首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the adenovirus infectious cycle, the early proteins E4orf6 and E1B55K are known to perform several functions. These include nuclear export of late viral mRNAs, a block of nuclear export of the bulk of cellular mRNAs, and the ubiquitin-mediated degradation of selected proteins, including p53 and Mre11. Degradation of these proteins occurs via a cellular E3 ubiquitin ligase complex that is assembled through interactions between elongins B and C and BC boxes present in E4orf6 to form a cullin 5-based ligase complex. E1B55K, which has been known for some time to associate with the E4orf6 protein, is thought to bind to specific substrate proteins to bring them to the complex for ubiquitination. Earlier studies with E4orf6 mutants indicated that the interaction between the E4orf6 and E1B55K proteins is optimal only when E4orf6 is able to form the ligase complex. These and other observations suggested that most if not all of the functions ascribed to E4orf6 and E1B55K during infection, including the control of mRNA export, are achieved through the degradation of specific substrates by the E4orf6 ubiquitin ligase activity. We have tested this hypothesis through the generation of a virus mutant in which the E4orf6 product is unable to form a ligase complex and indeed have found that this mutant behaves identically to an E4orf6 virus in production of late viral proteins, growth, and export of the late viral L5 mRNA.  相似文献   

2.
Small DNA tumor viruses typically encode proteins that either inactivate or degrade p53. Human adenoviruses encode products, including E4orf6 and E1B55K, that do both. Each independently binds to p53 and inhibits its ability to activate gene expression; however, in combination they induce p53 degradation by the ubiquitin pathway. We have shown previously that p53 degradation relies on interactions of E4orf6 with the cellular proteins Cul5, Rbx1, and elongins B and C to form an E3 ligase similar to the SCF and VBC complexes. Here we show that, like other elongin BC-interacting proteins, including elongin A, von Hippel-Lindau protein, and Muf1, the interaction of E4orf6 is mediated by the BC-box motif; however, E4orf6 uniquely utilizes two BC-box motifs for degradation of p53 and another target, Mre11. In addition, our data suggest that the interaction of E1B55K with E4orf6 depends on the ability of E4orf6 to form the E3 ligase complex and that such complex formation may be required for all E4orf6-E1B55K functions.  相似文献   

3.
The adenovirus (Ad) E1b55K and E4orf6 gene products assemble an E3 ubiquitin ligase complex that promotes degradation of cellular proteins. Among the known substrates are p53 and the Mre11-Rad50-Nbs1 (MRN) complex. Since members of the RecQ helicase family function together with MRN in genome maintenance, we investigated whether adenovirus affects RecQ proteins. We show that Bloom helicase (BLM) is degraded during adenovirus type 5 (Ad5) infection. BLM degradation is mediated by E1b55K/E4orf6 but is independent of MRN. We detected BLM localized at discrete foci around viral replication centers. These studies identify BLM as a new substrate for degradation by the adenovirus E1b55K/E4orf6 complex.  相似文献   

4.
The E1B-55K and E4orf6 proteins of adenovirus type 5 are involved in viral mRNA export. Here we demonstrate that adenovirus infection does not inhibit the function of the E1B-55K nuclear export signal and that E1B-55K also shuttles in infected cells. Even during virus infection, E1B-55K was exported by the leptomycin B-sensitive CRM1 pathway, whereas E4orf6 transport appeared to be mediated by an alternative mechanism. Our results strengthen the potential role of E1B-55K as the "driving force" for adenoviral late mRNA export.  相似文献   

