首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The C4 speciesFlaveria trinervia is obviously better adapted to saline environments than the C3 speciesF. pringlei. Treatment with 100 mM NaCl diminished crop growth rate inF. pringlei by 38% but not inF. trinervia. Under saline conditions, more assimilates were invested in leaf growth inF. trinervia but not inF. pringlei. Electrolyte concentration inF. trinervia in control and salt treated plants is lower than inF. pringlei. Fluorescence data do not indicate a damage of PS 2 charge separation in both species. Whether the C4 photosynthetic pathway inF. trinervia is responsible for the improved salt tolerance compared toF. pringlei remains an open question.  相似文献   

3.
Phosphoenolpyruvate carboxylase (PEPCase, EC 4.1.1.3) is a key enzyme of C4 photosynthesis. It has evolved from ancestral non-photosynthetic (C3) isoforms and thereby changed its kinetic and regulatory properties. We are interested in understanding the molecular changes, as the C4 PEPCases were adapted to their new function in C4 photosynthesis and have therefore analysed the PEPCase genes of various Alternanthera species. We isolated PEPCase cDNAs from the C4 plant Alternanthera pungens H.B.K., the C3/C4 intermediate plant A. tenella Colla, and the C3 plant A. sessilis (L.) R.Br. and investigated the kinetic properties of the corresponding recombinant PEPCase proteins and their phylogenetic relationships. The three PEPCases are most likely derived from orthologous gene classes named ppcA. The affinity constant for the substrate phosphoenolpyruvate (K 0.5 PEP) and the degree of activation by glucose-6-phosphate classified the enzyme from A. pungens (C4) as a C4 PEPCase isoform. In contrast, both the PEPCases from A. sessilis (C3) and A. tenella (C3/C4) were found to be typical C3 PEPCase isozymes. The C4 characteristics of the PEPCase of A. pungens were accompanied by the presence of the C4-invariant serine residue at position 775 reinforcing that a serine at this position is essential for being a C4 PEPCase (Svensson et al. 2003). Genomic Southern blot experiments and sequence analysis of the 3′ untranslated regions of these genes indicated the existence of PEPCase multigene family in all three plants which can be grouped into three classes named ppcA, ppcB and ppcC.  相似文献   

4.
5.
Transfer of C4 photosynthetic traits was studied through hybridization of Flaveria trinervia (Spreng.) Mohr (C4) and Flaveria brownii A.M. Powell (C4-like) with Flaveria linearis Lag. (C3-C4) and the C3 species Flaveria pringlei Gandoger (C3). Fertility was low, based on irregular chromosome pairing and low pollen stainability, except in F. brownii × F. linearis which had bivalent pairing and 76% stainable pollen. Hybrids had apparent photosynthesis values of 71 to 148% of the midparental means, while the CO2 compensation concentration was similar to the C4 or C4-like parent, except in hybrids having the C3 species F. pringlei as a parent. Inhibition of apparent photosynthesis by O2, and phosphoenolpyruvate carboxylase and NADP-malic enzyme activities and subunit levels in the hybrids were closer to the C3 or C3-C4 parent. The species F. brownii and F. trinervia were equal in their capacity to transfer reduced O2 inhibition of AP and CO2 compensation concentration values to hybrids with F. linearis (C3-C4), although hybrids with F. trinervia had higher PEPC activity. The O2 inhibition of AP was correlated with the logarithm of activities of phosphoenolpyruvate carboxylase (r = −0.95) and NADP-malic enzyme (r = −0.87). These results confirm that C4 traits can be transferred by hybridization of C3-C4 and C4 or C4-like species, with a higher degree of C4 photosynthesis than exists in C3-C4 species, and at least in F. brownii × F. linearis, fertile progeny are obtained.  相似文献   

6.
The C4 enzyme pyruvate orthophosphate dikinase is encoded by a single gene, Pdk, in the C4 plant Flaveria trinervia. This gene also encodes enzyme isoforms located in the chloroplast and in the cytosol that do not have a function in C4 photosynthesis. Our goal is to identify cis-acting DNA sequences that regulate the expression of the gene that is active in the C4 cycle. We fused 1.5 kb of a 5′ flanking region from the Pdk gene, including the entire 5′ untranslated region, to the uidA reporter gene and stably transformed the closely related C4 species Flaveria bidentis. β-Glucuronidase (GUS) activity was detected at high levels in leaf mesophyll cells. GUS activity was detected at lower levels in bundle-sheath cells and stems and at very low levels in roots. This lower-level GUS expression was similar to the distribution of mRNA encoding the nonphotosynthetic form of the enzyme. We conclude that cis-acting DNA sequences controlling the expression of the C4 form in mesophyll cells and the chloroplast form in other cells and organs are co-located within the same 5′ region of the Pdk gene.  相似文献   

