assembly of an E3 ubiquitin ligase and induces shutoff of host cell protein synthesis through selective nucleocytoplasmic viral late mRNA export. Both proteins shuttle between the nuclear and cytoplasmic compartments via leucine-rich nuclear export signals (NES). However, the role of their NES-dependent export in viral replication has not been established. It was initially shown that mutations in the E4orf6 NES negatively affect viral late gene expression in transfection/infection complementation assays, suggesting that E1B-55K/E4orf6-dependent viral late mRNA export involves a CRM1 export pathway. However, a different conclusion was drawn from similar studies showing that E1B-55K/E4orf6 promote late gene expression without active CRM1 or functional NES. To evaluate the role of the E1B-55K/E4orf6 NES in viral replication in the context of Ad-infected cells and in the presence of functional CRM1, we generated virus mutants carrying amino acid exchanges in the NES of either or both proteins. Phenotypic analyses revealed that mutations in the NES of E1B-55K and/or E4orf6 had no or only moderate effects on viral DNA replication, viral late protein synthesis, or viral late mRNA export. Significantly, such mutations also did not interfere with the degradation of cellular substrates, indicating that the NES of E1B-55K or E4orf6 is dispensable both for late gene expression and for the activity associated with the E3 ubiquitin ligase.  相似文献   

9.
Results reported here indicate that adenovirus 5 exploits the cellular aggresome response to accelerate inactivation of MRE11-RAD50-NBS1 (MRN) complexes that otherwise inhibit viral DNA replication and packaging. Aggresomes are cytoplasmic inclusion bodies, observed in many degenerative diseases, that are formed from aggregated proteins by dynein-dependent retrograde transport on microtubules to the microtubule organizing center. Viral E1B-55K protein forms aggresomes that sequester p53 and MRN in transformed cells and in cells transfected with an E1B-55K expression vector. During adenovirus infection, the viral protein E4orf3 associates with MRN in promyelocytic leukemia protein nuclear bodies before MRN is bound by E1B-55K. Either E4orf3 or E4orf6 is required in addition to E1B-55K for E1B-55K aggresome formation and MRE11 export to aggresomes in adenovirus-infected cells. Aggresome formation contributes to the protection of viral DNA from MRN activity by sequestering MRN in the cytoplasm and greatly accelerating its degradation by proteosomes following its ubiquitination by the E1B-55K/E4orf6/elongin BC/Cullin5/Rbx1 ubiquitin ligase. Our results show that aggresomes significantly accelerate protein degradation by the ubiquitin-proteosome system. The observation that a normal cellular protein is inactivated when sequestered into an aggresome through association with an aggresome-inducing protein has implications for the potential cytotoxicity of aggresome-like inclusion bodies in degenerative diseases.  相似文献   

10.
The adenovirus type 5 (Ad5) early 1B 55-kDa protein (E1B-55kDa) is a multifunctional phosphoprotein that regulates viral DNA replication and nucleocytoplasmic RNA transport in lytically infected cells. In addition, E1B-55kDa provides functions required for complete oncogenic transformation of rodent cells in cooperation with the E1A proteins. Using the far-Western technique, we have isolated human genes encoding E1B-55kDa-associated proteins (E1B-APs). The E1B-AP5 gene encodes a novel nuclear RNA-binding protein of the heterogeneous nuclear ribonucleoprotein (hnRNP) family that is highly related to hnRNP-U/SAF-A. Immunoprecipitation experiments indicate that two distinct segments in the 55-kDa polypeptide which partly overlap regions responsible for p53 binding are required for complex formation with E1B-AP5 in Ad-infected cells and that this protein interaction is modulated by the adenovirus E4orf6 protein. Expression of E1B-AP5 efficiently interferes with Ad5 E1A/E1B-mediated transformation of primary rat cells. Furthermore, stable expression of E1B-AP5 in Ad-infected cells overcomes the E1B-dependent inhibition of cytoplasmic host mRNA accumulation. These data suggest that E1B-AP5 might play a role in RNA transport and that this function is modulated by E1B-55kDa in Ad-infected cells.  相似文献   