5.
Theadenovirus type 5 (Ad5) E1B-55K and E4orf6 proteins are required together to stimulate viral late nuclear mRNA export to the cytoplasm and to restrict host cell nuclear mRNA export during the late phase of infection. Previous studies have shown that these two viral proteins interact with the cellular proteins elongins B and C, cullin 5, RBX1, and additional cellular proteins to form an E3 ubiquitin-protein ligase that polyubiquitinates p53 and probably one or more subunits of the MRE11-RAD50-NBS1 (MRN) complex, directing their proteasomal degradation. The MRN complex is required for cellular DNA double-strand break repair and induction of the DNA damage response by adenovirus infection. To determine if the ability of E1B-55K and E4orf6 to stimulate viral late mRNA nuclear export requires the ubiquitin-protein ligase activity of this viral ubiquitin-protein ligase complex, we designed and expressed a dominant-negative mutant form of cullin 5 in HeLa cells before infection with wild-type Ad5 or the E1B-55K null mutant dl1520. The dominant-negative cullin 5 protein stabilized p53 and the MRN complex, indicating that it inhibited the viral ubiquitin-protein ligase but had no effect on viral early mRNA synthesis, early protein synthesis, or viral DNA replication. However, expression of the dominant-negative cullin 5 protein caused a decrease in viral late protein synthesis and viral nuclear mRNA export similar to the phenotype produced by mutations in E1B-55K. We conclude that the stimulation of adenovirus late mRNA nuclear export by E1B-55K and E4orf6 results from the ubiquitin-protein ligase activity of the adenovirus ubiquitin-protein ligase complex.  相似文献   

6.
7.
The adenovirus type 5 (Ad5) early 1B (E1B) 55-kDa (E1B-55kDa)-E4orf6 protein complex has been implicated in the selective modulation of nucleocytoplasmic mRNA transport at late times after infection. Using a combined immunoprecipitation-immunoblotting assay, we mapped the domains in E1B-55kDa required for the interaction with the E4orf6 protein in lytically infected A549 cells. Several domains in the 496-residue 55-kDa polypeptide contributed to a stable association with the E4orf6 protein in E1B mutant virus-infected cells. Linker insertion mutations at amino acids 180 and 224 caused reduced binding of the E4orf6 protein, whereas linker insertion mutations at amino acid 143 and in the central domain of E1B-55kDa eliminated the binding of the E4orf6 protein. Earlier work showing that the central domain of E1B-55kDa is required for binding to p53 and the recent observation that the E4orf6 protein also interacts with the tumor suppressor protein led us to suspect that p53 might play a role in the E1B-E4 protein interaction. However, coimmunoprecipitation assays with extracts prepared from infected p53-negative H1299 cells established that p53 is not needed for the E1B-E4 protein interaction in adenovirus-infected cells. Using two different protein-protein interaction assays, we also mapped the region in the E4orf6 protein required for E1B-55kDa interaction to the amino-terminal 55 amino acid residues. Interestingly, both binding assays established that the same region in the E4orf6/7 protein can potentially interact with E1B-55kDa. Our results demonstrate that two distinct segments in the 55-kDa protein encoding the transformation and late lytic functions independently interact with p53 and the E4orf6 protein in vivo and provide further insight by which the multifunctional 55-kDa EIB protein can exert its multiple activities in lytically infected cells and in adenovirus transformation.  相似文献   

8.
The adenovirus type 5 (Ad5) E1B-55K and E4orf6 (E1B-55K/E4orf6) proteins are multifunctional regulators of Ad5 replication, participating in many processes required for virus growth. A complex containing the two proteins mediates the degradation of cellular proteins through assembly of an E3 ubiquitin ligase and induces shutoff of host cell protein synthesis through selective nucleocytoplasmic viral late mRNA export. Both proteins shuttle between the nuclear and cytoplasmic compartments via leucine-rich nuclear export signals (NES). However, the role of their NES-dependent export in viral replication has not been established. It was initially shown that mutations in the E4orf6 NES negatively affect viral late gene expression in transfection/infection complementation assays, suggesting that E1B-55K/E4orf6-dependent viral late mRNA export involves a CRM1 export pathway. However, a different conclusion was drawn from similar studies showing that E1B-55K/E4orf6 promote late gene expression without active CRM1 or functional NES. To evaluate the role of the E1B-55K/E4orf6 NES in viral replication in the context of Ad-infected cells and in the presence of functional CRM1, we generated virus mutants carrying amino acid exchanges in the NES of either or both proteins. Phenotypic analyses revealed that mutations in the NES of E1B-55K and/or E4orf6 had no or only moderate effects on viral DNA replication, viral late protein synthesis, or viral late mRNA export. Significantly, such mutations also did not interfere with the degradation of cellular substrates, indicating that the NES of E1B-55K or E4orf6 is dispensable both for late gene expression and for the activity associated with the E3 ubiquitin ligase.  相似文献   