7.
8.
The activities of key C4 enzymes in gel-filtered, whole-leaf extracts and the photosynthetic characteristics for reciprocal F1 hybrids of Flaveria pringlei (C3) and F. brownii (C4-like species) were measured to determine whether any inherited C4-photosynthetic traits are responsible for their reduced CO2 compensation concentration values (AS Holaday, S Talkmitt, ME Doohan Plant Sci 41: 31-39). The activities of phosphoenolpyruvate carboxylase, pyruvate, orthophosphate dikinase, and NADP-malic enzyme (ME) for the reciprocal hybrids are only about 7 to 17% of those for F. brownii, but are three- to fivefold greater than the activities for F. pringlei. The low activities of these enzymes in the hybrids appear to be the result of a partial dominance of F. pringlei genes over certain F. brownii genes. However, no such dominance occurs with respect to the expression of genes for NADP-malate dehydrogenase, which is as active in the hybrids as in F. brownii. In contrast to the situation with the enzymes above, cytoplasmic factors appear to determine the inheritance of NAD-ME. The NAD-ME activity in each hybrid is comparable to that in the respective maternal parent. Pulse-chase 14CO2 incorporation analyses at ambient CO2 levels indicate that the hybrids initially assimilate 7 to 9% of the total assimilated CO2 into C4 acids as compared to 3.5% for F. pringlei. In the hybrids, the percentage of 14C in malate decreases from an average of 6.5 to 2.1% after a 60-second chase in 12CO2/air. However, this apparent C4-cycle activity is too limited or inefficient to substantially alter CO2 exchange from that in F. pringlei, since the values of net photosynthesis and O2 inhibition of photosynthesis are similar for the hybrids and F. pringlei. Also, the ratio of the internal to the external CO2 concentration and the initial slopes of the plot of CO2 concentration versus net photosynthesis are essentially the same for the hybrids and F. pringlei. At 45 micromoles CO2 per mole and 0.21 mole O2 per mole, the hybrids assimilate nearly fivefold more CO2 into C4 acids than does F. pringlei. Some turnover of the malate pool occurs in the hybrids, but the labelling of the photorespiratory metabolites, glycine and serine, is the same in these plants as it is in F. pringlei. Thus, although limited C4-acid metabolism may operate in the hybrids, we conclude that it is not effective in altering O2 inhibition of CO2 assimilation. The ability of the hybrids to assimilate more CO2 via phosphoenolpyruvate carboxylase at low levels of CO2 than does F. pringlei may result in an increased rate of reassimilation of photorespiratory CO2 and CO2 compensation concentrations below that of their C3 parent. If the hybrids do possess a limited C4 cycle, it must operate intracellularly. They are not likely to have inherited an intercellular compartmentation of C4 enzymes, since F. brownii has incomplete compartmentation of key C3 and C4 enzymes.  相似文献   

9.
C4 photosynthesis has evolved multiple times from ancestral C3 species. Carbonic anhydrase (CA) catalyzes the reversible hydration of CO2 and is involved in both C3 and C4 photosynthesis; however, its roles and the intercellular and intracellular locations of the majority of its activity differ between C3 and C4 plants. To understand the molecular changes underlying the evolution of the C4 pathway, three cDNAs encoding distinct β-CAs (CA1, CA2, and CA3) were isolated from the leaves of the C3 plant Flaveria pringlei. The phylogenetic relationship of the F. pringlei proteins with other embryophyte β-CAs was reconstructed. Gene expression and protein localization patterns showed that CA1 and CA3 demonstrate high expression in leaves and their products localize to the chloroplast, while CA2 expression is low in all organs examined and encodes a cytosolic enzyme. The roles of the F. pringlei enzymes were considered in light of these results, other angiosperm β-CAs, and Arabidopsis (Arabidopsis thaliana) “omics” data. All three F. pringlei CAs have orthologs in the closely related C4 plant Flaveria bidentis, and comparisons of ortholog sequences, expression patterns, and intracellular locations of their products indicated that CA1 and CA2 have maintained their ancestral role in C4 plants, whereas modifications to the C3 CA3 gene led to the evolution of the CA isoform that catalyzes the first step in the C4 photosynthetic pathway. These changes included the loss of the chloroplast transit peptide and an increase in gene expression, which resulted in the high levels of CA activity seen in the cytosol of C4 mesophyll cells.  相似文献   

