首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

The type III secretion system (T3SS) is a molecular machine in gram negative bacteria that exports proteins through both membranes to the extracellular environment. It has been previously demonstrated that the T3SS encoded in Salmonella Pathogenicity Island 1 (SPI-1) can be harnessed to export recombinant proteins. Here, we demonstrate the secretion of a variety of unfolded spider silk proteins and use these data to quantify the constraints of this system with respect to the export of recombinant protein.  相似文献   

2.

Background  

Protein secretion is a universal cellular process involving vesicles which bud and fuse between organelles to bring proteins to their final destination. Vesicle budding is mediated by protein coats; vesicle targeting and fusion depend on Rab GTPase, tethering factors and SNARE complexes. The Génolevures II sequencing project made available entire genome sequences of four hemiascomycetous yeasts, Yarrowia lipolytica, Debaryomyces hansenii, Kluyveromyces lactis and Candida glabrata. Y. lipolytica is a dimorphic yeast and has good capacities to secrete proteins. The translocation of nascent protein through the endoplasmic reticulum membrane was well studied in Y. lipolytica and is largely co-translational as in the mammalian protein secretion pathway.  相似文献   

3.

Background  

In spite of its advantageous physiological properties for bioprocess applications, the use of the yeast Kluyveromyces marxianus as a host for heterologous protein production has been very limited, in constrast to its close relative Kluyveromyces lactis. In the present work, the model protein glucose oxidase (GOX) from Aspergillus niger was cloned into K. marxianus CBS 6556 and into K. lactis CBS 2359 using three different expression systems. We aimed at verifying how each expression system would affect protein expression, secretion/localization, post-translational modification, and biochemical properties.  相似文献   

4.

Background  

Escherichia coli is frequently the first-choice host organism in expression of heterologous recombinant proteins in basic research as well as in production of commercial, therapeutic polypeptides. Especially the secretion of proteins into the culture medium of E. coli is advantageous compared to intracellular production due to the ease in recovery of the recombinant protein. Since E. coli naturally is a poor secretor of proteins, a few strategies for optimization of extracellular secretion have been described. We have previously reported efficient secretion of the diagnostically interesting model protein Peb1 of Campylobacter jejuni into the growth medium of Escherichia coli strain MKS12 (ΔfliCfliD). To generate a more detailed understanding of the molecular mechanisms behind this interesting heterologous secretion system with biotechnological implications, we here analyzed further the transport of Peb1 in the E. coli host.  相似文献   

5.

Background

Protein folding in the envelope is a crucial limiting step of protein export and secretion. In order to better understand this process in Lactococcus lactis, a lactic acid bacterium, genes encoding putative exported folding factors like Peptidyl Prolyl Isomerases (PPIases) were searched for in lactococcal genomes.

Results

In L. lactis, a new putative membrane PPIase of the cyclophilin subfamily, PpiA, was identified and characterized. ppiA gene was found to be constitutively expressed under normal and stress (heat shock, H2O2) conditions. Under normal conditions, PpiA protein was synthesized and released from intact cells by an exogenously added protease, showing that it was exposed at the cell surface. No obvious phenotype could be associated to a ppiA mutant strain under several laboratory conditions including stress conditions, except a very low sensitivity to H2O2. Induction of a ppiA copy provided in trans had no effect i) on the thermosensitivity of an mutant strain deficient for the lactococcal surface protease HtrA and ii) on the secretion and stability on four exported proteins (a highly degraded hybrid protein and three heterologous secreted proteins) in an otherwise wild-type strain background. However, a recombinant soluble form of PpiA that had been produced and secreted in L. lactis and purified from a culture supernatant displayed both PPIase and chaperone activities.

Conclusions

Although L. lactis PpiA, a protein produced and exposed at the cell surface under normal conditions, displayed a very moderate role in vivo, it was found, as a recombinant soluble form, to be endowed with folding activities in vitro.  相似文献   

6.

Background  

Natural allergen sources can supply large quantities of authentic allergen mixtures for use as immunotherapeutics. However, such extracts are complex, difficult to define, vary from batch to batch, which may lead to unpredictable efficacy and/or unacceptable levels of side effects. The use of recombinant expression systems for allergen production can alleviate some of these issues. Several allergens have been tested in high-level expression systems and in most cases show immunereactivity comparable to their natural counterparts. The gram positive lactic acid bacterium Lactococcus lactis is an attractive microorganism for use in the production of protein therapeutics. L. lactis is considered food grade, free of endotoxins, and is able to secrete the heterologous product together with few other native proteins. Hypersensitivity to peanut represents a serious allergic problem. Some of the major allergens in peanut have been described. However, for therapeutic usage more information about the individual allergenic components is needed. In this paper we report recombinant production of the Ara h 2 peanut allergen using L. lactis.  相似文献   

7.