9.
During the late phase of adenovirus infection, viral mRNA is efficiently transported from the nucleus to the cytoplasm while most cellular mRNA species are retained in the nucleus. Two viral proteins, E1B-55 kDa and E4orf6, are both necessary for these effects. The E4orf6 protein of adenovirus type 5 binds and relocalizes E1B-55 kDa, and the complex of the two proteins was previously shown to shuttle continuously between the nucleus and cytoplasm. Nucleocytoplasmic transport of the complex is achieved by a nuclear export signal (NES) within E4orf6. Mutation of this signal sequence severely reduces the ability of the E1B-55 kDa-E4orf6 complex to leave the nucleus. Here, we examined the role of functional domains within E4orf6 during virus infection. E4orf6 or mutants derived from it were transiently expressed, followed by infection with recombinant adenovirus lacking the E4 region and determination of virus yield. An arginine-rich putative alpha helix near the carboxy terminus of E4orf6 contributes to E1B-55 kDa binding and relocalization as well as to the synthesis of viral DNA, mRNA, and proteins. Further mutational analysis revealed that mutation of the NES within E4orf6 considerably reduces its ability to support virus production. The same effect was observed when nuclear export was blocked with a competitor. Further, a functional NES within E4orf6 contributed to the efficiency of late virus protein synthesis and viral DNA replication, as well as total and cytoplasmic accumulation of viral late mRNA. Our data support the view that NES-mediated nucleocytoplasmic shuttling strongly enhances most, if not all, intracellular activities of E4orf6 during the late phase of adenovirus infection.  相似文献   

10.
The adenovirus type 5 243R E1A protein induces p53-dependent apoptosis in the absence of the 19- and 55-kDa E1B polypeptides. This effect appears to result from an accumulation of p53 protein and is unrelated to expression of E1B products. We now report that in the presence of the E1B 55-kDa polypeptide, the 289R E1A protein does not induce such p53 accumulation and, in fact, is able to block that induced by E1A 243R. This inhibition also requires the 289R-dependent transactivation of E4orf6 expression. E4orf6 is known to form complexes with the E1B 55-kDa protein and to function both in the transport and stabilization of viral mRNA and in shutoff of host cell protein synthesis. We demonstrated that the block in p53 accumulation is not due to the generalized shutoff of host cell metabolism. Rather, it appears to result from a mechanism targeted specifically to p53, most likely involving a decrease in the stability of p53 protein. The E1B 55-kDa protein is known to interact with both E4orf6 and p53, and as demonstrated recently by others, we showed that E4orf6 also binds directly to p53. Thus, multiple interactions between all three proteins may regulate p53 stability, resulting in the maintenance of low levels of p53 following virus infection.  相似文献   

11.
Transforming Potential of the Adenovirus Type 5 E4orf3 Protein   总被引:6,自引:4,他引:2       下载免费PDF全文
Previous observations that the adenovirus type 5 (Ad5) E4orf6 and E4orf3 gene products have redundant effects in viral lytic infection together with the recent findings that E4orf6 possesses transforming potential prompted us to investigate the effect of E4orf3 expression on the transformation of primary rat cells in combination with adenovirus E1 oncogene products. Our results demonstrate for the first time that E4orf3 can cooperate with adenovirus E1A and E1A plus E1B proteins to transform primary baby rat kidney cells, acting synergistically with E4orf6 in the presence of E1B gene products. Transformed rat cells expressing E4orf3 exhibit morphological alterations, higher growth rates and saturation densities, and increased tumorigenicity compared with transformants expressing E1 proteins only. Consistent with previous results for adenovirus-infected cells, the E4orf3 protein is immunologically restricted to discrete nuclear structures known as PML oncogenic domains (PODs) in transformed rat cells. As opposed to E4orf6, the ability of E4orf3 to promote oncogenic cell growth is probably not linked to a modulation of p53 functions and stability. Instead, our results indicate that the transforming activities of E4orf3 are due to combinatorial effects that involve the binding to the adenovirus 55-kDa E1B protein and the colocalization with PODs independent from interactions with the PML gene product. These data fit well with a model in which the reorganization of PODs may trigger a cascade of processes that cause uncontrolled cell proliferation and neoplastic growth. In sum, our results provide strong evidence for the idea that interactions with PODs by viral proteins are linked to oncogenic transformation.  相似文献   