10.
Brown RH  Byrd GT  Black CC 《Plant physiology》1992,100(2):947-950
Hybrids have been made between species of Flaveria exhibiting varying levels of C4 photosynthesis. The degree of C4 photosynthesis expressed in four interspecific hybrids (Flaveria trinervia [C4] × F. linearis [C3-C4], F. brownii [C4-like] × F. linearis, and two three-species hybrids from F. trinervia × [F. brownii × F. linearis]) was estimated by inhibiting phosphoenolpyruvate carboxylase in vivo with 3,3-dichloro-2-dihydroxyphosphinoylmethyl-2-propenoate (DCDP). The inhibitor was fed to detached leaves at a concentration of 4 mm, and apparent photosynthesis was measured at atmospheric levels of CO2 and at 20 and 210 mL L−1 of O2. Photosynthesis at 210 mL L−1 of O2 was inhibited 32% by DCDP in F. linearis, by 60% in F. brownii, and by 87% in F. trinervia. Inhibition in the hybrids ranged from 38 to 52%. The inhibition of photosynthesis by 210 mL L−1 of O2 was increased when DCDP was used, except in the C4 species, F. trinervia, in which photosynthesis was insensitive to O2. Except for F. trinervia, control plants with less O2 sensitivity (more C4-like) exhibited a progressively greater change in O2 inhibition of photosynthesis when treated with DCDP. This increased O2 inhibition probably resulted from decreased CO2 concentrations in bundle sheath cells due to inhibition of phosphoenolpyruvate carboxylase. The inhibition of photosynthesis by DCDP is concluded to underestimate the degree of C4 photosynthesis in the interspecific hybrids because increased direct assimilation of atmospheric CO2 by ribulose bisphosphate carboxylase may compensate for inhibition of phosphoenolpyruvate carboxylase.  相似文献   

11.
Byrd GT  Brown RH 《Plant physiology》1989,90(3):1022-1028
The possibility of altering CO2 exchange of C3-C4 species by growing them under various CO2 and O2 concentrations was examined. Growth under CO2 concentrations of 100, 350, and 750 micromoles per mole had no significant effect on CO2 exchange characteristics or leaf anatomy of Flaveria pringlei (C3), Flaveria floridana (C3-C4), or Flaveria trinervia (C4). Carboxylation efficiency and CO2 compensation concentrations in leaves of F. floridana developed under the different CO2 concentrations were intermediate to F. pringlei and F. trinervia. When grown for 12 days at an O2 concentration of 20 millimoles per mole, apparent photosynthesis was strongly inhibited in Panicum milioides (C3-C4) and to a lesser degree in Panicum laxum (C3). In P. milioides, acute starch buildup was observed microscopically in both mesophyll and bundle sheath cells. Even after only 4 days exposure to 20 millimoles per mole O2, the presence of starch was more pronounced in leaf cross-sections of P. milioides compared to those at 100 and 210 millimoles per mole. Even though this observation suggests that P. milioides has a different response to low O2 with respect to translocation of photosynthate or sink activity than C3 species, the concentration of total available carbohydrate increased in shoots of all species by 33% or more when grown at low O2. This accumulation occurred even though relative growth rates of Festuca arundinacea (C3) and P. milioides grown for 4 days at 210 millimoles per mole O2, were inhibited 83 and 37%, respectively, when compared to plants grown at 20 millimoles per mole O2.  相似文献   

12.