Background  

In a previous paper, we reported the accomplishment of a cold gene-expression system for the recombinant secretion of heterologous proteins in Pseudoalteromonas haloplanktis TAC125. This system makes use of the psychrophilic α-amylase from P. haloplanktis TAB23 as secretion carrier, and allows an effective extra-cellular addressing of recombinant proteins. However, Pseudoalteromonales are reported to secrete a wide range of extra-cellular proteases. This feature works against the efficiency of the cold-adapted secretion system, because of the proteolytic degradation of recombinant products. The aim of this study is the construction of a P. haloplanktis TAC125 mutant strain with reduced extra-cellular proteolytic activity.  相似文献   

8.

Background  

Staphylococcal (or micrococcal) nuclease or thermonuclease (SNase or Nuc) is a naturally-secreted nucleic acid degrading enzyme that participates in Staphylococcus aureus spread in the infected host. Purified Nuc protein can be used as an exogenous reagent to clear cellular extracts and improve protein purification. Here, a recombinant form of Nuc was produced and secreted in a Gram-positive host, Lactococcus lactis, and purified from the culture medium.  相似文献   

9.

Background  

Expression of recombinant proteins in green algal chloroplast holds substantial promise as a platform for the production of human therapeutic proteins. A number of proteins have been expressed in the chloroplast of Chlamydomonas reinhardtii, including complex mammalian proteins, but many of these proteins accumulate to significantly lower levels than do endogenous chloroplast proteins. We examined if recombinant protein accumulation could be enhanced by genetically fusing the recombinant reporter protein, luciferase, to the carboxy-terminal end of an abundant endogenous protein, the large subunit of ribulose bisphosphate carboxylase (Rubisco LSU). Additionally, as recombinant proteins fused to endogenous proteins are of little clinical or commercial value, we explored the possibility of engineering our recombinant protein to be cleavable from the endogenous protein in vivo. This strategy would obviate the need for further in vitro processing steps in order to produce the desired recombinant protein. To achieve this, a native protein-processing site from preferredoxin (preFd) was placed between the Rubisco LSU and luciferase coding regions in the fusion protein construct.  相似文献   

10.

Background  

Protein expression in E. coli is the most commonly used system to produce protein for structural studies, because it is fast and inexpensive and can produce large quantity of proteins. However, when proteins from other species such as mammalian are produced in this system, problems of protein expression and solubility arise [1]. Structural genomics project are currently investigating proteomics pipelines that would produce sufficient quantities of recombinant proteins for structural studies of protein complexes. To investigate how the E. coli protein expression system could be used for this purpose, we purified apoptotic binary protein complexes formed between members of the Caspase Associated Recruitment Domain (CARD) family.  相似文献   

11.

Background  

Genetic fusion of the major birch pollen allergen (Bet v1) to bacterial surface-(S)-layer proteins resulted in recombinant proteins exhibiting reduced allergenicity as well as immunomodulatory capacity. Thus, S-layer/allergen fusion proteins were considered as suitable carriers for new immunotherapeutical vaccines for treatment of Type I hypersensitivity. Up to now, endotoxin contamination of the fusion protein which occurred after isolation from the gram-negative expression host E. coli had to be removed by an expensive and time consuming procedure. In the present study, in order to achieve expression of pyrogen-free, recombinant S-layer/allergen fusion protein and to study the secretion of a protein capable to self-assemble, the S-layer/allergen fusion protein rSbpA/Bet v1 was produced in the gram-positive organism Bacillus subtilis 1012.  相似文献   

12.

Background  

Secretion of recombinant proteins in yeast can be affected by their improper folding in the endoplasmic reticulum and subsequent elimination of the misfolded molecules via the endoplasmic reticulum associated protein degradation pathway. Recombinant proteins can also be degraded by the vacuolar protease complex. Human urokinase type plasminogen activator (uPA) is poorly secreted by yeast but the mechanisms interfering with its secretion are largely unknown.  相似文献   

13.

Background  

The NIsin-Controlled gene Expression system NICE of Lactococcus lactis is one of the most widespread used expression systems of Gram-positive bacteria. It is used in more than 100 laboratories for laboratory-scale gene expression experiments. However, L. lactis is also a micro-organism with a large biotechnological potential. Therefore, the aim of this study was to test whether protein production in L. lactis using the NICE system can also effectively be performed at the industrial-scale of fermentation.  相似文献   

14.

Background  

Recombinant protein production is universally employed as a solution to obtain the milligram to gram quantities of a given protein required for applications as diverse as structural genomics and biopharmaceutical manufacture. Yeast is a well-established recombinant host cell for these purposes. In this study we wanted to investigate whether our respiratory Saccharomyces cerevisiae strain, TM6*, could be used to enhance the productivity of recombinant proteins over that obtained from corresponding wild type, respiro-fermentative strains when cultured under the same laboratory conditions.  相似文献   

15.