12.
The E4orf6 protein of group C adenovirus is an oncoprotein that, in association with the E1B 55-kDa protein and by E1B-independent means, promotes virus replication. An arginine-faced amphipathic alpha-helix in the E4orf6 protein is required for the E4orf6 protein to direct nuclear localization of the E1B 55-kDa protein and to enhance replication of an E4 deletion virus. In this study, E4orf6 protein variants containing arginine substitutions in the amphipathic alpha-helix were analyzed. Two of the six arginine residues within the alpha-helix, arginine-241 and arginine-243, were critical for directing nuclear localization of the E1B 55-kDa protein. The four remaining arginine residues appear to provide a net positive charge for the E4orf6 protein to direct nuclear localization of the E1B 55-kDa protein. The molecular determinants of the arginine-faced amphipathic alpha-helix that were required for the functional interaction between the E4orf6 and E1B 55-kDa proteins seen in the transfected cell differed from those required to support a productive infection. Several E4orf6 protein variants with arginine-to-glutamic acid substitutions that failed to direct nuclear localization of the E1B 55-kDa protein restored replication of an E4 deletion virus. Additionally, a variant containing an arginine-to-alanine substitution at position 243 that directed nuclear localization of the E1B 55-kDa protein failed to enhance virus replication. These results indicate that the ability of the E4orf6 protein to relocalize the E1B 55-kDa protein to the nucleus can be separated from the ability of the E4orf6 protein to support a productive infection.  相似文献   

13.
Although human adenovirus type 5 (Ad5) has been widely studied, relatively little work has been done with other human adenovirus serotypes. The Ad5 E4orf6 and E1B55K proteins form Cul5-based E3 ubiquitin ligase complexes to degrade p53, Mre11, DNA ligase IV, integrin α3, and almost certainly other targets, presumably to optimize the cellular environment for viral replication and perhaps to facilitate persistence or latency. As this complex is essential for the efficient replication of Ad5, we undertook a systematic analysis of the structure and function of corresponding E4orf6/E1B55K complexes from other serotypes to determine the importance of this E3 ligase throughout adenovirus evolution. E4orf6 and E1B55K coding sequences from serotypes representing all subgroups were cloned, and each pair was expressed and analyzed for their capacity to assemble the Cullin-based ligase complex and to degrade substrates following plasmid DNA transfection. The results indicated that all formed Cullin-based E3 ligase complexes but that heterogeneity in both structure and function existed. Whereas Cul5 was present in the complexes of some serotypes, others recruited primarily Cul2, and the Ad16 complex clearly bound both Cul2 and Cul5. There was also heterogeneity in substrate specificity. Whereas all serotypes tested appeared to degrade DNA ligase IV, complexes from some serotypes failed to degrade Mre11, p53, or integrin α3. Thus, a major evolutionary pressure for formation of the adenovirus ligase complex may lie in the degradation of DNA ligase IV; however, it seems possible that the degradation of as-yet-unidentified critical targets or, perhaps even more likely, appropriate combinations of substrates plays a central role for these adenoviruses.  相似文献   