Background  

The key enzymes of photosynthetic carbon assimilation in C4 plants have evolved independently several times from C3 isoforms that were present in the C3 ancestral species. The C4 isoform of phosphoenolpyruvate carboxylase (PEPC), the primary CO2-fixing enzyme of the C4 cycle, is specifically expressed at high levels in mesophyll cells of the leaves of C4 species. We are interested in understanding the molecular changes that are responsible for the evolution of this C4-characteristic PEPC expression pattern, and we are using the genus Flaveria (Asteraceae) as a model system. It is known that cis-regulatory sequences for mesophyll-specific expression of the ppcA1 gene of F. trinervia (C4) are located within a distal promoter region (DR).  相似文献   

13.
The initial products of photosynthesis by the C3 species Flaveria cronquistii, the C4 species F. trinervia, and the C3-C4 intermediate species F. ramosissima were determined using a pulse-chase technique with 14CO2-12CO2. The intermediate species F. ramosissima incorporated at least 42% of the total soluble 14C fixed into malate and aspartate after 10 seconds of photosynthesis in 14CO2, as compared with 90% for the C4 species F. trinervia and 5% for the C3 species F. cronquistii. In both F. ramosissima and F. trinervia, turnover of labeled malate and aspartate occurred during a chase period in 12CO2, although the rate of turnover was slower in the intermediate species. Relative to F. cronquistii, F. ramosissima showed a reduced incorporation of radioactivity into serine and glycine during the pulse period. These results indicate that a functional C4 pathway of photosynthesis is operating in F. ramosissima which can account for its reduced level of photorespiration, and that this species is a true biochemical intermediate between C3 and C4 plants.  相似文献   

14.
15.
Flaveria pringlei exhibits C3 CO2 compensation concentration (Г) values averaging 53 μl CO2/l at 21% (v/v) O2 and 25 ± 2°C. When this species is hybridized with the C4 species, F. brownii (male) (Г = 6 μl CO2/l), the F1 hybrid plants exhibit an average Г value of 31 μl CO2/l at 21% O2.Although light micrographs of leaf cross-sections show that the leaves of the hybrid plants possess the mesophyll arrangement characteristic of F. pringlei leaves, the hybrid plants have some bundle-sheath chloroplasts. However, the numbers of these organelles do not appear to be intermediate with respect to the numbers in the parents and are closest to the small number present in the bundle-sheath cells of F. pringlei leaves. The activities of key C4 enzymes (in μmol · mg Chl?1 · h?1) are: phosphoenolpyruvate (PEP) carboxylase, 121; pyruvate, orthophosphate (Pi) dikinase, 26; NADP-malate dehydrogenase, 2529; and NADP-malic enzyme, 82. All of these activities are substantially higher than in F. pringlei, but are only 7–10% of those in F. brownii (with the exception of the NADP-malate dehydrogenase activity). These data suggest that a C4 cycle might be operating to a limited extent in the hybrid plants resulting in reduced photorespiration.Whether or not C4 photosynthesis occurs in these hybrid plants, they represent the first reported C3 × C4 F1 hybrids to exhibit reduced Γ-values. This cross and its reciprocal should be useful models for studying the anatomical and biochemical factors determining the development of limited C4 photosynthesis in C3 species.  相似文献   

16.
17.
C. A. Adams  F. Leung  S. S. M. Sun 《Planta》1986,167(2):218-225
Phosphoenolpyruvate carboxylase (PEPCase; EC 4.1.1.31) from Flaveria trinervia Mohr (C4), F. floridana Johnston (C3–C4), and F. cronquistii Powell (C3) leaves were compared by electrotransfer blotting/enzyme-linked immunoassay (Western-blot analysis), mobility of the native enzyme in polyacrylamide gels and in isoelectric focusing (IEF) gels, peptide mapping, and in-vitro translation of RNA isolated from each plant. The PEPCases from the C3 and C3–C4 plants were very similar to each other in terms of electrophoretic mobilities on gels and isoenzyme patterns on IEF gels, and identical in peptide mapping. Quantitative differences were noted, however, in that the C3–C4 intermediate plant contained more PEPCase overall and that the relative activity of individual isoenzymes shifted between the C3 and C3–C4 intermediate PEPCases. The PEPCase from the C4 plant had a different isoenzyme pattern, a different peptide map, and was far more abundant than the other two enzymes. Western blot analysis demonstrated the cross-reactivity of PEPCases from all three Flaveria species with antibody raised against maize PEPCase. The results provide evidence, at the molecular level, that supports the view of C3–C4 intermediate species as C3-like plants with some C4-like photosynthetic characteristics, but there are differences from the C3 plant in the quantity and properties of the PEPCase from the C3–C4 intermediate plant.Abbreviations IEF isoelectric focusing - kDa kilodalton - PEPCase phosphoenolpyruvate carboxylase - Rubisco Ribulose-1,5-bisphosphate carboxylase/oxygenase  相似文献   