Background  

Many plasmid-harbouring strains of Lactococcus lactis have been isolated from milk and other sources. Plasmids of Lactococcus have been shown to harbour antibiotic resistance genes and those that express some important proteins. The generally regarded as safe (GRAS) status of L. lactis also makes it an attractive host for the production of proteins that are beneficial in numerous applications such as the production of biopharmaceutical and nutraceutical. In the present work, strains of L. lactis were isolated from cow's milk, plasmids were isolated and characterised and one of the strains was identified as a potential new lactococcal host for the expression of heterologous proteins.  相似文献   

16.
17.

Background  

Many protocols for recombinant production of peptides and proteins include secretion into the periplasmic space of Escherichia coli, as they may not properly fold in the cytoplasm. If a signal peptide is not sufficient for translocation, a larger secretion moiety can instead be fused to the gene of interest. However, due to the covalent linkage of the proteins, a protease recognition site needs to be introduced in between, altering the N-terminus of the product. In the current study, we combined the ubiquitin fusion technology, which allows production of authentic peptides and proteins, with secretion by the perpiplasmic protease inhibitor ecotin.  相似文献   

18.

Background

Lactic acid bacteria are a family of “generally regarded as safe” organisms traditionally used for food fermentation. In recent years, they have started to emerge as potential chassis for heterologous protein production. And more recently, due to their beneficial properties in the gut, they have been examined as potential candidates for mucosal delivery vectors, especially for acid-sensitive enzymes. One such application would be the delivery of gluten-digesting endopeptidases for the treatment of celiac disease. To facilitate these applications, an efficient recombinant protein expression toolbox is required, especially for recombinant protein secretion. While current tools for enhancing protein secretion consist mainly of signal peptides, secretion propeptides have also been observed to play a crucial role for protein secretion and improved yields.

Results

To expand the propeptide library for secretion optimization, we have mined and characterized three naturally occurring propeptides from the sequenced genomes of 109 Lactococcus species. These newly-mined propeptides were introduced after the N-terminal USP45 secretion signal to characterize and compare their effects on the secretion of Escherichia coli thioredoxin (TRX) and Flavobacterium meningosepticum prolyl endopeptidase (Fm PEP) in Lactococcus lactis NZ9000. All three propeptides, along with the positive control LEISSTCDA, improved volumetric secretion yields by 1.4–2.3-folds. However, enhancement of secretion yield is dependent on protein of interest. For TRX, the optimal combination of USP45 signal peptide and LEISSTCDA produced a 2.3-fold increase in secretion yields. Whilst for Fm PEP, propeptide 1 with USP45 signal peptide improved volumetric secretion yields by 2.2-fold compared to a 1.4-fold increase by LEISSTCDA. Similar trends in Fm PEP activity and protein yield also demonstrated minimal effect of the negative charged propeptides on PEP activity and thus folding.

Conclusions

Overall, we have characterized three new propeptides for use in L. lactis secretion optimization. From success of these propeptides for improvement of secretion yields, we anticipate this collection to be valuable to heterologous protein secretion optimisation in lactic acid bacteria. We have also demonstrated for the first time, secretion of Fm PEP in L. lactis for potential use as a therapy agent in celiac disease.
  相似文献   

19.

Background  

Pathogenic yersiniae, including Y. pestis, share a type III secretion system (T3SS) that is composed of a secretion machinery, a set of translocation proteins, a control system, and six Yop effector proteins including YpkA and YopJ. The cyclic AMP receptor protein (CRP), a global regulator, was recently found to regulate the laterally acquired genes (pla and pst) in Y. pestis. The regulation of T3SS components by CRP is unknown.  相似文献   

20.
Chen S  Zhang R  Duan G  Shi J 《Current microbiology》2011,62(6):1726-1731
Helicobacter pylori is the principal cause of chronic active gastritis, peptic ulcer, and gastric cancer. To develop an oral vaccine against H. pylori infection, we had expressed the H. pylori ureB gene (Genbank accession no. FJ436980) in nisin-controlled expression vectors using Lactococcus lactis NZ3900 as host. The ureB gene was amplified by PCR from a H.pylori strain MEL-Hp27. Then the ureB gene was fused translationally downstream of the nisin-inducible promoter nisA in a L. lactis plasmid pNZ8149. Lactose utilization based on the complementation of the lacF gene was used as a dominant selection marker for the food-grade expression system employing L. lactis NZ3900. The conditions of UreB expression in this system were optimized by orthogonal experiment. The optimized conditions have been determined as follows: induction of expression was carried out at the cells density of OD600 ≈ 0.4 with 25 ng/ml nisin, and harvest after 5 h. The maximum percentage of recombinant UreB was estimated to be 7% of total soluble cellular proteins and the yield was 12.9 μg/ml. Western blot demonstrated that the UreB protein was expressed in the L. lactis transformant and had favorable immunoreactivity. These results indicated that the lactococci-derived vaccines could be promising candidates as alternative vaccine strategies for preventing H. pylori infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号