11.
12.
The adenovirus E1B-55K and E4orf6 proteins cooperate during virus infection while performing several tasks that contribute to a productive infection, including the selective nucleocytoplasmic transport of late viral mRNA. Previous studies have shown that the E4orf6 protein retains the E1B-55K protein in the nucleus of human and monkey cells, but not in those of rodents, suggesting that primate-specific cellular factors contribute to the E4orf6-mediated retention of the E1B-55K protein in the nucleus. In an effort to identify these proposed primate-specific cellular factors, the interaction of the E1B-55K and E4orf6 proteins was studied in a panel of stable human-rodent monochromosomal somatic cell hybrids. Analysis of this panel of cell lines has demonstrated the existence of an activity associated with human chromosome 21 that permits the E1B-55K and E4orf6 proteins to colocalize in the nucleus of a rodent cell. Additional hybrid cells bearing portions of human chromosome 21 were used to map this activity to a 10-megabase-pair segment of the chromosome, extending from 21q22.12 to a region near the q terminus. Strikingly, this region also facilitates the expression of adenovirus late genes in a rodent cell background while having little impact on the expression of early viral genes.  相似文献   

13.
14.
15.
Previous studies have shown that the adenovirus type 5 (Ad5) E4orf6 gene product displays features of a viral oncoprotein. It initiates focal transformation of primary rat cells in cooperation with Ad5 E1 genes and confers multiple additional transformed properties on E1-expressing cells, including profound morphological alterations and dramatically accelerated tumor growth in nude mice. It has been reported that E4orf6 binds to p53 and, in the presence of the Ad5 E1B-55kDa protein, antagonizes p53 stability by targeting the tumor suppressor protein for active degradation. In the present study, we performed a comprehensive mutant analysis to assign transforming functions of E4orf6 to distinct regions within the viral polypeptide and to analyze a possible correlation between E4orf6-dependent p53 degradation and oncogenesis. Our results show that p53 destabilization maps to multiple regions within both amino- and carboxy-terminal parts of the viral protein and widely cosegregates with E4orf6-dependent acceleration of tumor growth, indicating that both effects are related. In contrast, promotion of focus formation and morphological transformation require only a carboxy-terminal segment of the E4 protein. Thus, these effects are completely independent of p53 stability, but may involve other interactions with the tumor suppressor. Our results demonstrate that at least two distinct activities contribute to the oncogenic potential of Ad5 E4orf6. Although genetically separable, both activities are largely mediated through a novel highly conserved, cysteine-rich motif and a recently described arginine-faced amphipathic alpha helix, which resides within a carboxy-terminal "oncodomain" of the viral protein.  相似文献   

16.
Complexes containing adenovirus E4orf6 and E1B55K proteins play critical roles in productive infection. Both proteins interact directly with the cellular tumor suppressor p53, and in combination they promote its rapid degradation. To examine the mechanism of this process, degradation of exogenously expressed p53 was analyzed in p53-null human cells infected with adenovirus vectors encoding E4orf6 and/or E1B55K. Coexpression of E4orf6 and E1B55K greatly reduced both the level and the half-life of wild-type p53. No effect was observed with the p53-related p73 proteins, which did not appear to interact with E4orf6 or E1B55K. Mutant forms of p53 were not degraded if they could not efficiently bind E1B55K, suggesting that direct interaction between p53 and E1B55K may be required. Degradation of p53 was independent of both MDM2 and p19ARF, regulators of p53 stability in mammalian cells, but required an extended region of E4orf6 from residues 44 to 274, which appeared to possess three separate biological functions. First, residues 39 to 107 were necessary to interact with E1B55K. Second, an overlapping region from about residues 44 to 218 corresponded to the ability of E4orf6 to form complexes with cellular proteins of 19 and 14 kDa. Third, the nuclear retention signal/amphipathic arginine-rich alpha-helical region from residues 239 to 253 was required. Interestingly, neither the E4orf6 nuclear localization signal nor the nuclear export signal was essential. These results suggested that if nuclear-cytoplasmic shuttling is involved in this process, it must involve another export signal. Degradation was significantly blocked by the 26S proteasome inhibitor MG132, but unlike the HPV E6 protein, E4orf6 and E1B55K were unable to induce p53 degradation in vitro in reticulocyte lysates. Thus, this study implies that the E4orf6-E1B55K complex may direct p53 for degradation by a novel mechanism.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号