14.
15.
The 34-kDa early-region 4 open reading frame 6 (E4orf6) product of human adenovirus type 5 forms complexes with both the cellular tumor suppressor p53 and the viral E1B 55-kDa protein (E1B-55kDa). E4orf6 can inhibit p53 transactivation activity, as can E1B-55kDa, and in combination these viral proteins cause the rapid turnover of p53. In addition, E4orf6-55kDa complexes play a critical role at later times in the regulation of viral mRNA transport and shutoff of host cell protein synthesis. In the present study, we have further characterized some of the biological properties of E4orf6. Analysis of extracts from infected cells by Western blotting indicated that E4orf6, like E1A and E1B products, is present at high levels until very late times, suggesting that it is available to act throughout the infectious cycle. This pattern is similar to that of E4orf4 but differs markedly from that of another E4 product, E4orf6/7, which is present only transiently. Synthesis of E4orf6 is maximal at early stages but ceases completely with the onset of shutoff of host protein synthesis; however, it was found that unlike E4orf6/7, E4orf6 is very stable, thus allowing high levels to be maintained even at late times. E4orf6 was shown to be phosphorylated at low levels. Coimmunoprecipitation studies in cells lacking p53 indicated that E4orf6 interacts with a number of other proteins. Five of these were shown to be viral or virally induced proteins ranging in size from 102 to 27 kDa, including E1B-55kDa. One such species, of 72 kDa, was shown not to represent the E2 DNA-binding protein and thus remains to be identified. Another appeared to be the L4 100-kDa nonstructural adenovirus late product, but it appeared to be present nonspecifically and not as part of an E4orf6 complex. Apart from p53, three additional cellular proteins, of 84, 19, and 14 kDa were detected by using an adenovirus vector that expresses only E4orf6. The 19-kDa species and a 16-kDa cellular protein were also shown to interact with E4orf6/7. It is possible that complex formation with these viral and cellular proteins plays a role in one or more of the biological activities associated with E4orf6 and E4orf6/7.  相似文献   

16.
Results reported here indicate that adenovirus 5 exploits the cellular aggresome response to accelerate inactivation of MRE11-RAD50-NBS1 (MRN) complexes that otherwise inhibit viral DNA replication and packaging. Aggresomes are cytoplasmic inclusion bodies, observed in many degenerative diseases, that are formed from aggregated proteins by dynein-dependent retrograde transport on microtubules to the microtubule organizing center. Viral E1B-55K protein forms aggresomes that sequester p53 and MRN in transformed cells and in cells transfected with an E1B-55K expression vector. During adenovirus infection, the viral protein E4orf3 associates with MRN in promyelocytic leukemia protein nuclear bodies before MRN is bound by E1B-55K. Either E4orf3 or E4orf6 is required in addition to E1B-55K for E1B-55K aggresome formation and MRE11 export to aggresomes in adenovirus-infected cells. Aggresome formation contributes to the protection of viral DNA from MRN activity by sequestering MRN in the cytoplasm and greatly accelerating its degradation by proteosomes following its ubiquitination by the E1B-55K/E4orf6/elongin BC/Cullin5/Rbx1 ubiquitin ligase. Our results show that aggresomes significantly accelerate protein degradation by the ubiquitin-proteosome system. The observation that a normal cellular protein is inactivated when sequestered into an aggresome through association with an aggresome-inducing protein has implications for the potential cytotoxicity of aggresome-like inclusion bodies in degenerative diseases.  相似文献   

17.
18.
19.
Previous studies have shown that the adenovirus type 5 (Ad5) E4orf6 gene product displays features of a viral oncoprotein. It initiates focal transformation of primary rat cells in cooperation with Ad5 E1 genes and confers multiple additional transformed properties on E1-expressing cells, including profound morphological alterations and dramatically accelerated tumor growth in nude mice. It has been reported that E4orf6 binds to p53 and, in the presence of the Ad5 E1B-55kDa protein, antagonizes p53 stability by targeting the tumor suppressor protein for active degradation. In the present study, we performed a comprehensive mutant analysis to assign transforming functions of E4orf6 to distinct regions within the viral polypeptide and to analyze a possible correlation between E4orf6-dependent p53 degradation and oncogenesis. Our results show that p53 destabilization maps to multiple regions within both amino- and carboxy-terminal parts of the viral protein and widely cosegregates with E4orf6-dependent acceleration of tumor growth, indicating that both effects are related. In contrast, promotion of focus formation and morphological transformation require only a carboxy-terminal segment of the E4 protein. Thus, these effects are completely independent of p53 stability, but may involve other interactions with the tumor suppressor. Our results demonstrate that at least two distinct activities contribute to the oncogenic potential of Ad5 E4orf6. Although genetically separable, both activities are largely mediated through a novel highly conserved, cysteine-rich motif and a recently described arginine-faced amphipathic alpha helix, which resides within a carboxy-terminal "oncodomain" of the viral protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号