18.
Leaves of Flaveria brownii exhibited slightly higher amounts of oxygen inhibition of photosynthesis than the C4 species, Flaveria trinervia, but considerably less than the C3 species, Flaveria cronquistii. The photosynthetic responses to intercellular CO2, light and leaf temperature were much more C4-like than C3-like, although 21% oxygen inhibited the photosynthetic rate, depending on conditions, up to 17% of the photosynthesis rate observed in 2% O2. The quantum yield for CO2 uptake in F. brownii was slightly higher than that for the C4 species F. trinervia in 2% O2, but not significantly different in 21% O2. The quantum yield was inhibited 10% in the presence of 21% O2 in F. brownii, yet no significant inhibition was observed in F. trinervia. An inhibition of 27% was observed for the quantum yield of F. cronquistii in the presence of 21% O2. The photosynthetic response to very low intercellular CO2 partial pressures exhibited a unique pattern in F. brownii, with a break in the linear slope observed at intercellular CO2 partial pressure values between 15 and 20 μbar when analyzed in 21% O2. No significant break was observed when analyzed in 2% O2. When taken collectively, the gas-exchange results reported here are consistent with previous biochemical studies that report incomplete intercellular compartmentation of the C3 and C4 enzymes in this species, and suggest that F. brownii is an advanced, C4-like C3-C4 intermediate.  相似文献   

19.
We are interested in the regulatory mechanisms responsible for the mesophyll-specific expression of C4 phosphoenolpyruvate carboxylase (PEPCase). A one-hybrid screen resulted in the cloning of four different members of a novel class of plant homeodomain proteins, which are most likely involved in the mesophyll-specific expression of the C4 PEPCase gene in C4 species of the genus Flaveria. Inspection of the homeodomains of the four proteins reveals that they share many common features with homeodomains described so far, but there are also significant differences. Interestingly, this class of homeodomain proteins occurs also in Arabidopsis thaliana and other C3 plants. One-hybrid experiments as well as in vitro DNA binding studies confirmed that these novel homeodomain proteins specifically interact with the proximal region of the C4 PEPCase gene. The N-terminal domains of the homeodomain proteins contain highly conserved sequence motifs. Two-hybrid experiments show that these motifs are sufficient to confer homo- or heterodimer formation between the proteins. Mutagenesis of conserved cysteine residues within the dimerization domain indicates that these residues are essential for dimer formation. Therefore, we designate this novel class of homeobox proteins ZF-HD, for zinc finger homeodomain protein. Our data suggest that the ZF-HD class of homeodomain proteins may be involved in the establishment of the characteristic expression pattern of the C4 PEPCase gene.  相似文献   

20.
Four species of the genus Flaveria, namely F. anomala, F. linearis, F. pubescens, and F. ramosissima, were identified as intermediate C3-C4 plants based on leaf anatomy, photosynthetic CO2 compensation point, O2 inhibition of photosynthesis, and activities of C4 enzymes. F. anomala and F. ramosissima exhibit a distinct Kranz-like leaf anatomy, similar to that of the C4 species F. trinervia, while the other C3-C4 intermediate Flaveria species possess a less differentiated Kranz-like leaf anatomy. Photosynthetic CO2 compensation points of these intermediates at 30°C were very low relative to those of C3 plants, ranging from 7 to 14 microliters per liter. In contrast to C3 plants, net photosynthesis by the intermediates was not sensitive to O2 concentrations below 5% and decreased relatively slowly with increasing O2 concentration. Under similar conditions, the percentage inhibition of photosynthesis by 21% O2 varied from 20% to 25% in the intermediates compared with 28% in Lycopersicon esculentum, a typical C3 species. The inhibition of carboxylation efficiency by 21% O2 varied from 17% for F. ramosissima to 46% for F. anomala and were intermediate between the C4 (2% for F. trinervia) and C3 (53% for L. esculentum) values. The intermediate Flaveria species, especially F. ramosissima, have substantial activities of the C4 enzymes, phosphoenolpyruvate carboxylase, pyruvate, orthophosphate dikinase, NADP-malic enzyme, and NADP-malate dehydrogenase, indicating potential for C4 photosynthesis. It appears that these Flaveria species may be true biochemical C3-C4 intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号